Ultracold Bose Gases in
Optical Superlattices:

Superfluidity, Interference, Disorder




Overview

e Introduction

o Bose-Hubbard Model

o Condensate & Superfluidity

o Matter-Wave Interference Pattern

o Superfluid to Mott-Insulator Transition

e IWO-Colour Lattices

R. Roth - 10/2002



A Theoreticians’ View of

The Experiment

e produce a Bose-Einstein condensate of atoms in a conventional magnetic trap

e load the condensate into an optical standing-wave lattice created by counter-
propagating laser beams of variable intensity

e the loading process should be adiabatic such that only the lowest band is
populated

e in a 3D lattice one ends up with few atoms per lattice site (favourable to study
quantum phase transitions) in a 1D lattice one can have thousands of atoms

e vary the lattice depth and possibly the interaction strength to probe different
physical regimes

e switch off the lattice and let the gas expand for some time and observe the matter-
wave interference pattern
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Munich Experiment

Interference Pattern
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Many Questions

e How to describe ultracold Bose gases in a lattice?

e What is the superfluid to Mott-insulator transition?

e How to define superfluidity?

e What is the relation between condensate and superfluidity?

e What does the interference pattern tell about superfluidity?

e Are there other quantum-phase transitions one can investigate?

e What happens if the lattice potential is irregular?
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Bose-Hubbard Model




Bose-Hubbard Model

one-dimensional lattice with IN particles and I lattice sites

describe interacting many-body system in a restricted Hilbert space which com-
prises the lowest energy band only

complete basis of single-particle Wannier functions w(x — £&;) which are localised
at the individual lattice sites 2 =1, ..., I

represent many-boson state in a basis of Fock states \nl, vees TV I> with occupation
numbers for the different localised Wannier states

creation and annihilation operators for a boson localised at site 2

fﬂ; ’nl, ceey Thiy eons n1> =+vn;+1 ‘nl, sy + 1, .00, n1>

a; |n1, cees iy auns nI> = /n; ‘nl, cees My — 1, .ee, nI>

R. Roth - 10/2002



Bose-Hubbard Hamiltonian

e second gquantised many-body Hamiltonian in restricted Hilbert space

I I I

A e ) Vv o

Hy = —J Z(a;f+1ai + h.a.) + Z €; n; —+ By Z n;(h; — 1)
tunnelling/hopping be- single-par- on-site two-body
tween adjacent sites ticle energy interaction

e the parameters J, €;, and V are given by matrix elements of the different terms of
the continuous Hamiltonian in the Wannier basis

e assumptions: (a) only lowest band, (b) only nearest neighbour hopping, (c) only
short-range interactions

» Bose-Hubbard model is able to describe strongly correlated systems as well as
pure condensates

» it goes far beyond the realm of the mean-field Gross-Pitaevskii equation
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Exact Numerical Solution

e solve matrix eigenvalue problem for the Bose-Hubbard Hamiltonian in a complete
basis of Fock states |n§a), e n<;">> with a = 1, ..., D for given N

D
) =Y Ca n{®, ..., n{¥)
oa=1

e problem: the number D of basis states grows dramatically

1\6 8 10 12
1)\ 462 6435 92378 1352078

for N/T =1

e use efficient iterative Lanczos algorithm to compute the lowest eigenvalues and
eigenvectors of the sparse Hamilton matrix

e there are several approximation methods, each applicable in very restricted pa-
rameter regimes only; none can describe phase transition regions

e mean-field, discrete non-linear Schrodinger equation
e Bogoliubov approximation
e Gutzwiller ansatz
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Mott-Insulator Transition

Simple Quantities

e calculate ground state ]\IJO> for a sequence of
values for V/J

e mean occupation number
n; = <\IJO‘ n; |‘I’0>

e nhumber fluctuations
9 ) 511/2
oi = |(o| 1} |¥o) — (Wo| s |Wo)?|

e largest coefficient
C? .. = max(C?)

max

» small V/J: hopping dominates; superpositions
of many number states are favoured

» large V/J: interaction dominates; number
states with smallest occupation numbers are
preferred
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Condensate &
Superfluidity




General Definition of the

Bose-Einstein Condensate

e What does BE condensation mean in a strongly correlated many-body system?

e Onsager-Penrose criterion: if the one-body density matrix
1 AT A
piy) = (Wo|ala; |@o)

has an eigenvalue NNy of order N, such that No /IN stays finite in the thermody-
namic limit, then a Bose-Einstein condensate is present and

eigenvalue — Ny : number of condensed particles
eigenvector — ¢o,; : condensate wave function

e existence of a condensate implies the presence of off-diagonal long range order
oD 50 as il — o

as can be seen from the spectral decomposition p,g? = No ¢o,; ¢g ; + ﬁ,g.)

e one can define condensation with respect to higher-order density matrices
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Condensate and

Quasi-Momentum Distribution

e Bose-Hubbard model uses Wannier functions w(x — &;) as natural representation
of the state; Bloch functions v4(x) are obtained through

1
xr) = —— E e 1% w(x — &;
¢q( ) \/T — ( 62)

e define creation éfl and annihilation operators ¢, for bosons in Bloch states 1 4(x)
with quasi-momentum q

I
1 . 27
a7 — —ig&; 4t i — i
¢l = — e a with = — X Inteqger

e occupation numbers for the Bloch states, i.e., quasi-momentum distribution
1 1
fig = (Lo| 2feq|To) = 7 ) &5 (W] ala; |wo)
t,J=1

e quasi-momentum g = 0 Bloch state corresponds to the condensate state
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Mott-Insulator Transition

Quasi-Momentum Distribution

—— cond.

