Moderne effektive Wechselwirkungen in der Kernstrukturphysik

Robert Roth

Institut für Kernphysik Technische Universität Darmstadt

Überblick

Motivation

- Moderne Effektive Wechselwirkungen
 - Lee-Suzuki-Transformation
 - V_{lowk} Renormierungsgruppenmethode
 - Methode der unitären Korrelatoren (UCOM)

Anwendungen

- No-Core Schalenmodell
- Hartree-Fock etc.
- Fermionische Molekulardynamik

Aktuelle Herausforderungen

RISING, AGATA, REX-ISOLDE,...

Kerne abseits der Stabilität

Nukleare Astrophysik Exotische Moden, Hyperkerne,...

NuSTAR

@ FAIR

Zuverlässige Kernstrukturtheorie für exotische Kerne

Brückenschlag zwischen Niederenergie-QCD und Kernstrukturtheorie

Moderne Kernstrukturtheorie

Realistische NN-Potentiale

QCD motiviert

- Symmetrien, Mesonen-Austausch-Bild
- chirale effektive Feldtheorien

kurzreichweitige Phänomenologie

• kurzreichw. Parametrisierung / Kontaktterme

experimentelle NN-Streudaten

• Streuphasen & Deuteroneigenschaften mit hoher Genauigkeit reproduziert

ergänzende Dreiteilchenkraft

• angepaßt an Spektren leichter Kerne

Robert Roth - TU Darmstadt - 03/2006

Argonne V18 Potential

Ab initio Methoden: GFMC

Moderne Kernstrukturtheorie

Moderne Kernstrukturtheorie

Robert Roth – TU Darmstadt – 03/2006

Warum Effektive Wechselwirkungen?

Realistische NN-Potentiale

- erzeugen starke Korrelationen im Vielteilchenzustand
- kurzreichweitige Zentral- & Tensorkorrelationen sind dominant

Vielteilchenmethoden

- angewiesen auf eingeschränkten Modellraum für A > 12
- können kurzreichweitige Korrelationen nicht beschreiben
- Extrem: Hartree-Fock basiert auf einzelner Slaterdeterminante

Moderne Effektive Wechselw.

- Anpassung des realistischen Potentials an verfügbaren Modellraum
- Erhaltung der exp. bestimmten Eigenschaften (Streuphasen)

Traditionelle Effektive Wechselwirkungen

Effektive Schalenmodell-Wechselwirkungen

- rein phänomenologische Fits der Matrixelemente f
 ür gewisse Modellr
 äume
- Konstruktion mittels Folded-Diagram-Entwicklungen und G-Matrix ausgehend von realistischem Potential

Effektive Mean-Field-Wechselwirkungen

- phänomenologische Fits von Potentialen oder Kontaktkräften (Gogny Potential / Skyrme Kraft)
- G-Matrix basierend auf realistischem Potential

Moderne Effektive Wechselwirkungen

Lee-Suzuki-Transformation

• Ähnlichkeitstransformation zur vollständigen Entkopplung von gewähltem P- und Q-Raum (meist Schalenmodell)

V_{lowk} Renormierungsgruppenmethode

 Renormierungsgruppendezimierung der Wechselwirkung auf niedrige Impulskomponenten

Methode der unitären Korrelatoren

 unitäre Transformation zur direkten Beschreibung von kurzreichweitigen Zentral- und Tensorkorrelationen

Lee-Suzuki-Transformation

$$\begin{split} \mathbf{H}_{\mathrm{eff}} &= \mathbf{P} \, \mathbf{X} \mathbf{H} \mathbf{X}^{-1} \, \mathbf{P} \\ \mathbf{0} &= \mathbf{Q} \, \mathbf{X} \mathbf{H} \mathbf{X}^{-1} \, \mathbf{P} \end{split}$$

 Entkopplungsgleichung definiert Matrixelemente der Transformation X bzgl. gegebener Basis

- eff. Modellraum-Ww. in Form von Matrixelementen definiert
- prinzipiell auch f
 ür effektive Operatoren geeignet (extrem aufwendig)
- effektive Größen hängen von Basis und Modellraum ab

$V_{\text{low}k}$ Renormierungsgruppenmethode

$$T(k',k;k^2) = V_{\text{bare}}(k',k) + rac{2}{\pi} \mathcal{P} \int_0^\infty \mathrm{d}p \, p^2 rac{V_{\text{bare}}(k',p)T(p,k;k^2)}{k^2 - p^2}$$

 V Dezimierung auf Niederimpulsraum
 $T(k',k;k^2) = V_{\text{low}k}(k',k) + rac{2}{\pi} \mathcal{P} \int_0^\Lambda \mathrm{d}p \, p^2 rac{V_{\text{low}k}(k',p)T(p,k;k^2)}{k^2 - p^2}$

