Nuclear Structure based on Correlated Realistic NN-Interactions

Robert Roth

H. Hergert, N. Paar, P. Papakonstantinou

Institut für Kernphysik, TU Darmstadt

T. Neff, H. Feldmeier

Gesellschaft für Schwerionenforschung

Motivation

- Correlations in Nuclei
- Unitary Correlation Operator Method (UCOM)
- UCOM-Hartree-Fock
- Fermionic Molecular Dynamics

Two Problems in Nuclear Structure

consider the nucleus as a non-relativistic microscopic many-nucleon system

What is the interaction between the nucleons?

How to solve the quantum many-body problem?

significant progress over the past decade....

Realistic Potentials

several realistic NN-potentials are available

- Argonne V18, CD Bonn, Nijmegen,...
- reproduce experimental scattering data and deuteron properties with high accuracy

Realistic Potentials

several realistic NN-potentials are available

- Argonne V18, CD Bonn, Nijmegen,...
- reproduce experimental scattering data and deuteron properties with high accuracy
- need to be supplemented by a three-nucleon potential
 - NNN-potential depends on NN-potential
 - present NNN-potentials are purely phenomenological
 - very promising developments in chiral effective field theories towards a consistent NN + NNN-potential

Ab initio Calculations

Our Aim

nuclear structure calculations across the whole nuclear chart based on realistic NN-potentials

stay as close as possible to an **ab initio** treatment bound to **simple Hilbert spaces** for large particle numbers

need to deal with strong interaction-induced correlations

Correlations in Nuclei

Deuteron: Manifestation of Correlations

 $M_S = \pm 1$

 $|\uparrow\uparrow\rangle, |\downarrow\downarrow\rangle$

spin-projected two-body density $\rho_{1,M_S}^{(2)}(\vec{r})$ of the deuteron for AV18 potential

two-body density fully suppressed at small particle distances $|\vec{r}|$ **central correlations** angular distribution depends strongly on relative spin orientation **tensor correlations**

Central Correlations

- strong repulsive core in central part of realistic interactions
- suppression of the probability density for finding two nucleons within the core region → central correlations
- cannot be described by single or superpos. of few Slater determinants

"shift the nucleons out of the core region"

Tensor Correlations

analogy with dipole-dipole interaction

$$V_{ ext{tensor}} \sim - \Bigl(3 \, rac{(ec{\sigma}_1 ec{r})(ec{\sigma}_2 ec{r})}{r^2} - ec{\sigma}_1 ec{\sigma}_2 \Bigr) \, .$$

- couples the relative spatial orientation of two nucleons with their spin orientation → tensor correlations
- cannot be described by single or superpos. of few Slater determinants

"rotate nucleons towards poles or equator depending on spin orientation" Unitary Correlation Operator Method (UCOM)

Unitary Correlation Operator Method

Correlation Operator

introduce correlations by means of a unitary transformation with respect to the relative coordinates of all pairs

$$egin{aligned} \mathbf{C} &= \exp[-\mathrm{i}\,\mathrm{G}] = \expiggl[-\,\mathrm{i}\sum_{i < j}\mathrm{g}_{ij}iggr] \ &= \mathrm{g}(ec{\mathrm{r}},ec{\mathrm{q}};ec{\sigma}_1,ec{\sigma}_2,ec{ au}_1,ec{ au}_2) \end{aligned}$$

Correlated Operators $\widehat{\mathbf{O}} = \mathbf{C}^{\dagger} \mathbf{O} \mathbf{C}$ $\begin{array}{c} \textbf{Correlated States} \\ \left| \widehat{\psi} \right\rangle = \textbf{C} \ \left| \psi \right\rangle \end{array}$

 $G^{\dagger} = G$

 $C^{\dagger}C = 1$

 $ig\langle \psi ig| \, \widehat{\mathbf{O}} ig| \psi' ig
angle = ig\langle \psi ig| \, \mathbf{C}^\dagger \, \, \mathbf{O} \, \, \mathbf{C} ig| \psi' ig
angle = ig\langle \widehat{\psi} ig| \, \mathbf{O} ig| \widehat{\psi'} ig
angle$

Central and Tensor Correlators

 $\mathrm{C}=\mathrm{C}_{\Omega}\mathrm{C}_{r}$

Central Correlator C_r

 radial distance-dependent shift in the relative coordinate of a nucleon pair

$$\mathbf{g}_r = rac{1}{2} ig[s(\mathbf{r}) \ \mathbf{q}_r + \mathbf{q}_r \ s(\mathbf{r}) ig] \ \mathbf{q}_r = rac{1}{2} ig[rac{ec{\mathbf{r}}}{\mathbf{r}} \cdot ec{\mathbf{q}} + ec{\mathbf{q}} \cdot rac{ec{\mathbf{r}}}{\mathbf{r}} ig]$$

