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Overview

R. Roth - 6/2003

n Bose-Hubbard Model

n Condensate & Superfluid

n Matter-Wave Interference Pattern

n Superfluid to Mott-Insulator Transition

n Two-Colour Superlattices
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Interference Pattern
Munich Experiment
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increasing lattice depth −→

[M. Greiner, et al., Nature 415 (2002) 39]

characteristic
interference
pattern of an ar-
ray of coherent
BECs emerges

incoherent
background
appears and
peaks vanish
slowly

superfluid to
Mott-insulator

transition
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Questions...
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n How to describe ultracold bosons in a lattice?

n What is the superfluid to Mott-insulator transition?

n How to define superfluid and condensate?

n What does the interference pattern tell?

n Are there other quantum-phases one can investigate?

n What happens if the lattice is irregular?
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Bose-Hubbard Model
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Bose-Hubbard Model
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n one-dimensional lattice with N particles and I lattice sites at T = 0K

n restrict Hilbert space to the lowest energy band

n localised Wannier wavefunctions wi(x) with associated occupation num-
bers ni for the individual sites i = 1...I

n represent N -boson state in complete basis of Fock states
∣
∣{n1, ..., nI}α

〉

∣
∣Ψ

〉
=

D∑

α=1

Cα

∣
∣{n1, ..., nI}α

〉

n basis dimension D grows dramatically with I and N

I 6 8 10 12
D 462 6435 92 378 1 352 078

for N/I = 1
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Bose-Hubbard Hamiltonian
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n second quantised Hamiltonian in terms of the associated creation, annihila-
tion, and number operators [Fisher et al. (1989); Jaksch et al. (1998)]

Ĥ0 = −J
I∑

i=1

(â†
i+1âi + h.a.) +

I∑

i=1

εi n̂i +
V

2

I∑

i=1

n̂i(n̂i − 1)

tunnelling between
adjacent lattice sites

single-par-
ticle energy

on-site two-body
interaction

n assumptions: (a) only lowest band, (b) constant nearest-neighbour hopping,
(c) only short-range interactions

I Bose-Hubbard model is able to describe strongly correlated systems as
well as pure condensates

I exact solution: compute the lowest eigenstates of Ĥ0 using iterative Lanc-
zos algorithms
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Simple Physical Quantities
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n consider a regular lattice Ô εi = 0

n solve eigenproblem for various V/J

n mean occupation number

n̄i =
〈
Ψ0

∣
∣ n̂i

∣
∣Ψ0

〉

n number fluctuations

σi =

√
〈
Ψ0

∣
∣ n̂2

i

∣
∣Ψ0

〉
−

〈
Ψ0

∣
∣ n̂i

∣
∣Ψ0

〉2

n energy gap

Egap = E1st excited − E0
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Condensate &
Superfluidity
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Bose-Einstein Condensate
General Definition of the
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n eigensystem of the one-body density matrix

ρ
(1)
ij =

〈
Ψ0

∣
∣ â†

i âj

∣
∣Ψ0

〉

defines natural orbitals and the corresp. occupation numbers

n Onsager-Penrose criterion: Bose-Einstein condensate is present if one of
the eigenvalues of ρ

(1)
ij is of order N

eigenvalue → N0 : number of condensed particles
eigenvector → φ0,i : condensate wave function

n existence of a condensate implies off-diagonal long range order

ρ
(1)
ij →/ 0 as |i − j| → ∞

n in a regular lattice the natural orbitals are quasi-momentum eigenstates
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Condensate & Quasimomentum Distribution
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n pure condensate for V/J = 0

n rapid depletion of the condensate with
increasing V/J

n finite size effect: condensate fraction
in a finite lattice always ≥ 1/I
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populated successively

n homogeneous occupation of the band
in the limit of large V/J

11



What is Superfluidity?
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n macroscopically the superfluid flow is non-dissipative and irrotational, i.e.,
it is described by the gradient of a scalar field

~vSF ∝ ~∇θ(~x)

n classical two-fluid picture: only normal component responds to an imposed
velocity field ~v (moving walls), the superfluid stays at rest

n energy in the comoving frame differs from ground state energy in the rest
frame by the kinetic energy of the superflow

E(imposed ~v, comoving frame) = E(at rest) + 1
2
MSF ~v2

I these two ideas are basis for the microscopic definition of superfluidity
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Definition of Superfluidity
Microscopic
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n the velocity field of the superfluid is defined by the gradient of the phase of
the condensate wavefunction φ0(~x)

~vSF =
~

m
~∇θ(~x) φ0(~x) = eiθ(~x) |φ0(~x)|

n employ twisted boundary conditions to impose a linear phase variation

Ψ(~x1, ..., ~xi + L~e1, ..., ~xN) = eiΘ Ψ(~x1, ..., ~xi, ..., ~xN) ∀i

n the change in energy EΘ−E0 due to the phase twist is for small Θ identified
with the kinetic energy of the superflow

