Kernstrukturrechnungen auf Basis realistischer NN-Wechselwirkungen

Robert Roth¹

in Zusammenarbeit mit H. Feldmeier² und T. Neff²

¹ Clarendon Laboratory, University of Oxford, UK ² Gesellschaft für Schwerionenforschung, Darmstadt

Beschreibung der Struktur von Kernen ausgehend von einer realistischen Nukleon-Nukleon-Wechselwirkung

Ziele

- Verwendung eines realistischen NN-Potentials, das experimentelle Streudaten reproduziert: Bonn, Argonne,...
- Vielteilchenproblem in einem möglichst einfachen Zustandsraum behandeln, z.B. Basis aus einigen Slaterdeterminanten
- möglichst nahe an einer *ab initio* Beschreibung; maximale Vorhersagekraft

Vermeiden

- rein phänomenologische Wechselwirkung, die allein durch Anpassung an eine große Zahl von Kernen bestimmt ist
- numerisch extrem aufwendige Verfahren zu Behandlung des Vielteilchenproblems (große Basen, Monte Carlo, etc.)
- keine ,,Black-Box", die Zusammenhänge und Anschaulichkeit verbirgt

Problem: kurzreichweitige Korrelationen

Wechselwirkung

realistische NN-Wechselwirkungen zeigen

- stark abstoßenden Core
- dominanten Tensorteil

Korrelationen

Core und Tensorteil induzieren *kurzreichweitige* Korrelationen, die im Zustandsraum nicht beschrieben werden können

Zustandsraum

einfacher Zustandsraum, z.B. aufgespannt durch einige Slaterdeterminanten, kann nur niedrige Relativimpulse beschreiben

Effektive Wechselw.

ersetze das volle Potential durch ein gezähmtes effektives Potential

Korrelierte Zustände

beziehe Korrelationen explizit in den Vielteilchen-Zustandsraum ein

unitärer Korrelationsoperator

Konzept des unitären Korrelators

Korrelationsoperator

kurzreichweitige Korrelationen werden durch einen zustandsunabhängigen unitären Korrelationsoperator C repräsentiert, der eine abstandsabhängige Transformation in der Relativkoordinate des Zweiteilchensystems beschreibt

$$\mathbf{C} = \exp[-\mathrm{i}\,\mathbf{G}] = \exp\left[-\mathrm{i}\sum_{i < j}\mathbf{g}_{ij}\right]$$
$$\mathbf{g} = \mathbf{g}(\vec{\mathbf{r}}, \vec{\mathbf{q}}; \vec{\sigma}_1, \vec{\sigma}_2, \vec{\tau}_1, \vec{\tau}_2)$$

 $\mathbf{G}^{\dagger} = \mathbf{G}$ $\mathbf{C}^{\dagger}\mathbf{C} = 1$

korrelierte Operatoren $\widetilde{\mathbf{O}} = \mathbf{C}^{\dagger} \mathbf{O} \mathbf{C}$

korrelierte Zustände $\left|\widetilde{\psi}
ight
angle = \mathbf{C} \ \left|\psi
ight
angle$

 $\left\langle \psi \right| \widetilde{\mathbf{O}} \left| \psi' \right\rangle = \left\langle \psi \right| \mathbf{C}^{\dagger} \mathbf{O} \mathbf{C} \left| \psi' \right\rangle = \left\langle \widetilde{\psi} \right| \mathbf{O} \left| \widetilde{\psi'} \right\rangle$

- Zentral-Korrelationsoperator
- korrelierte Wellenfunktion
- korrelierte Operatoren und Clusterentwicklung
- korrelierter Hamiltonoperator

Korrelationen

- starke kurzreichweitige Abstoßung erzeugt Korrelationsloch in der Zweiteilchendichte
- Slaterdeterminanten können diese kurzreichweitigen Korrelationen nicht beschreiben