- universelle, streuphasenäquivalente Niederimpulswechselwirkung bis zum Cutoff Λ definiert
- explizite phänomenologische Dreiteilchenwechselw. notwendig
- technisch äquivalent zu Lee-Suzuki im Impulsraum (Q-Raum-Ww. wird verworfen)

Unitary Correlation Operator Method (UCOM)

Methode der unitären Korrelatoren

Korrelationsoperator

erzeuge kurzreichweitige Korrelationen durch unitäre Transformation bzgl. der Relativkoordinaten aller Teilchenpaare

$$\mathbf{C} = \exp[-\mathrm{i}\,\mathrm{G}] = \expigg[-\mathrm{i}\sum_{i < j}\mathrm{g}_{ij}igg]$$

korrel. Zustände $\left| \widetilde{\psi}
ight
angle = \mathbf{C} \; \left| \psi
ight
angle$

korrel. Operatoren $\widetilde{O} = C^{\dagger} O C$

$$ig\langle \widetilde{\psi} ig| \, \mathrm{O} ig| \widetilde{\psi'} ig
angle = ig\langle \psi ig| \, \mathbf{C^\dagger} \, \mathrm{O} \, \mathbf{C} ig| \psi' ig
angle = ig\langle \psi ig| \, \widetilde{\mathrm{O}} ig| \psi' ig
angle$$

 $G^{\dagger} = G$ $C^{\dagger}C = 1$

Zentral- und Tensorkorrelator

 $\mathrm{C}=\mathrm{C}_{\Omega}\mathrm{C}_{r}$

Zentralkorrelator C_r

 radiale abstandsabhängige Verschiebung in der Relativkoordinate zweier Nukleonen

$$egin{aligned} \mathbf{g}_r &= rac{1}{2} ig[s(\mathbf{r}) \; \mathbf{q}_r + \mathbf{q}_r \; s(\mathbf{r}) ig] \ \mathbf{q}_r &= rac{1}{2} ig[rac{ec{\mathbf{r}}}{\mathbf{r}} \cdot ec{\mathbf{q}} + ec{\mathbf{q}} \cdot rac{ec{\mathbf{r}}}{\mathbf{r}} ig] \end{aligned}$$

Tensorkorrelator C_{Ω}

 tangentiale Verschiebung in Abhängigkeit von der relativen Orientierung von Spin und Relativkoordinate

s(r) und $\vartheta(r)$ für gegebenes Potential im Zweiteilchensystem bestimmt

Korrelierte Zustände: Das Deuteron

Korrelierte Wechselwirkung — $V_{\rm UCOM}$

$$\widetilde{\mathbf{H}} = \mathbf{T} + \mathbf{V}_{UCOM} + \mathbf{V}_{UCOM}^{[3]} + \cdots$$

- geschlossene Operatordarstallung der korrelierten Wechselwirkung V_{UCOM} in Zweiteilchennäherung
- korrelierte Ww. und Ausgangswechselwirkung sind per Konstruktion streuphasenäquivalent
- Impulsraummatrixelemente ähnlich V_{lowk}
- konsistente korrelierte Operatoren (Übergangsoperatoren, Besetzungzahlen, etc.) leicht konstruierbar

Vergleich mit V_{lowk}

Simplistisches "Schalenmodell"

Erwartungswert des Hamiltonian (mit AV18) für Slaterdeterminante aus harmonischen Oszillatorzuständen

Anwendung I No-Core Schalenmodell

UCOM + NCSM

- Vielteilchenzustand ist entwickelt in Slaterdeterminanten von Einteilchenzuständen des harmonischen Oszillators
- großskalige Diagonalisierung des Hamiltonian in einem trunkierten Vielteilchenraum ($N\hbar\omega$ -Trunkierung)
- Bewertung von kurz- und langreichweitigen Korrelationen

NCSM-Code von Petr Navrátil [PRC 61, 044001 (2000)]

⁴He: Konvergenz

⁴He: Konvergenz

Tjon-Linie und Korrelatorreichweite

Tjon-Linie: E(⁴He) vs. E(³H) für streuphasenäquivalente NN-Wechselwirkungen

Tjon-Linie und Korrelatorreichweite

- Tjon-Linie: E(⁴He) vs. E(³H) für streuphasenäquivalente NN-Wechselwirkungen
- Änderung der C_Ω-Reichweite erzeugt Verschiebung entlang der Tjon-Linie

minimiere Netto-Dreiteilchenkraft durch Wahl eines Korrelators nahe der exp. Energien

Tjon-Linie und Korrelatorreichweite

- Tjon-Linie: E(⁴He) vs. E(³H) für streuphasenäquivalente NN-Wechselwirkungen
- Änderung der C_Ω-Reichweite erzeugt Verschiebung entlang der Tjon-Linie

minimiere Netto-Dreiteilchenkraft durch Wahl eines Korrelators nahe der exp. Energien

⁶Li: NCSM für p-Schalenkerne

 No-Core-Schalenmodellrechnungen in der p-Schale derzeit in Arbeit (ohne und mit Lee-Suzuki-Transformation)

¹⁰B: Benchmark für V_{UCOM}

10 B: Benchmark für V_{UCOM}

Anwendung II: Hartree-Fock etc.