Tensor Correlator C_{Ω}

 angular shift depending on the orientation of spin and relative coordinate of a nucleon pair

$$egin{aligned} &\mathbf{g}_\Omega = rac{3}{2} artheta(\mathbf{r}) ig[(ec{\sigma}_1 \cdot ec{\mathbf{q}}_\Omega) (ec{\sigma}_2 \cdot ec{\mathbf{r}}) + (ec{\mathbf{r}} \leftrightarrow ec{\mathbf{q}}_\Omega) ig] \ & ec{\mathbf{q}}_\Omega = ec{\mathbf{q}} - rac{ec{\mathbf{r}}}{\mathbf{r}} \, \mathbf{q}_r \end{aligned}$$

s(r) and $\vartheta(r)$ describe the distance dependence of the transformations

Correlated States

Central Correlations

$$egin{aligned} ec{r}ig| \mathbf{C}_{m{r}}ig| \phi;(01)1ig
angle = \ &= \sqrt{m{R'_-}(r)} \; rac{m{R_-}(r)}{r} \left\langle rac{m{R_-}(r)}{r}ig| \phi;(01)1
ight
angle \end{aligned}$$

Tensor Correlations

 $egin{aligned} &\left< ec{r}
ight| \, \mathbf{C}_{\mathbf{\Omega}} \left| \phi; (01) 1
ight> = \ &= \cos(3\sqrt{2} \, \, ec{arphi}(r)) \, \left< ec{r}
ight| \phi; (01) 1
ight> \ &+ \, \sin(3\sqrt{2} \, \, ec{arphi}(r)) \, \left< ec{r}
ight| \phi; (21) 1
ight> \end{aligned}$

Correlated Operators

Cluster Expansion

$\widehat{\mathbf{O}} = \mathbf{C}^{\dagger} \, \mathbf{O} \, \mathbf{C} = \widehat{\mathbf{O}}^{[1]} + \widehat{\mathbf{O}}^{[2]} + \widehat{\mathbf{O}}^{[3]} + \cdots$ Cluster

Decomposition Principle

if the correlation range is small compared to the mean particle distance, then higher orders are negligible

restrict range of the correlators in order to minimise higher order contributions

Two-Body Approx. $\widehat{\mathbf{O}}^{C2} = \widehat{\mathbf{O}}^{[1]} + \widehat{\mathbf{O}}^{[2]}$

operators for all observables can be and have to be correlated consistently

Correlated NN-Potential — $V_{\rm UCOM}$

$$\widehat{\mathbf{H}}^{C2} = \widehat{\mathbf{T}}^{[1]} + \widehat{\mathbf{T}}^{[2]} + \widehat{\mathbf{V}}^{[2]} = \mathbf{T} + \mathbf{V}_{\text{UCOM}}$$

- closed operator expression for the correlated interaction
 V_{UCOM} in two-body approximation
- correlated interaction and original NN-potential are phase shift equivalent by construction
- central correlator: removes the repulsive core and generates additional momentum dependence
- tensor correlator: "rotates" part of tensor force into other operator channels (central, spin-orbit,...)
- momentum-space matrix elements of correlated interaction are similar to V_{low-k}

Momentum-Space Matrix Elements

Effect of Unitary Transformation

- expectation values for harmonic osc.
 Slater determinant
- nuclei unbound without inclusion of correlations
- central and tensor correlations essential to obtain bound system

UCOM Hartree-Fock

UCOM-HF Scheme

"Standard" Hartree-Fock + Matrix Elements of Correlated Realistic NN-Interaction V_{UCOM}

- single-particle states expanded in a spherical oscillator basis
- truncation in n, l, and/or N = 2n + l (typically $N_{\text{max}} = 6...10$)
- Coulomb interaction included exactly
- formulated with intrinsic kinetic energy $\mathbf{T}_{int} = \mathbf{T} \mathbf{T}_{cm}$ to eliminate centre of mass contributions

Correlated Oscillator Matrix Elements

 $egin{aligned} &\left\langle n(LS)JT
ight| \, \mathbf{C}_{m{r}}^{\dagger}\mathbf{C}_{m{\Omega}}^{\dagger}\,\mathrm{H}\,\mathbf{C}_{m{\Omega}}\mathbf{C}_{m{r}} \left| n'(L'S)JT
ight
angle \ &= \left\langle n(LS)JT
ight| \,\mathrm{T} + \mathrm{V}_{\mathrm{UCOM}} \left| n'(L'S)JT
ight
angle \end{aligned}$

calculate using uncorrelated states and operator form of \mathbf{V}_{UCOM}

map correlator onto states and use bare interaction (avoids BCH expansion)

- Talmi-Moshinsky transformation & recoupling to obtain *jj*-coupled matrix elements
- input for all kinds of many-body methods (HF, NCSM, CC,...)

