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Overview
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• Introduction

• Bose-Hubbard Model

• Condensate & Superfluidity

• Matter-Wave Interference Pattern

• Superfluid to Mott-Insulator Transition

• Two-Colour Lattices
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The Experiment
A Theoreticians’ View of

R. Roth - 10/2002

• produce a Bose-Einstein condensate of atoms in a conventional magnetic trap

• load the condensate into an optical standing-wave lattice created by counter-
propagating laser beams of variable intensity

• the loading process should be adiabatic such that only the lowest band is
populated

• in a 3D lattice one ends up with few atoms per lattice site (favourable to study
quantum phase transitions) in a 1D lattice one can have thousands of atoms

• vary the lattice depth and possibly the interaction strength to probe different
physical regimes

• switch off the lattice and let the gas expand for some time and observe the matter-
wave interference pattern
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Interference Pattern
Munich Experiment

R. Roth - 10/2002

increasing lattice depth −→

M. Greiner, et al., Nature 415 (2002) 39
http://www.mpq.mpg.de/˜haensch/bec/experiments/mott.html

characteristic in-
terference pattern
of an array of
coherent BECs
emerges

incoherent back-
ground appears
and peaks vanish
slowly

superfluid to
Mott-insulator

transition
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Many Questions
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• How to describe ultracold Bose gases in a lattice?

• What is the superfluid to Mott-insulator transition?

• How to define superfluidity?

• What is the relation between condensate and superfluidity?

• What does the interference pattern tell about superfluidity?

• Are there other quantum-phase transitions one can investigate?

• What happens if the lattice potential is irregular?

5



Bose-Hubbard Model
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Bose-Hubbard Model

R. Roth - 10/2002

• one-dimensional lattice with N particles and I lattice sites

• describe interacting many-body system in a restricted Hilbert space which com-
prises the lowest energy band only

• complete basis of single-particle Wannier functions w(x− ξi) which are localised
at the individual lattice sites i = 1, ..., I

• represent many-boson state in a basis of Fock states
∣

∣n1, ..., nI

〉

with occupation
numbers for the different localised Wannier states

• creation and annihilation operators for a boson localised at site i

â†
i

∣

∣n1, ..., ni, ..., nI

〉

=
√
ni + 1

∣

∣n1, ..., ni + 1, ..., nI

〉

âi

∣

∣n1, ..., ni, ..., nI

〉

=
√
ni

∣

∣n1, ..., ni − 1, ..., nI

〉

n̂i = â†
i âi

7



Bose-Hubbard Hamiltonian
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• second quantised many-body Hamiltonian in restricted Hilbert space

Ĥ0 = −J
I

∑

i=1

(â†
i+1âi + h.a.) +

I
∑

i=1

εi n̂i +
V

2

I
∑

i=1

n̂i(n̂i − 1)

tunnelling/hopping be-
tween adjacent sites

single-par-
ticle energy

on-site two-body
interaction

• the parameters J , εi, and V are given by matrix elements of the different terms of
the continuous Hamiltonian in the Wannier basis

• assumptions: (a) only lowest band, (b) only nearest neighbour hopping, (c) only
short-range interactions

I Bose-Hubbard model is able to describe strongly correlated systems as well as
pure condensates

I it goes far beyond the realm of the mean-field Gross-Pitaevskii equation
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Exact Numerical Solution

R. Roth - 10/2002

• solve matrix eigenvalue problem for the Bose-Hubbard Hamiltonian in a complete
basis of Fock states

∣

∣n
(α)
1 , ..., n

(α)
I

〉

with α = 1, ..., D for given N

∣

∣Ψ
〉

=

D
∑

α=1

Cα

∣

∣n
(α)
1 , ..., n

(α)
I

〉

• problem: the number D of basis states grows dramatically

I 6 8 10 12
D 462 6435 92378 1352078

for N/I = 1

• use efficient iterative Lanczos algorithm to compute the lowest eigenvalues and
eigenvectors of the sparse Hamilton matrix

• there are several approximation methods, each applicable in very restricted pa-
rameter regimes only; none can describe phase transition regions

