Ultracold Bose Gases in Optical Superlattices: Superfluidity, Interference, Disorder

Robert Roth

Clarendon Laboratory University of Oxford

21 October 2002

Overview

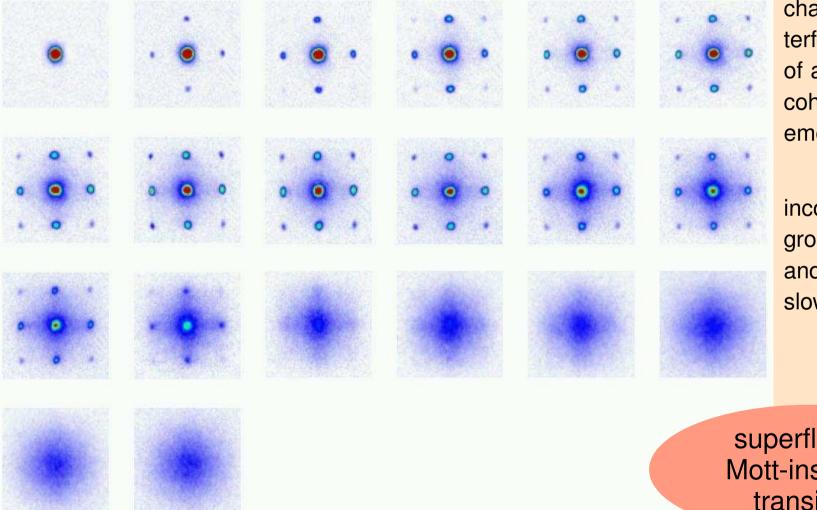
- Introduction
- Bose-Hubbard Model
- Condensate & Superfluidity
- Matter-Wave Interference Pattern
- Superfluid to Mott-Insulator Transition
- Two-Colour Lattices

A Theoreticians' View of The Experiment

- produce a **Bose-Einstein condensate** of atoms in a conventional magnetic trap
- load the condensate into an optical standing-wave lattice created by counterpropagating laser beams of variable intensity
- the loading process should be adiabatic such that only the lowest band is populated
- in a 3D lattice one ends up with **few atoms per lattice site** (favourable to study quantum phase transitions) in a 1D lattice one can have thousands of atoms
- vary the lattice depth and possibly the interaction strength to probe different physical regimes
- switch off the lattice and let the gas expand for some time and observe the matterwave interference pattern

Munich Experiment Interference Pattern

increasing lattice depth \longrightarrow



characteristic interference pattern of an array of coherent BECs emerges

incoherent background appears and peaks vanish slowly

M. Greiner, et al., Nature 415 (2002) 39 http://www.mpq.mpg.de/~haensch/bec/experiments/mott.html

superfluid to Mott-insulator transition

Many Questions

- How to describe ultracold Bose gases in a lattice?
- What is the **superfluid to Mott-insulator transition**?
- How to define **superfluidity**?
- What is the relation between **condensate** and superfluidity?
- What does the **interference pattern** tell about superfluidity?
- Are there **other quantum-phase transitions** one can investigate?
- What happens if the lattice potential is **irregular**?

Bose-Hubbard Model

- one-dimensional lattice with N particles and I lattice sites
- describe interacting many-body system in a restricted Hilbert space which comprises the lowest energy band only
- complete basis of single-particle Wannier functions $w(x \xi_i)$ which are localised at the individual lattice sites i = 1, ..., I
- represent many-boson state in a basis of **Fock states** $|n_1, ..., n_I\rangle$ with occupation numbers for the different localised Wannier states
- creation and annihilation operators for a boson localised at site i

$$egin{aligned} \hat{\mathrm{a}}_{i}^{\dagger} \ket{n_{1},...,n_{i},...,n_{I}} &= \sqrt{n_{i}+1} \ket{n_{1},...,n_{i}+1,...,n_{I}} \ \hat{\mathrm{a}}_{i} \ket{n_{1},...,n_{i},...,n_{I}} &= \sqrt{n_{i}} \quad \ket{n_{1},...,n_{i}-1,...,n_{I}} \end{aligned}$$