Correlated Argonne V18

long-range correlations

genuine three-body forces three-body cluster contributions

Improvements

- improved many-body state: RPA, CI, CC, NCSM,...
- include genuine three-body forces & three-body clusters
- construct phenomenological three-body force

Long-Range Correlations

many-body perturbation theory: second-order energy shift gives estimate for influence of long-range correlations

$$\Delta E^{(2)} = -rac{1}{4}\sum_{i,j}^{ ext{occu. unoccu.}} rac{|ig\langle \phi_a \phi_b ig| \, \mathrm{V}_{ ext{UCOM}} ig| \phi_i \phi_j ig
angle|^2}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}$$

long-range correlations

genuine three-body forces

three-body cluster contributions

Pragmatic Approach

phenomenological two-body correction

$$\delta \mathbf{V}_{c+p+ls} = v_1(\mathbf{r}) + \vec{\mathbf{q}} \, v_{qq}(\mathbf{r}) \, \vec{\mathbf{q}} + v_{LS}(\mathbf{r}) \, \vec{\mathbf{L}} \cdot \vec{\mathbf{S}}$$

- Gaussian radial dependencies with fixed ranges
- strengths used as fit parameters (3 parameters)

Correlated Argonne V18 + Correction

Correlated Argonne V18 + Correction

Charge Distributions

Nuclear Matter: Equation of State

- symmetric nuclear matter
- Slater determinant of planewave states $|\vec{k}| \leq k_F$
- correlated momentum space matrix elements
- saturation point:

 $(E/A)_0 pprox -16.0 \,\mathrm{MeV}$ $ho_0 pprox 0.14 \,\mathrm{fm}^{-3}$ $K_0 pprox 280 \,\mathrm{MeV}$

HvH theorem fulfilled

Fermionic Molecular Dynamics (FMD)

FMD Trial States

Gaussian Single-Particle States

$$egin{aligned} &|q
angle = \sum_{
u=1}^n m{c}_{
u} \; ig| m{a}_{
u}, egin{aligned} &m{b}_{
u}
angle \otimes \; ig| m{\chi}_{
u}
angle \otimes \; ig| m{m}_t
angle \ &\langle ec{x} ig| m{a}_{
u}, egin{aligned} &m{b}_{
u}
angle = \expigg[- rac{(ec{x} - eta_{
u})^2}{2 \:m{a}} igg] \end{aligned}$$

 $a_
u$: complex width $\chi_
u$: spin orientation $ec{b}_
u$: mean position & momentum

Slater Determinant

$$oldsymbol{Q} ig
angle = oldsymbol{\mathcal{A}} \left(ig| oldsymbol{q_1} ig \otimes ig| oldsymbol{q_2} ig \otimes \cdots \otimes ig| oldsymbol{q_A} ig
angle
ight)$$

Correlated Hamiltonian

$$\widehat{\mathbf{H}}^{C2} = [\mathbf{C}_{r}^{\dagger} \mathbf{C}_{\Omega}^{\dagger} \mathbf{H} \mathbf{C}_{\Omega} \mathbf{C}_{r}]^{C2} = \mathbf{T} + \mathbf{V}_{\text{UCOM}}$$

 Variation

 $\langle Q | \, \widehat{H}^{C_2} \, | Q \rangle$
 $\langle Q | Q \rangle$

Diagonalisation

in sub-space spanned by several (suitably chosen) Slater determinants $\left|Q_{i}
ight
angle$

Chart of Nuclei

Selected Stable Nuclei

Intrinsic One-Body Density Distributions

Parity and Angular Momentum Projection

Conclusions

Unitary Correlation Operator Method (UCOM)

- short-range central and tensor correlations treated explicitly
- long-range correlations have to be accounted for by model space

Correlated Realistic NN-Potential V_{UCOM}

- low-momentum / phase-shift equivalent / operator representation
- robust starting point for all kinds of many-body calculations

Conclusions

UCOM Hartree-Fock

- closed shell nuclei across the whole nuclear chart
- basis for improved many-body calculations (RPA, HFB,...)

UCOM + Fermionic Molecular Dynamics

- ullet strong intrinsic deformation and clustering for $A\lesssim 60$
- PAV, VAP, and multi-configuration calculations