UCOM + HF

- Vielteilchenzustand ist einzelne Slaterdeterminante von Einteilchenzuständen dargestellt in Oszillatorbasis
- HF-Zustände können keinerlei Korrelationen beschreiben
- Ausgangspunkt f
 ür verbesserte Vielteilchenrechnungen: MB-PT, RPA, SM/CI, CC,...

Hartree-Fock mit V_{UCOM}

Störungstheorie mit V_{UCOM}

Ausblick: UCOM + RPA

Anwendung III:

Fermionische Molekulardynamik

UCOM + FMD

Gaußförmige Einteilchenzust.

$$egin{aligned} q &> = \sum_{
u=1}^n egin{aligned} c_
u & ig| a_
u, ec{b}_
u &\otimes ig| \chi_
u &\otimes ig| m_t &\otimes ig| m_t$$

$$\langle \vec{x} | \boldsymbol{a_{
u}}, \vec{b_{
u}} \rangle = \exp \left[- \frac{(\vec{x} - \boldsymbol{b_{
u}})^2}{2 \, \boldsymbol{a_{
u}}} \right]$$

 $a_{
u}$: komplex Breite $\chi_{
u}$:Spinorientierung $ec{b}_{
u}$: mittl. Ort & Impuls

Slaterdeterminante

$$oldsymbol{Q} ig
angle = oldsymbol{\mathcal{A}} \left(ig| oldsymbol{q_1} ig \otimes ig| oldsymbol{q_2} ig \otimes \cdots \otimes ig| oldsymbol{q_A} ig
angle
ight)$$

Korrelierter Hamiltonian

$$\widetilde{\mathrm{H}} = \mathrm{T} + \mathrm{V}_{\mathrm{UCOM}} + \delta \mathrm{V}_{c+p+ls}$$

Variation

$$rac{\left\langle oldsymbol{Q} \middle| \, \widetilde{\mathbf{H}} \! - \! \mathbf{T}_{ ext{cm}} \left| oldsymbol{Q}
ight
angle}{\left\langle oldsymbol{Q} \middle| oldsymbol{Q}
ight
angle} o \min$$

Projektion

Wiederherstellung gebrochener Symmetrien (PAV / VAP)

Multikonfig.

Mischung intrinsischer Konfigurationen (GCM)

Intrinsische Einteilchendichten

Struktur von ¹²C

	E [MeV]	$R_{ch} \; [{ m fm}]$	$B(E2) \ [e^2 \ { m fm}^4]$
V/PAV	81.4	2.36	-
VAP α -cluster	79.1	2.70	76.9
PAV^{π}	88.5	2.51	36.3
VAP	89.2	2.42	26.8
Multi-Config	92.2	2.52	42.8
Experiment	92.2	2.47	39.7 ± 3.3

Mu	lti-(Coi	nfig
----	-------	-----	------

Robert Roth - TU Darmstadt - 03/2006

Struktur von ¹²C — Hoyle-Zustand

	Multi-Config	Experiment
E [MeV]	92.4	92.2
$R_{\rm ch}$ [fm]	2.52	2.47
$\overline{B(E2,0^+_1 o 2^+_1) \; [e^2 { m fm}^4]}$	42.9	39.7 ± 3.3
$\overline{M(E0,0^+_1 ightarrow 0^+_2)} \; [{ m fm}^2]$	5.67	5.5 ± 0.2

Ausblick: Resonanzen & Streuung in FMD

 kollektive Koordinatendarstellung als Werkzeug zur Bescheibung von Kontinuumszuständen in der FMD

> erste Schritte in Richung einer konsistenten Beschreibung von Struktur und Reaktionen

Zusammenfassung

Moderne Effektive Wechselwirkungen

 streuphasenerhaltende Anpassung realistischer NN-Potentiale an einfache Vielteilchenräume

Unitary Correlation Operator Method (UCOM)

- explizite Beschreibung kurzreichw. Zentral- und Tensorkorrelationen
- \bullet universelle streuphasenäquiv. korrelierte Wechselwirkung V_{UCOM}

Innovative Vielteilchenmethoden

- No-Core Schalenmodell
- Hartree-Fock, MBPT, SM/CI, CC, RPA, ERPA, SRPA,...
- Fermionische Molekulardynamik

thanks to my group and my collaborators

- P. Hedfeld, H. Hergert, N. Paar, P. Papakonstantinou, A. Zapp Institut für Kernphysik, TU Darmstadt
- T. Neff NSCL, Michigan State University
- H. Feldmeier

Gesellschaft für Schwerionenforschung (GSI)

supported by the DFG through SFB 634 "Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments..."