I =10,N = 10 -

—-—-1st ex. |

noninteracting system: only the ¢ = 0 con-
densate state is populated

with increasing V/J condensate is depleted
and larger q are successively populated

uniform population of the band in the strong
interaction limit

strong finite size effects: condensate fraction
in a finite lattice always > 1/1

not possible to decide whether there is a con-
densate in the Penrose-Onsager sense

rough extrapolation to I — oo leads to van-
ishing condensate fraction for V//J = 5
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What is Supertluidity?

e the term superfluidity describes a flow property

e macroscopically the superfluid flow is non-dissipative and irrotational, i.e., it is
stationary and described by the gradient of a scalar field

Usp x VO(T)

e classical two-fluid picture: if a velocity field v is imposed (moving walls), then only
the normal component responds, the superfluid component stays at rest

e the energy in the comoving frame differs from the ground state energy Ey in the
rest frame by the kinetic energy of the superflow

E(imposed @, comoving frame) = Eq + 3 Mgp §°
» these two ideas are the basis for the microscopic definition of superfluidity

» NB: this approach does not consider the stability of the superflow (critical velocity)
as in the Landau definition

R. Roth - 10/2002



Microscopic

Definition of Supertfluidity

e the velocity field of the superfluid is defined by the gradient of the phase of the
condensate wavefunction ¢q (&)

h o -
= YO b0(®) = @ |g0()]

e to probe superfluidity (formally) we impose a linear phase variation onto the sys-
tem, e.g., by twisted boundary conditions for the many-body wave function

W (&1, .., Bi + LE1, ey Tn) = €'© U (&4, ..., Tiy ..., EN) Vi

e the change in energy Ee — Eq due to the phase twist is for small ® identified with
the kinetic energy of the superflow

1 2 1 2
E@ — EO = TSF = §M5F Ugp = §mN5p Ugr

e superfluid fraction is proportional to the energy change due to the phase twist

NSF - 2mL2 E@ — E()

Jse = = 2N 0?2
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Superfluidity on the Lattice

e superfluid fraction for a one-dimensional lattice with I sites and N particles
I? Eg¢ — E,
fsr = 5
JN ©

e twisted boundary conditions not feasible for a discrete system: use a unitary trans-
formation to map the phase twist onto the Hamilton operator

e twisted Hamiltonian has a modified hopping term which contains the so called
Peierls phase factors

1
o = —J) (e®/'al ja;+ha) +
=1

e procedure: solve the eigenvalue problem for the original and the twisted Bose-
Hubbard Hamiltonian (with periodic BCs) to obtain Ey and Eg

» phase factors can be engineered in experiment by accelerating the lattice or
adding a linear potential — basis for schemes to probe superfluidity directly

R. Roth - 10/2002



Perturbative Calculation of the

Superfluid Fraction

e calculate the energy difference Eg — Eg induced by a small phase twist ® in sec-
ond order perturbation theory

~ A @ A @2 A~ A~ A T = _J Zz(éj é.',, + ha.)
He ~ Hop+ —J— —T = Hgp+ Hpert - . G +A1
J=1iJ) ;(4;,,48 —ha)

e including all contributions to the energy difference up to order ®?2 gives for the su-
perfluid fraction

fsr = ' = f5¢)

A 1
f(l) — <\:[10’ T “I’0> f(2) —_
N =g ;’

(@] J[To)l?
E, — Eo

» 1st order term: depends only on the ground state expectation value of T

» 2nd order term: couples to the whole excitation spectrum of Hj

» the superfluid fraction measures the response of the system to an external pertur-
bation (phase twist)
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Mott-Insulator Transition

Superfluid Fraction

fsk

1 2
Ao )

superfluid fraction is the natural order pa-
rameter for the superfluid-insulator transition

rapid decrease of fsg in a narrow window in
V' /J already for small systems

extrapolation: good agreement with Monte
Carlo calculations for critical V//J

first order contribution fs(li) decreases only
very slowly

vanishing of fsg in the insulating phase is

due to a cancellation between félf) and fs(g)

coupling to excited states is crucial for the
vanishing of fsg in the insulating phase