$$\hat{\mathbf{n}}_i = \hat{\mathbf{a}}_i^{\dagger} \hat{\mathbf{a}}_i$$

• second quantised many-body Hamiltonian in restricted Hilbert space

$$\hat{\mathbf{H}}_{0} = -J \sum_{i=1}^{I} (\hat{\mathbf{a}}_{i+1}^{\dagger} \hat{\mathbf{a}}_{i} + \mathbf{h.a.}) + \sum_{i=1}^{I} \epsilon_{i} \hat{\mathbf{n}}_{i} + \frac{V}{2} \sum_{i=1}^{I} \hat{\mathbf{n}}_{i} (\hat{\mathbf{n}}_{i} - 1)$$

tunnelling/hopping be-
tween adjacent sites single-par-
ticle energy on-site two-body
interaction

- the parameters J, ϵ_i , and V are given by matrix elements of the different terms of the continuous Hamiltonian in the Wannier basis
- assumptions: (a) only lowest band, (b) only nearest neighbour hopping, (c) only short-range interactions
- Bose-Hubbard model is able to describe strongly correlated systems as well as pure condensates
- ▶ it goes far **beyond** the realm of the mean-field **Gross-Pitaevskii equation**

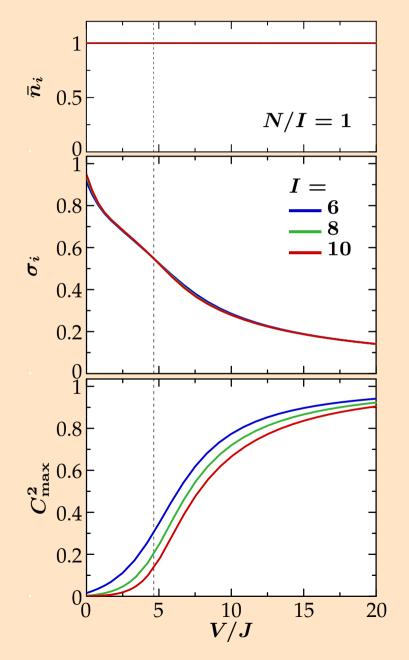
• solve matrix eigenvalue problem for the Bose-Hubbard Hamiltonian in a complete basis of Fock states $|n_1^{(lpha)},...,n_I^{(lpha)}
angle$ with lpha=1,...,D for given N

$$\left|\Psi
ight
angle = \sum\limits_{lpha=1}^{D} C_{lpha} \left|n_{1}^{(lpha)},...,n_{I}^{(lpha)}
ight
angle$$

• problem: the number D of basis states grows dramatically

- use efficient iterative Lanczos algorithm to compute the lowest eigenvalues and eigenvectors of the sparse Hamilton matrix
- there are several **approximation methods**, each applicable in very restricted parameter regimes only; none can describe phase transition regions
 - mean-field, discrete non-linear Schrödinger equation
 - Bogoliubov approximation
 - Gutzwiller ansatz

Mott-Insulator Transition Simple Quantities



- calculate ground state $\ket{\Psi_0}$ for a sequence of values for V/J
- mean occupation number $ar{n}_{i} = ig\langle \Psi_{0} ig| \, \hat{ ext{n}}_{i} ig| \Psi_{0} ig
 angle$
 - number fluctuations $\sigma_{i} = \left[\left\langle \Psi_{0} \right| \hat{\mathbf{n}}_{i}^{2} \left| \Psi_{0} \right\rangle - \left\langle \Psi_{0} \right| \hat{\mathbf{n}}_{i} \left| \Psi_{0} \right\rangle^{2} \right]^{1/2}$
 - largest coefficient $C_{\max}^2 = \max(C_{\alpha}^2)$
 - small V/J: hopping dominates; superpositions of many number states are favoured
 - large V/J: interaction dominates; number states with smallest occupation numbers are preferred

Condensate & Superfluidity

- What does BE condensation mean in a strongly correlated many-body system?
- **Onsager-Penrose criterion**: if the one-body density matrix

$$ho_{ij}^{(1)}=ig\langle \Psi_{0}ig|\,\hat{\mathrm{a}}_{i}^{\dagger}\hat{\mathrm{a}}_{j}\,ig|\Psi_{0}ig
angle$$

has an eigenvalue N_0 of order N, such that N_0/N stays finite in the thermodynamic limit, then a Bose-Einstein condensate is present and

