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Summary & Motivation

•ultracold, dilute atomic gases in optical lattices

provide a unique experimental tool to investigate

strongly correlated quantum systems [1]

• these systems are well described by the single-band

Bose-Hubbard Hamiltonian [2]

• for moderate system sizes the groundstate is obtained

by exact diagonalisation of the corresponding Hamil-

ton matrix using Lanczos algorithms

• almost every static observable throughout the phase

diagram is accessible, e.g. condensate / superfluid

fraction, and the interference pattern [3-5,8]

• for the exact diagonalisation we are limited in system

size, we developed a physical motivated truncation

scheme

•based upon the truncation scheme we are able to

perform static calculations for larger systems as well

as explicit time evolutions of pertubed systems [7]

Bose-Hubbard Model

• 1D optical lattice with I lattice sites and N bosonic particles

• restriction to the first energy-band, T=0, nearest neighbour hopping,

and on-site two-particle interactions

• additional sinusodial two-colour superlattice potential
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• states are represented in an occupation number basis with dimension D
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Two-Colour Superlattice

• superposition of two stand-

ing wave lattices with dif-

ferent wavelengths [6]

•∆/J is the energy of the

deepest superlattice well
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Truncation Scheme

• virtues of exact diagonalisation techniques are that one is able to com-

pute almost every groundstate observable throughout the whole phase

diagram from the Mott insulating to the superfluid phase

•drawback is that the Hilbert space grows exponentially with number of

particles and lattice sites (static calculations are feasible up to D ≈ 107,

e.g. 12 bosons on 12 lattice sites have D = 1352087 number states)

•when focusing on the strongly correlated regime there are many ener-

getically unfavourable number states that virtually do not contribute to

the groundstate

• the idea is to include only states
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•depending on the lattice topology and the position in the phase-diagram

one can reduce the basis dimension by some orders of magnitude without

significant consequences

Test of Truncation Scheme (I = 10, N = 10)
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1 •phase diagram in the V -∆-plane shows the localised

phase (V/J ≤ 1), the Mott-insulator phase (V < ∆)

and the quasi Bose-glass phase (V ≥ ∆) [3]

•we fix the interaction strength at V/J = 30 and increase

the value of ∆/J
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fc : condensate fraction of particles

ν : visibility of the interference fringes

σmax : max fluctuation of particles

• less than 1% of the states are able to repro-

duce all observables qualitatively

• about 5% of the states fit the complete cal-

cualation almost perfectly

range complete ∆/J 1-28 ∆/J 29-50 ∆/J 51-180 ∆/J 1-29 ∆/J 30-50 ∆/J 51-180

dimension 92378 91 288 199 3743 1866 2737

Interference Patterns
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•matter-wave interference patterns of the atom cloud after release from the lattice and a certain

time of flight are a genuine experimental observable

• again the truncated bases seem to include all physically relevant information

• if δ is a multiple of 1/I = 0.1 the intensities are the quasi-momentum occupation numbers

• for small superlattice amplitudes the systems is incoherent and therefore the interference is

almost completely suppressed, this an inherent feature of the Mott-insulating state

• entering the quasi Bose-glass phase (∆ ≈ V) the quasi-momentum zero peaks and a character-

istic interference pattern appears [5]
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