Korrelationsoperator C_r

- Korrelationsoperator soll die Teilchen radial aus dem Wirkungsbereich des Cores herausschieben
- Generator für radiale abstandsabhängige Verschiebung in der Relativkoordinate

$$\mathbf{g}_r = \frac{1}{2} \left[s(\mathbf{r}) \left(\frac{\vec{\mathbf{r}}}{\mathbf{r}} \cdot \vec{\mathbf{q}} \right) + \left(\vec{\mathbf{q}} \cdot \frac{\vec{\mathbf{r}}}{\mathbf{r}} \right) s(\mathbf{r}) \right]$$
$$\vec{\mathbf{q}} = \frac{1}{2} (\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2)$$

• s(r) bestimmt Abstandsabhängigkeit

Korrelierte Wellenfunktion

Korrelierte Wellenfunktion

• Korrelationsoperator angewendet auf Zweiteilchenwellenfunktion

$$\left\langle \vec{r}, \vec{X} \right| \mathbf{C}_{r} \left| \psi \right\rangle = \sqrt{R_{-}'(r)} \frac{R_{-}(r)}{r} \left\langle R_{-}(\vec{r}) \frac{\vec{r}}{r}, \vec{X} \right| \psi \right\rangle$$
$$\left\langle \vec{r}, \vec{X} \right| \mathbf{C}_{r}^{\dagger} \left| \psi \right\rangle = \sqrt{R_{+}'(r)} \frac{R_{+}(r)}{r} \left\langle R_{+}(\vec{r}) \frac{\vec{r}}{r}, \vec{X} \right| \psi \right\rangle$$

• normerhaltende Koordinatentransformation mit Korrelationsfunktion $R_{\pm}(r)$

 $\vec{r} \mapsto R_{\pm}(r) \frac{\vec{r}}{r}$

• Verbindung mit Verschiebefunktion s(r)

$$\pm 1 = \int_{r}^{\mathbf{R}_{\pm}(r)} \frac{\mathrm{d}\xi}{s(\xi)} , \qquad \mathbf{R}_{\pm}(r) \approx r \pm s(r)$$

 Korrelationsfunktion bestimmt durch Abbildung eines unkorrelierten Ansatzzustandes auf exakten Zweiteilchenzustand oder durch Energieminimierung

• Vielteilchensystem

Korrelierte Operatoren & Clusterentwicklung

Clusterentwicklung

zerlege den korrelierten Operator in eine Summe von irreduziblen *k*-Teilchenoperatoren

 $\widetilde{\mathbf{H}} = \mathbf{C}_r^{\dagger} \mathbf{H} \mathbf{C}_r = \widetilde{\mathbf{H}}^{[1]} + \widetilde{\mathbf{H}}^{[2]} + \widetilde{\mathbf{H}}^{[3]} + \cdots$

 $V_{C} = \int d^{3}r [\langle r | \mathbf{C}_{r} | 1 \rangle - \langle r | 1 \rangle]^{2}$ **Kleinheitsparameter** $\kappa = \rho V_{C}$ $\kappa \ll 1 \qquad \kappa \ll 1$

Clusterzerlegungsprinzip

wenn die Reichweite der Korrelationen klein gegen den mittleren Teilchenabstand ist, dann sind höhere Clusterordnungen vernachlässigbar

Zweiteilchennäherung

 $\widetilde{\mathbf{H}}^{C2} = \widetilde{\mathbf{H}}^{[1]} + \widetilde{\mathbf{H}}^{[2]}$

$$\begin{split} \mathbf{Dreiteilchenn\"aherung}\\ \widetilde{\mathbf{H}}^{C3} &= \widetilde{\mathbf{H}}^{[1]} + \widetilde{\mathbf{H}}^{[2]} + \widetilde{\mathbf{H}}^{[3]} \end{split}$$

Effektive Korrekturen

1

Korrelierter Hamiltonoperator

$$\widetilde{\mathbf{H}} = \mathbf{C}_{r}^{\dagger} \mathbf{H} \mathbf{C}_{r} = \widetilde{\mathbf{H}}^{[1]} + \widetilde{\mathbf{H}}^{[2]} + \widetilde{\mathbf{H}}^{[3]} + \cdots$$

$$\overset{C2}{=} \mathbf{T} + \sum_{i < j} \left[\widetilde{v}(\mathbf{r}_{ij}) + \widetilde{u}(\mathbf{r}_{ij}) + \vec{\mathbf{q}}_{ij} \frac{1}{2\widetilde{\mu}_{\nabla}(\mathbf{r}_{ij})} \vec{\mathbf{q}}_{ij} + \vec{\mathbf{q}}_{ij} \frac{\vec{\mathbf{r}}_{ij}}{\mathbf{r}_{ij}} \frac{1}{2\widetilde{\mu}_{r}(\mathbf{r}_{ij})} \frac{\vec{\mathbf{r}}_{ij}}{\mathbf{r}_{ij}} \mathbf{q}_{ij} \right]$$