> eigenvalue $\rightarrow N_0$: number of condensed particles eigenvector $\rightarrow \phi_{0,i}$: condensate wave function

• existence of a condensate implies the presence of off-diagonal long range order

$$ho_{ij}^{(1)}
eq 0$$
 as $|i-j|
ightarrow\infty$

as can be seen from the spectral decomposition $ho_{ij}^{(1)}=N_0\;\phi_{0,i}\,\phi_{0,j}^{\star}+ ilde
ho_{ij}^{(1)}$

• one can define condensation with respect to higher-order density matrices

Condensate and Quasi-Momentum Distribution

• Bose-Hubbard model uses Wannier functions $w(x - \xi_i)$ as natural representation of the state; Bloch functions $\psi_q(x)$ are obtained through

$$\psi_q(x) = rac{1}{\sqrt{I}} \sum_{i=1}^{I} \mathrm{e}^{-\mathrm{i}q\xi_i} w(x-\xi_i)$$

• define creation \hat{c}_q^\dagger and annihilation operators \hat{c}_q for bosons in Bloch states $\psi_q(x)$ with quasi-momentum q

$$\hat{\mathbf{c}}_q^{\dagger} = rac{1}{\sqrt{I}} \sum_{i=1}^{I} \mathrm{e}^{-\mathrm{i}q\xi_i} \, \hat{\mathbf{a}}_i^{\dagger} \qquad ext{with} \qquad q = rac{2\pi}{aI} imes ext{integer}$$

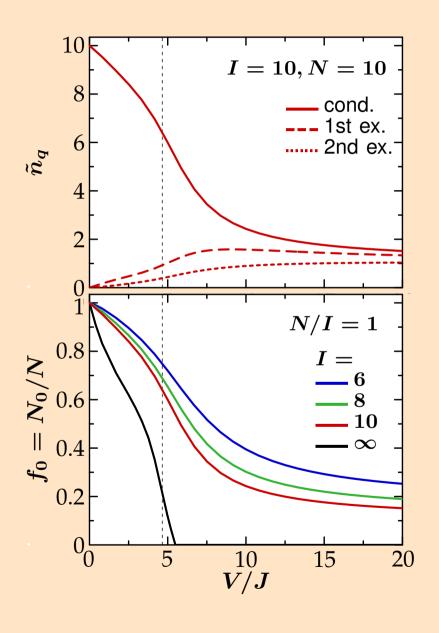
• occupation numbers for the Bloch states, i.e., quasi-momentum distribution

$$ilde{n}_q = ig\langle \Psi_0 ig| \, \hat{ ext{c}}_q^\dagger \hat{ ext{c}}_q ig| \Psi_0 ig
angle = rac{1}{I} \sum_{i,j=1}^I ext{e}^{ ext{i} q (m{\xi}_j - m{\xi}_i)} ig\langle \Psi_0 ig| \, \hat{ ext{a}}_i^\dagger \hat{ ext{a}}_j ig| \Psi_0 ig
angle$$

• quasi-momentum q = 0 Bloch state corresponds to the **condensate state**

$$N_0 = ilde{n}_{q=0}$$

Mott-Insulator Transition Quasi-Momentum Distribution



- noninteracting system: only the q = 0 condensate state is populated
- with increasing V/J condensate is depleted and larger q are successively populated
- uniform population of the band in the strong interaction limit
- strong finite size effects: condensate fraction in a finite lattice always $\geq 1/I$
- not possible to decide whether there is a condensate in the Penrose-Onsager sense
- rough extrapolation to $I o \infty$ leads to vanishing condensate fraction for $V/J \gtrsim 5$

- the term superfluidity describes a **flow property**
- macroscopically the superfluid flow is non-dissipative and irrotational, i.e., it is stationary and described by the gradient of a scalar field

 $ec{v}_{
m SF} \propto ec{
abla} heta(ec{x})$

- classical two-fluid picture: if a velocity field \vec{v} is imposed (moving walls), then only the normal component responds, the superfluid component stays at rest
- the energy in the comoving frame differs from the ground state energy E_0 in the rest frame by the **kinetic energy of the superflow**

