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Overview

m Bose-Hubbard Model

s Condensate & Superfluid

m Matter-Wave Interference Pattern

m Superfluid to Mott-Insulator Transition

m Two-Colour Superlattices
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Munich Experiment

Interference Pattern

increasing lattice depth —

[M. Greiner, et al., Nature 415 (2002) 39]

characteristic
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pattern of an ar-
ray of coherent
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slowly
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m How to describe ultracold bosons in a lattice?

m What is the superfluid to Mott-insulator transition?

m How to define superfluid and condensate?

m What does the interference pattern tell?

m Are there other quantum-phases one can investigate?

m What happens if the lattice is irregular?
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Bose-Hubbard Model




Bose-Hubbard Model

m one-dimensional lattice with IN particles and I lattice sites at T' = 0K
m restrict Hilbert space to the lowest energy band

m localised Wannier wavefunctions w;(x) with associated occupation num-
bers n; for the individual sites z = 1...1

m represent N-boson state in complete basis of Fock states |{n,...,nr}a)

W)= 3 Cul s i)

m basis dimension D grows dramatically with I and N

I/ 6 8 10 12
D | 462 6435 92378 1352078

for N/T =1
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Bose-Hubbard Hamiltonian

m second quantised Hamiltonian in terms of the associated creation, annihila-
tion, and number operators [Fisher et al. (1989); Jaksch et al. (1998)]

I I I

A o ) Vv R

HO = —J Z(aLrlai + h.a.) —+ Z €; 1N; + E Z H,,;(n,,; — 1)
tunnelling between single-par- on-site two-body
adjacent lattice sites ticle energy interaction

m assumptions: (a) only lowest band, (b) constant nearest-neighbour hopping,
(c) only short-range interactions

» Bose-Hubbard model is able to describe strongly correlated systems as
well as pure condensates

» exact solution: compute the lowest eigenstates of H, using iterative Lanc-
zos algorithms
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Simple Physical Quantities

o 5 10 15 20
V/)J

m consider a regular lattice = ¢; =0

m solve eigenproblem for various V/J
m mean occupation number

m humber fluctuations

O; = \/<‘I’0

m energy gap
Egap — Elst excited — EO

A

n; ‘I’0>2

62 ) — (W,
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Condensate &
Superfluidity




General Definition of the

Bose-Einstein Condensate

m eigensystem of the one-body density matrix
py) = (Wo| ala; |Wo)
defines natural orbitals and the corresp. occupation numbers

m Onsager-Penrose criterion: Bose-Einstein condensate is present if one of
the eigenvalues of p{; is of order N

eigenvalue — Ny : number of condensed particles
eigenvector —  ¢o,; : condensate wave function

m existence of a condensate implies off-diagonal long range order

ng)+0 as |Z—]|—>OO

m in a regular lattice the natural orbitals are quasi-momentum eigenstates
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Condensate & Quasimomentum Distribution

’
> 0.8 m pure condensate for V/J = 0
E 0.6 m rapid depletion of the condensate with
- | increasing V/J
0.4 |
< | m finite size effect: condensate fraction
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o br .
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What is Supertluidity?

m macroscopically the superfluid flow is nhon-dissipative and irrotational, i.e.,
it is described by the gradient of a scalar field

Tsr x VO(Z)

m classical two-fluid picture: only normal component responds to an imposed
velocity field ¥ (moving walls), the superfluid stays at rest

m energy in the comoving frame differs from ground state energy in the rest
frame by the kinetic energy of the superflow

E(imposed ¥, comoving frame) = E(at rest) + 5 Msp ¥

» these two ideas are basis for the microscopic definition of superfluidity
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Microscopic

Detinition of Superfluidity

m the velocity field of the superfluid is defined by the gradient of the phase of
the condensate wavefunction ¢ (&)

h o o B
Usr = —VO(Z) bo(Z) = @ |y ()]

m employ twisted boundary conditions to impose a linear phase variation
\Il(.’.l_fl, ceey fz -+ Lé&, coes .’EN) = ei@ \I’(fl, coes {E,,;, ceey fN) V1
m the change in energy Eg— E, due to the phase twist is for small © identified
with the kinetic energy of the superflow