• mean-field, discrete non-linear Schrödinger equation
• Bogoliubov approximation
• Gutzwiller ansatz
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Simple Quantities
Mott-Insulator Transition

R. Roth - 10/2002
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• calculate ground state
∣

∣Ψ0

〉

for a sequence of
values for V/J

• mean occupation number
n̄i =

〈

Ψ0

∣

∣ n̂i

∣

∣Ψ0

〉

• number fluctuations

σi =
[

〈

Ψ0

∣

∣ n̂2
i

∣

∣Ψ0

〉

−
〈

Ψ0

∣

∣ n̂i

∣

∣Ψ0

〉2
]1/2

• largest coefficient
C2

max = max(C2
α)

I small V/J : hopping dominates; superpositions
of many number states are favoured

I large V/J : interaction dominates; number
states with smallest occupation numbers are
preferred
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Condensate &
Superfluidity
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Bose-Einstein Condensate
General Definition of the

R. Roth - 10/2002

• What does BE condensation mean in a strongly correlated many-body system?

• Onsager-Penrose criterion: if the one-body density matrix

ρ
(1)
ij =

〈

Ψ0

∣

∣ â†
i âj

∣

∣Ψ0

〉

has an eigenvalue N0 of order N , such that N0/N stays finite in the thermody-
namic limit, then a Bose-Einstein condensate is present and

eigenvalue → N0 : number of condensed particles
eigenvector → φ0,i : condensate wave function

• existence of a condensate implies the presence of off-diagonal long range order

ρ
(1)
ij →/ 0 as |i− j| → ∞

as can be seen from the spectral decomposition ρ(1)
ij = N0 φ0,i φ

?
0,j + ρ̃

(1)
ij

• one can define condensation with respect to higher-order density matrices
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Quasi-Momentum Distribution
Condensate and

R. Roth - 10/2002

• Bose-Hubbard model uses Wannier functions w(x − ξi) as natural representation
of the state; Bloch functions ψq(x) are obtained through

ψq(x) =
1

√
I

I
∑

i=1

e−iqξi w(x− ξi)

• define creation ĉ†
q and annihilation operators ĉq for bosons in Bloch states ψq(x)

with quasi-momentum q

ĉ†
q =

1
√
I

I
∑

i=1

e−iqξi â†
i with q =

2π

aI
× integer

• occupation numbers for the Bloch states, i.e., quasi-momentum distribution

ñq =
〈

Ψ0

∣

∣ ĉ†
qĉq

∣

∣Ψ0

〉

=
1

I

I
∑

i,j=1

eiq(ξj−ξi)
〈

Ψ0

∣

∣ â†
i âj

∣

∣Ψ0

〉

• quasi-momentum q = 0 Bloch state corresponds to the condensate state

N0 = ñq=0
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Quasi-Momentum Distribution
Mott-Insulator Transition

R. Roth - 10/2002
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• strong finite size effects: condensate fraction
in a finite lattice always ≥ 1/I

• not possible to decide whether there is a con-
densate in the Penrose-Onsager sense

• rough extrapolation to I → ∞ leads to van-
ishing condensate fraction for V/J & 5
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What is Superfluidity?

R. Roth - 10/2002

• the term superfluidity describes a flow property

• macroscopically the superfluid flow is non-dissipative and irrotational, i.e., it is
stationary and described by the gradient of a scalar field

~vSF ∝ ~∇θ(~x)

• classical two-fluid picture: if a velocity field ~v is imposed (moving walls), then only
the normal component responds, the superfluid component stays at rest

• the energy in the comoving frame differs from the ground state energy E0 in the
rest frame by the kinetic energy of the superflow

E(imposed ~v, comoving frame) = E0 + 1
2
MSF ~v

2

I these two ideas are the basis for the microscopic definition of superfluidity

I NB: this approach does not consider the stability of the superflow (critical velocity)
as in the Landau definition
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Definition of Superfluidity
Microscopic

R. Roth - 10/2002

• the velocity field of the superfluid is defined by the gradient of the phase of the
condensate wavefunction φ0(~x)

~vSF =
~

m
~∇θ(~x) φ0(~x) = eiθ(~x) |φ0(~x)|

• to probe superfluidity (formally) we impose a linear phase variation onto the sys-
tem, e.g., by twisted boundary conditions for the many-body wave function