 $E(\text{imposed } \vec{v}, \text{ comoving frame}) = E_0 + \frac{1}{2}M_{\text{SF}} \vec{v}^2$

- ► these two ideas are the basis for the **microscopic definition of superfluidity**
- NB: this approach does not consider the stability of the superflow (critical velocity) as in the Landau definition

• the velocity field of the superfluid is defined by the gradient of the phase of the condensate wavefunction $\phi_0(\vec{x})$

$$ec{v}_{ ext{SF}} = rac{\hbar}{m}ec{
abla} heta(ec{x}) \qquad \phi_0(ec{x}) = ext{e}^{ ext{i} heta(ec{x})} \ket{\phi_0(ec{x})}$$

• to probe superfluidity (formally) we impose a linear phase variation onto the system, e.g., by **twisted boundary conditions** for the many-body wave function

$$\Psi(\vec{x}_1, ..., \vec{x}_i + L\vec{e}_1, ..., \vec{x}_N) = e^{i\Theta} \Psi(\vec{x}_1, ..., \vec{x}_i, ..., \vec{x}_N) \qquad \forall i$$

• the change in energy $E_{\Theta} - E_0$ due to the phase twist is for small Θ identified with the kinetic energy of the superflow

$$E_{\Theta} - E_0 = T_{
m SF} = rac{1}{2} M_{
m SF} \; v_{
m SF}^2 = rac{1}{2} m N_{
m SF} \; v_{
m SF}^2$$

• **superfluid fraction** is proportional to the energy change due to the phase twist

$$f_{ ext{SF}} = rac{N_{ ext{SF}}}{N} = rac{2m\,L^2}{\hbar^2 N}\,rac{E_{\Theta}-E_0}{\Theta^2}$$

• superfluid fraction for a one-dimensional lattice with *I* sites and *N* particles

$$f_{
m SF} = rac{I^2}{JN} \, rac{E_{\Theta} - E_0}{\Theta^2}$$

- twisted boundary conditions not feasible for a discrete system: use a unitary transformation to map the phase twist onto the Hamilton operator
- **twisted Hamiltonian** has a modified hopping term which contains the so called Peierls phase factors

$$\hat{\mathbf{H}}_{\Theta} = -J \sum_{i=1}^{I} (\mathbf{e}^{-\mathbf{i}\Theta/I} \hat{\mathbf{a}}_{i+1}^{\dagger} \hat{\mathbf{a}}_{i} + \mathbf{h.a.}) + \cdots$$

- procedure: solve the eigenvalue problem for the original and the twisted Bose-Hubbard Hamiltonian (with periodic BCs) to obtain E_0 and E_{Θ}
- ► phase factors can be engineered in experiment by accelerating the lattice or adding a linear potential → basis for schemes to probe superfluidity directly

Perturbative Calculation of the Superfluid Fraction

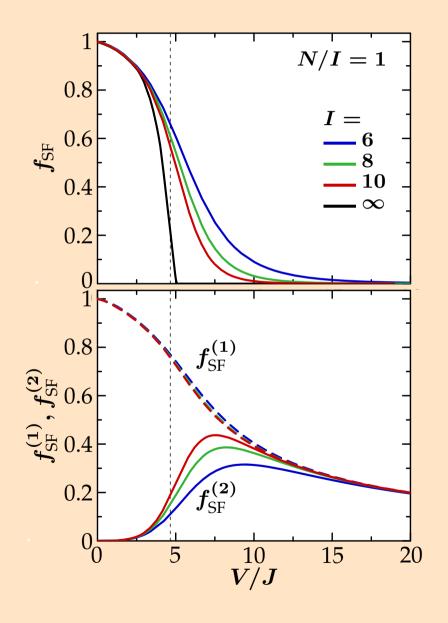
• calculate the energy difference $E_{\Theta} - E_0$ induced by a small phase twist Θ in second order perturbation theory