Lokale Potentiale

$$\widetilde{v}(r) = v[\mathbf{R}_{+}(r)]$$
$$\widetilde{u}(r) = \frac{1}{2\mu \mathbf{R}_{+}^{\prime 2}(r)} \left(\frac{2\mathbf{R}_{+}^{\prime \prime}(r)}{r\mathbf{R}_{+}^{\prime}(r)} - \frac{5\mathbf{R}_{+}^{\prime \prime 2}(r)}{4\mathbf{R}_{+}^{\prime 2}(r)} + \frac{\mathbf{R}_{+}^{\prime \prime \prime}(r)}{2\mathbf{R}_{+}^{\prime}(r)}\right)$$

Effektive Massekorrekturen

$$\frac{\mu}{\widetilde{\mu}_{\nabla}(r)} = \frac{r^2}{R_+^2(r)} - 1$$
$$\frac{\mu}{\widetilde{\mu}_r(r)} = \frac{1}{R'_+^2(r)} - \frac{r^2}{R_+^2(r)}$$

- Tensor-Korrelationsoperator
- korrelierte Wellenfunktion

Analogie: klassische mag. Dipole

$$V_{\text{tensor}} \sim -\left(3 \, \frac{(\vec{\sigma}_1 \vec{r})(\vec{\sigma}_2 \vec{r})}{r^2} - \vec{\sigma}_1 \vec{\sigma}_2\right)$$

Korrelationen

- Tensorwechselwirkung korreliert die relative räumliche Orientierung der Teilchen mit deren Spinausrichtung
- Slaterdeterminanten können diese Tensorkorrelationen nicht beschreiben

Korrelationsoperator C_{Ω}

- Korrelationsoperator soll in Abhängigkeit von den Spins eine Verschiebung hin zum Äquator oder zu den Polen beschreiben
- Generator f
 ür Transformation in den Winkelkoordinaten (T. Neff, Diss.)

$$\begin{split} \mathbf{g}_{\Omega} &= \frac{\vartheta(\mathbf{r})}{2} \begin{bmatrix} 3(\vec{\boldsymbol{\sigma}}_{1} \cdot \vec{\mathbf{q}}_{\Omega})(\vec{\boldsymbol{\sigma}}_{2} \cdot \vec{\mathbf{r}}) - (\vec{\boldsymbol{\sigma}}_{1} \cdot \vec{\boldsymbol{\sigma}}_{2})(\vec{\mathbf{q}}_{\Omega} \cdot \vec{\mathbf{r}}) \\ &+ \vec{\mathbf{q}}_{\Omega} \leftrightarrow \vec{\mathbf{r}} \end{bmatrix} \\ \vec{\mathbf{q}}_{\Omega} &= \frac{1}{2\mathbf{r}} \Big(\vec{\mathbf{l}} \times \frac{\vec{\mathbf{r}}}{\mathbf{r}} - \frac{\vec{\mathbf{r}}}{\mathbf{r}} \times \vec{\mathbf{l}} \Big) \end{split}$$

Zweiteilchendichte des Deuterons

- Isodichteplots der Deuteron-Zweiteil- chendichte $\rho^{(2)}_{S=1,M_S}(\vec{r})$

 $M_S = 0$ $\frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle + \left| \downarrow \uparrow \right\rangle \right)$

Korrelationen

- Tensorwechselwirkung korreliert die relative räumliche Orientierung der Teilchen mit deren Spinausrichtung
- Slaterdeterminanten können diese Tensorkorrelationen nicht beschreiben

Korrelationsoperator C_{Ω}

- Korrelationsoperator soll in Abhängigkeit von den Spins eine Verschiebung hin zum Äquator oder zu den Polen beschreiben
- Generator für Transformation in den Winkelkoordinaten (T. Neff, Diss.)