EΘ − E0 = 1
2
MSF v2

SF = 1
2
mNSF v2

SF

n superfluid fraction = rigidity with respect to phase variations

fSF =
NSF

N
=

2m L2

~2N

EΘ − E0

Θ2
Θ � π
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Superfluidity on the Lattice
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n by a unitary transformation the phase twist can be mapped onto the Hamil-
tonian Ô twisted Hamiltonian containing Peierls phase factors

ĤΘ = −J
I∑

i=1

(e−iΘ/I â†
i+1âi + h.a.) + · · ·

n solve the eigenvalue problem of ĤΘ and Ĥ0 (with periodic BCs) and com-
pute the superfluid fraction

fSF =
I2

JN

EΘ − E0

Θ2
Θ � π

n closely related to helicity modulus [Fisher, Barber, Jasnow (1973)] and wind-
ing number [Pollock, Ceperley (1987)]

n this is not the Landau picture of superfluidity Ô we do not consider the sta-
bility of the superflow (critical velocity)
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Superfluid Fraction
Perturbative Calculation of the
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n calculate EΘ − E0 in a perturbative expansion for small Θ around the un-
twisted Hamiltonian Ĥ0

n exact expression for fSF in the limit Θ → 0

fSF = f
(1)
SF − f

(2)
SF

f
(1)
SF = −

1

2NJ

〈
Ψ0

∣
∣ T̂

∣
∣Ψ0

〉
f

(2)
SF =

1

NJ

∑

ν 6=0

|
〈
Ψν

∣
∣ Ĵ

∣
∣Ψ0

〉
|2

Eν − E0

T̂ = −J
∑

i(â
†
i+1âi + h.a.) Ĵ = iJ

∑

i(â
†
i+1âi − h.a.)

I 1st order term depends only on the ground state expectation value of T̂

I 2nd order term couples to the whole excitation spectrum of Ĥ0

I the superfluid fraction measures the response of the system to an external
perturbation (phase twist)
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Superfluid Fraction
Mott-Insulator Transition
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n superfluid fraction is the natural order
parameter for the superfluid-insulator
transition

n rapid decrease of fSF in a narrow win-
dow in V/J already for small systems
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n f
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n vanishing of fSF is due to a cancella-
tion between f

(1)
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n coupling to excited states is crucial
for the vanishing of fSF in the insulat-
ing phase
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Condensate -vs- Superfluid
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Condensate

n largest eigenvalue of the one-
body density matrix

n involves only the ground state

n measure for off-diagonal long-
range order / coherence

Superfluid

n response of the system to an
external perturbation

n depends crucially on the excited
states of the system

n measures a flow property

6=

f0 < fSF

n non-condensed particles are
dragged along with condensate

n liquid 4He at T = 0K:

f0 ≈ 0.1, fSF = 1

f0 > fSF

n part of the condensate has a
reduced rigidity against phase
variations

n seems to occur in systems with
defects or disorder
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What about the Interference Pattern?
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n interference fringes are a measure for

the coherence properties

n intensity in the far-field as function of
phase difference δφ

I(δφ) =
1

I

I∑

i,j=1

ei δφ (j−i)
〈
Ψ0

∣
∣ â†

i âj

∣
∣Ψ0

〉

︸ ︷︷ ︸

ρ
(1)
ij

n determined entirely by the one-body
density matrix of the ground state

I fringes tell something about conden-
sate and quasimomentum distribution
but not about superfluidity
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Superfluid to Mott-Insulator Transition
Summary
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Superfluid to Mott-Insulator Transition
Summary

R. Roth - 6/2003
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Two-Colour
Superlattices
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Two-Colour Superlattices
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U1(x)

n start with a standing wave created by a
laser with wavelength λ1

U1+2(x)

n add a second standing wave created by
a laser with wavelength λ2 = 5

7
λ1 and

much smaller intensity (here 4%)

n potential exhibits a periodic modulation
of the well-depth with a period of 5 sites

εi

n Bose-Hubbard model: varying on-site
energies εi ∈ [0, −∆]

I controlled lattice irregularities open novel possibilities to study “disorder”
related effects; more complex topologies easily possible
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Interaction -vs- Lattice Irregularity
Two-Colour Superlattices
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V-∆ Phase Diagrams
Two-Colour Superlattices
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Conclusions
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n Superfluidity
• response of the system to a perturbation (phase variation)

• depends crucially on the excitation spectrum

n Condensate & Coherence
• properties of the one-body density matrix of the ground state

• ground state quantities (interference pattern, fluctuations, etc.) cannot
give direct information on the superfluid fraction or the phase transition

n Two-Colour Superlattices
• rich phase diagram with several insulating phases: localised, quasi Bose-

glass, Mott-insulator

• distinct signatures in interference pattern and structure factor
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Epilogue
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