Ψ(~x1, ..., ~xi + L~e1, ..., ~xN) = eiΘ Ψ(~x1, ..., ~xi, ..., ~xN) ∀i

• the change in energy EΘ − E0 due to the phase twist is for small Θ identified with
the kinetic energy of the superflow

EΘ − E0 = TSF = 1
2
MSF v

2
SF = 1

2
mNSF v

2
SF

• superfluid fraction is proportional to the energy change due to the phase twist

fSF =
NSF

N
=

2mL2

~2N

EΘ − E0

Θ2
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Superfluidity on the Lattice

R. Roth - 10/2002

• superfluid fraction for a one-dimensional lattice with I sites and N particles

fSF =
I2

JN

EΘ − E0

Θ2

• twisted boundary conditions not feasible for a discrete system: use a unitary trans-
formation to map the phase twist onto the Hamilton operator

• twisted Hamiltonian has a modified hopping term which contains the so called
Peierls phase factors

ĤΘ = −J
I

∑

i=1

(e−iΘ/I â†
i+1âi + h.a.) + · · ·

• procedure: solve the eigenvalue problem for the original and the twisted Bose-
Hubbard Hamiltonian (with periodic BCs) to obtain E0 and EΘ

I phase factors can be engineered in experiment by accelerating the lattice or
adding a linear potential → basis for schemes to probe superfluidity directly
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Superfluid Fraction
Perturbative Calculation of the

R. Roth - 10/2002

• calculate the energy difference EΘ − E0 induced by a small phase twist Θ in sec-
ond order perturbation theory

ĤΘ ' Ĥ0 +
Θ

I
Ĵ − Θ2

2I2
T̂ = Ĥ0 + Ĥpert

• including all contributions to the energy difference up to order Θ2 gives for the su-
perfluid fraction

T̂ = −J ∑

i(â
†
i+1âi + h.a.)

Ĵ = iJ
∑

i(â
†
i+1âi − h.a.)

fSF = f
(1)
SF − f

(2)
SF

f
(1)
SF = − 1

2NJ

〈

Ψ0

∣

∣ T̂
∣

∣Ψ0

〉

f
(2)
SF =

1

NJ

∑

ν 6=0

|
〈

Ψν

∣

∣ Ĵ
∣

∣Ψ0

〉

|2
Eν − E0

I 1st order term: depends only on the ground state expectation value of T̂

I 2nd order term: couples to the whole excitation spectrum of Ĥ0

I the superfluid fraction measures the response of the system to an external pertur-
bation (phase twist)
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Superfluid Fraction
Mott-Insulator Transition

R. Roth - 10/2002
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• superfluid fraction is the natural order pa-
rameter for the superfluid-insulator transition

• rapid decrease of fSF in a narrow window in
V/J already for small systems

• extrapolation: good agreement with Monte
Carlo calculations for critical V/J
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• first order contribution f (1)
SF decreases only

very slowly

• vanishing of fSF in the insulating phase is
due to a cancellation between f (1)

SF and f (2)
SF

• coupling to excited states is crucial for the
vanishing of fSF in the insulating phase
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Condensate -vs- Superfluidity
Summary

R. Roth - 10/2002

condensate 6= superfluid
• largest eigenvalue of the one-body

density matrix

• involves only the ground state

• measure for off-diagonal long-range
order in the system

• response of the system to an external
perturbation (phase gradient)

• depends crucially on the excited states
of the system

• measures a flow property

f0 < fSF

• some of the non-condensed particles
exhibit a net flow behaviour like the
condensate

• prime example: liquid 4He at T = 0K
f0 = 0.1, fSF = 1

f0 > fSF

• part of the (quasi-) condensate is not
superfluid, i.e. it does not react to the
phase twist with an energy change

• seems to appear in systems with disor-
der / fragmentation
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Matter-Wave
Interference Pattern
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Interference Pattern

R. Roth - 10/2002

• switch off the lattice and let the gas expand for some time τ

• free expansion described by the spreading of a Gaussian wave packet χi(~y, t)