$$\begin{aligned} \mathbf{g}_{\Omega} &= \frac{\vartheta(\mathbf{r})}{2} \begin{bmatrix} 3(\vec{\boldsymbol{\sigma}}_{1} \cdot \vec{\mathbf{q}}_{\Omega})(\vec{\boldsymbol{\sigma}}_{2} \cdot \vec{\mathbf{r}}) - (\vec{\boldsymbol{\sigma}}_{1} \cdot \vec{\boldsymbol{\sigma}}_{2})(\vec{\mathbf{q}}_{\Omega} \cdot \vec{\mathbf{r}}) \\ &+ \vec{\mathbf{q}}_{\Omega} \leftrightarrow \vec{\mathbf{r}} \end{bmatrix} \\ \vec{\mathbf{q}}_{\Omega} &= \frac{1}{2\mathbf{r}} \Big(\vec{\mathbf{l}} \times \frac{\vec{\mathbf{r}}}{\mathbf{r}} - \frac{\vec{\mathbf{r}}}{\mathbf{r}} \times \vec{\mathbf{l}} \Big) \end{aligned}$$

Korrelierte Wellenfunktion

Korrelierte Wellenfunktion

• tensorkorrelierter Zweiteilchenzustand

$$\mathbf{C}_{\Omega} \left| \phi_0; (L=0, S=1)J = 1 \right\rangle$$
$$= \left| \widetilde{\phi}_0; (L=0, S=1)J = 1 \right\rangle$$
$$+ \left| \widetilde{\phi}_2; (L=2, S=1)J = 1 \right\rangle$$

$$\widetilde{\phi}_0(r) = \cos[3\sqrt{2} \,\vartheta(r)] \,\phi_0(r)$$
$$\widetilde{\phi}_2(r) = \sin[3\sqrt{2} \,\vartheta(r)] \,\phi_0(r)$$

• Tensorkorrelator bestimmt aus exakter Deuteronwellenfunktion

$$\vartheta_{\text{deut}}(r) = \frac{1}{3\sqrt{2}} \arctan \frac{\phi_2^{\text{deut}}(r)}{\phi_0^{\text{deut}}(r)}$$

• kurzreichweitiger Tensorkorrelator aus Energieminimierung mit eingeschränkter Reichweite

Grundzustandsstruktur auf Basis des Bonn-A-Potentials

- Behandlung des Vielteilchenproblems
- korreliertes Bonn-A-Potential
- realistische Wechselwirkungen -vs- Experiment
- Bindungsenergien und Ladungsradien
- Einteilchendichten und Zweiteilchenkorrelationen

• Einfaches Modell zur

Behandlung des Vielteilchenproblems

• 9n-1 Parameter

pro Nukleon

Einteilchenzustände

$$\left\langle \vec{x} \middle| \psi \right\rangle = \sum_{\nu=1}^{n} c_{\nu} \exp\left(-\frac{(\vec{x} - \vec{\xi}_{\nu})^{2}}{2 \alpha_{\nu}} - \mathrm{i} \, \vec{\pi}_{\nu} \vec{x}\right) \quad \left| m^{s} \right\rangle \otimes \left| m^{t} \right\rangle$$

- $\vec{\xi_{\nu}}$: mittlerer Ort
- $\vec{\pi}_{\nu}$: mittlerer Impuls
- α_{ν} : komplexe Breite
- c_{ν} : Amplitude

Vielteilchenzustand

$$\left|\Psi\right\rangle = \mathbf{A}\left(\left|\psi_{1}\right\rangle\otimes\left|\psi_{2}\right\rangle\otimes\cdots\otimes\left|\psi_{A}\right\rangle
ight)$$

• Slaterdeterminante oder Superposition

Korrelierter Hamiltonoperator

$$\widetilde{\mathbf{H}}^{C2} = [\mathbf{C}_r \mathbf{C}_\Omega \mathbf{H} \mathbf{C}_\Omega \mathbf{C}_r]^{C2} = \mathbf{T} + \mathbf{V}^{\text{eff}}$$