R. Roth - 10/2002



Summary

Condensate -vs- Superfluidity

condensate -

e largest eigenvalue of the one-body
density matrix

e involves only the ground state

e measure for off-diagonal long-range
order in the system

Jo < fsk

e some of the non-condensed particles
exhibit a net flow behaviour like the
condensate

e prime example: liquid “He at T = 0K
Jo=0.1, feg =1

superfluid

e response of the system to an external

perturbation (phase gradient)

e depends crucially on the excited states

of the system

e measures a flow property

Jo > fsr

e part of the (quasi-) condensate is not

superfluid, i.e. it does not react to the
phase twist with an energy change

e seems to appear in systems with disor-

der / fragmentation
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Matter-Wave
Interference Pattern




Interference Pattern

e switch off the lattice and let the gas expand for some time r
e free expansion described by the spreading of a Gaussian wave packet x; (¥, t)

e intensity Z(y) observed at a point ¢ after expansion time
i 1
Z(§) = (¥o| A" (§)A (%) | o) A =D xi(¥, ) a;
=1

e discard all information about the intensity envelope and take into account only the
phase terms in the far-field

Xz(?ja 7—) N ei 0 (gﬂ-) N ei 5¢('!7,‘T) T
e intensity as function of phase difference d¢

I
1 : _y
I(6¢) = = > €% U=9(Wo|ala; | W)
! t,j=1
» exactly the same equation that determines the quasi-momentum distribution
ng = I(6¢ = qa)
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Mott-Insulator Transition

Interference Pattern

0 02 04 06 08 1
o¢/(2m)

e peaks at 6¢p = 0, 2w, ... correspond to
the principal interference peaks seen in
experiment

e with increasing V/J principal peaks are
depleted and broadened; background
emerges

e equivalently: with increasing V/J the con-
densate is depleted and the band is filled
successively

» pronounced fringes still visible in the insu-
lating phase

» fringes are a measure for coherence prop-
erties not for superfluidity
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Mott-Insulator Transition

Interference Pattern & Visibility

10

Z(0¢)

=

@)}
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v/ ﬂ

—_—

15

c S

: E
L /\
N

=

02 04 0.6 08 1
0¢/(2m)

abs min
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20

e wanted: simple measure for the presence
or absence of fringes

e standard definition of fringe visibility
Imax — Imin

Imax S Imin

V=

m Z,;, = absolute minimum

e measures non-uniformity of quasi-
momentum distribution

e very insensitive

B Z,,;, = first minimum

e Mmeasures occupation difference between
condensate and 1st excited Bloch state

e better sensitivity but problematic
experimentally
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Supertluid to
Mott-Insulator Transition




Commensurate Filling

Relevant Quantities

— I =10, N =10
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Non-Commensurate Filling

Relevant Quantities

I =10, N =11
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Summary

Superfluid to Mott-Insulator Transition

e quantum phase transition for commensurate fillings governed by the competition
between kinetic energy (large fluctuations) and repulsive interactions (small occu-

pation numbers)

Mott-insulator regime

superfluid regime
ground state | superpos. of many FS
number fluctuations large
superfluid fraction finite
energy gap small
interference fringes present

almost pure FS
small
zero
increasing
slowly vanishing

e order parameter of the transition is the superfluid fraction fsg, which depends sig-

nificantly on the excited states

e ground state quantities (like interference pattern, fluctuations, etc.) cannot give di-
rect information on superfluidity or the phase transition

e one has to devise experimental schemes that probe superfluidity directly
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Two-Colour Superlattices




Two-Colour Superlattices

e start with the conventional standing wave
created by a laser with wavelength A\

U1 (w)
e add a second standing wave created by a
laser with wavelength A2 = 2\, and much
| | A smaller intensity (here 4%)
e potential exhibits a periodic modulation of
Ui 2(x) the well-depth with a period of 5 sites

e in the language of the Bose-Hubbard model

EFHDD_‘THHD_UHDD— this means varying on-site energies e;
€;

e amplitude A of the modulation is controlled
by the intensity of the second laser

» these completely controlled lattice irregularities open novel possibilities to study
fundamental “disorder” effects; more complex topologies easily possible
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Two-Colour Superlattices

Interaction -vs- Lattice Irregularity
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Two-Colour Superlattices

V-A Phase Diagram

0 10 20 30 40 50 60
V/J

3 3 45
I=5N=5 ¢
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Two-Colour Superlattices

More Phase Diagrams

0 10 20 30 40 50 600 10 20 30 40 50 600 10 20 30 40 50 60
V/J V/J V/J
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Summary

Two-Colour Superlattices

» three competing terms in the Bose-Hubbard Hamiltonian generate a rich phase
diagram with various quantum phase transitions

e hopping: prefers wide distribution of occupation number
e interaction: favours small occupation numbers

e lattice irregularity: prefers large occupation numbers at deep wells

» several distinct insulating phases

e localised phase: all particles localised at the deepest wells of each unit cell;
large fluctuations

e quasi Bose glass: integer non-uniform occupation with small fluctuations; rear-
rangements between different configurations

e Mott insulator: whenever V- 2> A the uniform Mott-insulator phase appears for
commensurate fillings
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