• intensity I(~y) observed at a point ~y after expansion time τ

I(~y) =
〈

Ψ0

∣

∣ Â
†
(~y)Â(~y)

∣

∣Ψ0

〉

Â(~y) =

I
∑

i=1

χi(~y, τ ) âi

• discard all information about the intensity envelope and take into account only the
phase terms in the far-field

χi(~y, τ ) → ei φi(~y,τ) → ei δφ(~y,τ) i

• intensity as function of phase difference δφ

I(δφ) =
1

I

I
∑

i,j=1

ei δφ (j−i)
〈

Ψ0

∣

∣ â†
i âj

∣

∣Ψ0

〉

I exactly the same equation that determines the quasi-momentum distribution

ñq = I(δφ = qa)
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Interference Pattern
Mott-Insulator Transition

R. Roth - 10/2002
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I = 10, N = 10
• peaks at δφ = 0,±2π, ... correspond to

the principal interference peaks seen in
experiment

• with increasing V/J principal peaks are
depleted and broadened; background
emerges

• equivalently: with increasing V/J the con-
densate is depleted and the band is filled
successively

I pronounced fringes still visible in the insu-
lating phase

I fringes are a measure for coherence prop-
erties not for superfluidity
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Interference Pattern & Visibility
Mott-Insulator Transition

R. Roth - 10/2002
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• wanted: simple measure for the presence
or absence of fringes

• standard definition of fringe visibility

V =
Imax − Imin

Imax + Imin

n Imin = absolute minimum

• measures non-uniformity of quasi-
momentum distribution

• very insensitive

n Imin = first minimum

• measures occupation difference between
condensate and 1st excited Bloch state

• better sensitivity but problematic
experimentally
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Superfluid to
Mott-Insulator Transition
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Relevant Quantities
Commensurate Filling
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Relevant Quantities
Non-Commensurate Filling

R. Roth - 10/2002
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Superfluid to Mott-Insulator Transition
Summary

R. Roth - 10/2002

• quantum phase transition for commensurate fillings governed by the competition
between kinetic energy (large fluctuations) and repulsive interactions (small occu-
pation numbers)

superfluid regime Mott-insulator regime
ground state superpos. of many FS almost pure FS

number fluctuations large small
superfluid fraction finite zero

energy gap small increasing
interference fringes present slowly vanishing

• order parameter of the transition is the superfluid fraction fSF, which depends sig-
nificantly on the excited states

• ground state quantities (like interference pattern, fluctuations, etc.) cannot give di-
rect information on superfluidity or the phase transition

• one has to devise experimental schemes that probe superfluidity directly
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Two-Colour Superlattices
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Two-Colour Superlattices

R. Roth - 10/2002

U1(x)

• start with the conventional standing wave
created by a laser with wavelength λ1

U1+2(x)

• add a second standing wave created by a
laser with wavelength λ2 = 5

7
λ1 and much

smaller intensity (here 4%)

• potential exhibits a periodic modulation of
the well-depth with a period of 5 sites

εi

• in the language of the Bose-Hubbard model
this means varying on-site energies εi

• amplitude ∆ of the modulation is controlled
by the intensity of the second laser

I these completely controlled lattice irregularities open novel possibilities to study
fundamental “disorder” effects; more complex topologies easily possible
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Interaction -vs- Lattice Irregularity
Two-Colour Superlattices

R. Roth - 10/2002
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V-∆ Phase Diagram
Two-Colour Superlattices
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More Phase Diagrams
Two-Colour Superlattices
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Two-Colour Superlattices
Summary

R. Roth - 10/2002

I three competing terms in the Bose-Hubbard Hamiltonian generate a rich phase
diagram with various quantum phase transitions

• hopping: prefers wide distribution of occupation number

• interaction: favours small occupation numbers

• lattice irregularity: prefers large occupation numbers at deep wells

I several distinct insulating phases

• localised phase: all particles localised at the deepest wells of each unit cell;
large fluctuations

• quasi Bose glass: integer non-uniform occupation with small fluctuations; rear-
rangements between different configurations

• Mott insulator: whenever V & ∆ the uniform Mott-insulator phase appears for
commensurate fillings
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