• tensor- und zentralkorrelierter Hamiltonoperator in Zweiteilchennäherung

Variation

 $\begin{array}{l} \mbox{Minimierung des} \\ \mbox{Energieerwartungswertes} \\ \left< \Psi \right| \widetilde{\mathbf{H}}^{C2} \left| \Psi \right> \mbox{durch Variation} \\ \mbox{der Parameter der Ein-teilchenzustände} \end{array}$

Diagonalisierung

in Zustandsraum aufgespannt durch Slaterdeterminanten (z.B. generiert durch Rotation und Skalierung des Variationszustandes oder ph-Anregungen)

Realistische NN-Wechselwirkung Bonn-A-Potential

Korreliertes Bonn-A-Potential

Realistische Wechselwirkungen -vs- Experiment

Fundamentale Schwierigkeit

- gegenwärtige realistische Zweiteilchenpotentiale liefern um 5-10% zu geringe Triton-Bindungsenergie
- noch größere Abweichungen bei größeren Kernen (GFMC-Rechnungen)
- korrigiert durch phänomenologische Dreiteilchenwechselwirkung

Pragmatischer Zugang

- addieren einer phänomenologischen Korrektur zum zentral- und tensorkorrelierten Zweiteilchenpotential
- Parameter an experimentelle Energien und Radien einer kleinen Auswahl von Kernen angepaßt

Korreliertes Bonn-A + Korrektur

- zentral- und tensorkorreliertes Potential liefert gute N\u00e4herung zu exakten Vielteilchenrechnungen
- korreliertes Bonn-A-Potential plus Zusatzterme in Zentral- und Gradiententeil im (S,T)=(1,0)-Kanal
- Stärke der Zusatzterme (2 Parameter) so gewählt, daß exp. Bindungsenergien und Ladungsradien von ⁴He, ¹⁶O, und ⁴⁰Ca reproduziert werden

• Korreliertes Bonn-A-Potential + Korrektur

Erkundung der Nuklidkarte

• Korreliertes Bonn-A-Potential + Korrektur

Bindungsenergien und Ladungsradien

• 1 Gaußfkt., fester Spin

• Korreliertes Bonn-A-Potential + Korrektur

Bindungsenergien und Ladungsradien

• Korreliertes Bonn-A-Potential + Korrektur

Bindungsenergien und Ladungsradien

Korreliertes Bonn-A-Potential + Korrektur Doppelt-Magische Kerne

• weiße Fläche markiert Isodichteschnitt bei $\rho_0/2$

Korreliertes Bonn-A-Potential + Korrektur Kerne aus der *p*-Schale

• weiße Fläche markiert Isodichteschnitt bei $\rho_0/2$

Korreliertes Bonn-A-Potential + Korrektur Kerne aus der sd-Schale

- 2 Gaußfunktionen pro Nukleon, fester Spin
- Einteilchendichte $\rho^{(1)}(\vec{x})$ in Einheiten der Kernmateriedichte $\rho_0 = 0.17 \, {\rm fm}^{-3}$
- weiße Fläche markiert Isodichteschnitt bei $\rho_0/2$

Zusammenfassung & Ausblick

Zusammenfassung

- Formalismus zur Beschreibung kurzreichweitiger Zentral- und Tensorkorrelationen durch unitäre Transformationen
- korrelierte Wechselwirkung, die für Schalenmodell, Konfigurationsmischung, Hartree-Fock, u.a. geeignet ist
- kurzreichweitige Korrelationen ↔ Korrelationsoperator; langreichweitige Korrelationen ↔ Vielteilchen-Zustandsraum
- einfache Variationsrechnung zur Grundzustandsstruktur von Kernen im Bereich $A \lesssim 50$ ausgehend vom Bonn-A-Potential
- erfolgreich auch auf andere Vielteilchensysteme angewendet: ⁴He-Flüssigkeiten, Kern- und Neutronenmaterie

Ausblick

- vielversprechender Ausgangspunkt für detailierte Kernstrukturrechnungen: Grundzustandseigenschaften, Spektren, kollektive Anregungen,...
- Verbesserungen der Korrektur zum korrelierten Potential, eventuell Dreiteilchenwechselwirkung