1 2 __ 1 2
E@ — Eo = §MSF Ugp = EmNSF Ugp

m superfluid fraction = rigidity with respect to phase variations

Nez  2mL? Eg — E,

for = =2

N BN o2 O<m
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Superfluidity on the Lattice

m by a unitary transformation the phase twist can be mapped onto the Hamil-
tonian = twisted Hamiltonian containing Peierls phase factors

1
Ho = —J ) (e7®/"al 4,4+ ha) +
=1

m solve the eigenvalue problem of He and H, (with periodic BCs) and com-
pute the superfluid fraction
I? E¢ — E,

for = TN o2 OL T

m closely related to helicity modulus [Fisher, Barber, Jasnow (1973)] and wind-
ing number [Pollock, Ceperley (1987)]

m this is not the Landau picture of superfluidity = we do not consider the sta-
bility of the superflow (critical velocity)
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Perturbative Calculation of the

Superfluid Fraction

m calculate Ee — Ey in a perturbative expansion for small © around the un-
twisted Hamiltonian H,

m exact expression for fsg inthe imit ® — 0

for = fop) — fop
1 _ @ 1 (2] T]%)
SF 2NJ<\IIO‘ T[@o) SETONJ ;0 E, — Eo
T=-73,@&0,4 +ha) J=1i7Y,(al,,4; —ha)

» 1st order term depends only on the ground state expectation value of T
» 2nd order term couples to the whole excitation spectrum of H,

» the superfluid fraction measures the response of the system to an external
perturbation (phase twist)
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Mott-Insulator Transition

Superfluid Fraction

m superfluid fraction is the natural order
parameter for the superfluid-insulator
transition

m rapid decrease of fsg in a narrow win-
dow in V/J already for small systems

m 7Y decreases only very slowly

m vanishing of fsg is due to a cancella-

tion between £+ and 7%

m coupling to excited states is crucial

for the vanishing of fsr in the insulat-
ing phase

R. Roth - 6/2003



Condensate -vs- Superfluid

Condensate

m largest eigenvalue of the one-
body density matrix

m involves only the ground state

m measure for off-diagonal long-
range order / coherence

Jo < fsr

m non-condensed particles are
dragged along with condensate

m liquid *“He at T = OK:
Jo= 0.1, fo=1

Superfluid

m response of the system to an
external perturbation

m depends crucially on the excited
states of the system

m measures a flow property

Jo > fsr

m part of the condensate has a
reduced rigidity against phase
variations

m seems to occur in systems with
defects or disorder
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What about the Interference Pattern?

m interference fringes are a measure for

N=1I=12 the coherence properties
12 | ! I ! I ! I ! I ! I ! I !
1ol | V/J = 0 — | ] m intensity in the far-field as function of
15 — | phase difference d¢

Z(09)

o N B~ OO 0 O
, .

1 1N
_- -_ T(3¢) = PR (¥o ala,

h TV
L=l (1)
P;;

o)

7

AR RRRERR

m determined entirely by the one-body
density matrix of the ground state

0 02040608 1
dp/(2m) . .
» fringes tell something about conden-

sate and quasimomentum distribution
but not about superfluidity
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Summary

Superfluid to Mott-Insulator Transition
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Summary

Superfluid to Mott-Insulator Transition
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Two-Colour
Superlattices




Two-Colour Superlattices

m start with a standing wave created by a
laser with wavelength A,

m add a second standing wave created by
‘ ‘ a laser with wavelength A, = 2X; and
3 -\ n much smaller intensity (here 4%)

m potential exhibits a periodic modulation
Ui y2(x) of the well-depth with a period of 5 sites

m Bose-Hubbard model: varying on-site
€; II II II energies €; € [0, —A]

» controlled lattice irregularities open novel possibilities to study “disorder”
related effects; more complex topologies easily possible
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Two-Colour Superlattices
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Two-Colour Superlattices

V-A Phase Diagrams

Umax

V/J V/J
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0 10 20 30 40 50 O 10 20 30 40 50 O 10 20 30 40 50 60

V/J
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Conclusions

s Superfluidity
e response of the system to a perturbation (phase variation)

e depends crucially on the excitation spectrum

= Condensate & Coherence
e properties of the one-body density matrix of the ground state

e ground state quantities (interference pattern, fluctuations, etc.) cannot
give direct information on the superfluid fraction or the phase transition

s Two-Colour Superlattices

e rich phase diagram with several insulating phases: localised, quasi Bose-
glass, Mott-insulator

e distinct signatures in interference pattern and structure factor
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Epilogue
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