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Overview & Summary
• experiments on the Mott-insulator transition for

bosonic atoms in optical lattices [1] reveal a huge
potential for the study of the complex mechanisms
behind quantum phase transitions

• we explore which other quantum phases can be pro-
duced with ultracold atoms in optical lattices, how
they can be characterised, and which experimental
signatures can be expected

• we utilise the Bose-(Fermi-)Hubbard model to de-
scribe pure Bose gases [2] and boson-fermion mix-
tures [3] at zero temperature via an exact numerical
solution of the eigenvalue problem

• the rigidity of the system under phase variations is
used to obtain information on the superfluid density
of the bosonic species and the conductivity of the
fermionic component [4,5]

• bosons in two-colour superlattice reveal a rich phase
diagram with additional insulating phases (like the
quasi Bose-glass) governed by the competition be-
tween on-site energies and two-body interaction [4,6]

• boson-fermion mixtures exhibit different insulating
phases which can be characterised using the super-
fluid fraction of the bosonic and the conductivity of the
fermionic component

Bose-Fermi-Hubbard Model
• one-dimensional lattice with I sites, NB bosons, and NF fermions

• single-band Bose-Fermi-Hubbard Hamiltonian with nearest neighbour hopping,
on-site two-body interactions, and on-site single-particle energies [3]:
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• exact solution of large-scale eigenvalue problem for a few eigenstates with
Lanczos-type algorithm; basis dimensions up to D = DBDF ≈ 106 feasible
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Bosonic Superfluidity & Fermionic Conductivity
• beyond simple quantities — like mean occupation numbers n̄i, number fluctua-

tions σi, and condensate fraction — the rigidity under phase twists is an im-
portant indicator for fundamental dynamical properties of the system [4,5]

• we impose a linear phase variation on either the bosonic or the fermionic com-
ponent through Peierls phase factors in the respective hopping term

â†i+1âi → e−iΘB/I â†i+1âi ĉ†i+1ĉi → e−iΘF/I ĉ†i+1ĉi

• the phase twist causes an increase of the ground state energy; the energy
change is connected to the kinetic energy of the flow generated by the phase
gradient

• boson twist: the energy change resulting from a phase twist for the bosons is
a measure for the superfluid density of the bosonic component; the rigidity can
be identified with the superfluid fraction f B

s (neglecting the suppression of the
superfluid flow by the lattice itself) [4,5]
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• fermion twist: the energy change resulting from fermionic phase twist is related
to the conductivity of the fermionic component; the corresponding rigidity defines
the conducting fraction f F

c (equivalent to the well-known Drude weight)
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• an important further step is the distinction between normal- and superconductiv-
ity for the fermionic component (work in progress)

Bosons in Two-Colour Superlattices
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• superposition of two standing wave lattices with differ-
ent wavelengths generates spatial modulation of the
well-depths εBi Ô two-colour superlattice

0
20

40

60
VBB/JB

2
4

6
8

10

i

2

4
n̄B

i

I = 10, NB = 10, NF = 0

∆/JB = 50

• competition between on-site energy (favours
localisation), kinetic energy and repulsive
interaction (delocalisation) generates rich
phase diagram [4,6]

• localised phase: for small VBB/JB all par-
ticles are localised at the deepest well of
each superlattice cell

• quasi-Bose glass: with increasing VBB/JB
particles are redistributed gradually;
plateaus of integer occupation with steplike
rearrangements in between
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• Mott insulator: homogeneous Mott insulator emerges whenever VBB > ∆

• superfluid phase: superfluid isle at small ∆ and VBB

• experimental distinction of the different insulating phases is possible, e.g.,
through Bragg diffraction of light (measures the static structure factor)

Boson-Fermion Mixtures in Lattices
• mixtures of bosons and fermions in lattices open a wide range of new quantum

phases which are governed by the different quantum statistics and the competi-
tion between kinetic energy, boson-boson, and boson-fermion interaction

• on the basis of the boson superfluid fraction f B
s and the fermion conducting frac-

tion f F
c one can distinguish several characteristic quantum phases

• NB/I = NF/I = 1/2: two completely insulating phases with different dominant
intrinsic structures: Ê alternating boson and fermion occupation and Ë contigu-
ous boson and fermion blocks

• NB/I = 1, NF/I = 1/4: Ê bosonic Mott-insulator at VBB > VBF with non-
vanishing fermion conductivity and Ë completely insulating phase with con-
tiguous block structure
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