- including all contributions to the energy difference up to order Θ^2 gives for the superfluid fraction

$$f_{
m SF} = f_{
m SF}^{(1)} - f_{
m SF}^{(2)}$$
 $f_{
m SF}^{(1)} = -rac{1}{2NJ} ig\langle \Psi_0 ig| \, \hat{
m T} ig| \Psi_0 ig
angle \qquad f_{
m SF}^{(2)} = rac{1}{NJ} \sum_{
u
eq 0} rac{|ig\langle \Psi_
u ig| \, \hat{
m J} ig| \Psi_0 ig
angle|^2}{E_
u - E_0}$

- ▶ 1st order term: depends only on the ground state expectation value of $\hat{\mathbf{T}}$
- ▶ 2nd order term: couples to the whole excitation spectrum of \hat{H}_0
- the superfluid fraction measures the response of the system to an external perturbation (phase twist)

Mott-Insulator Transition Superfluid Fraction



- superfluid fraction is the natural order parameter for the superfluid-insulator transition
- rapid decrease of $f_{\rm SF}$ in a narrow window in V/J already for small systems
- extrapolation: good agreement with Monte Carlo calculations for critical V/J
- first order contribution $f_{\rm SF}^{(1)}$ decreases only very slowly
- vanishing of $f_{\rm SF}$ in the insulating phase is due to a cancellation between $f_{\rm SF}^{(1)}$ and $f_{\rm SF}^{(2)}$
- coupling to **excited states** is crucial for the vanishing of $f_{\rm SF}$ in the insulating phase

Condensate -vs- Superfluidity

condensate

- largest eigenvalue of the one-body density matrix
- involves only the ground state
- measure for off-diagonal long-range order in the system

superfluid

- response of the system to an external perturbation (phase gradient)
- depends crucially on the excited states of the system
- measures a flow property

$f_0 < f_{ m SF}$

 some of the non-condensed particles exhibit a net flow behaviour like the condensate

• prime example: liquid ${}^4 ext{He}$ at $T=0 ext{K}$ $f_0=0.1,\;f_{ ext{SF}}=1$

$f_0 > f_{ m SF}$

 \neq

- part of the (quasi-) condensate is not superfluid, i.e. it does not react to the phase twist with an energy change
- seems to appear in systems with disorder / fragmentation

Matter-Wave Interference Pattern

- switch off the lattice and let the gas expand for some time au
- free expansion described by the spreading of a Gaussian wave packet $\chi_i(\vec{y},t)$
- intensity $\mathcal{I}(\vec{y})$ observed at a point \vec{y} after expansion time τ

$$\mathcal{I}(ec{y}) = ig\langle \Psi_0 ig| \hat{\mathrm{A}}^\dagger(ec{y}) \hat{\mathrm{A}}(ec{y}) ig| \Psi_0 ig
angle \qquad \hat{\mathrm{A}}(ec{y}) = \sum_{i=1}^I \chi_i(ec{y}, au) \hat{\mathrm{a}}_i$$

 discard all information about the intensity envelope and take into account only the phase terms in the far-field

$$\chi_i(ec{y}, au) \ o \ {
m e}^{{
m i}\,\phi_i(ec{y}, au)} \ o \ {
m e}^{{
m i}\,\delta\phi(ec{y}, au)\,i}$$

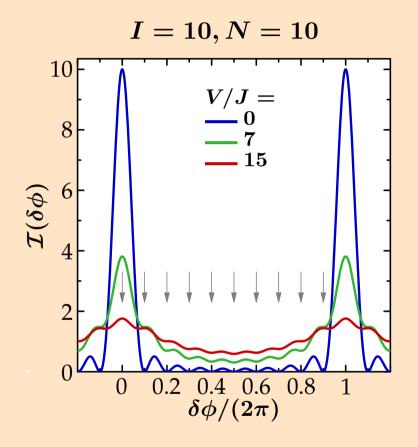
• intensity as function of phase difference $\delta\phi$

$$\mathcal{I}(\delta \phi) = rac{1}{I} \sum_{i,j=1}^{I} \mathrm{e}^{\mathrm{i} \; \delta \phi \; (j-i)} ig\langle \Psi_0 ig| \, \hat{\mathrm{a}}_i^\dagger \hat{\mathrm{a}}_j ig| \Psi_0 ig
angle$$

exactly the same equation that determines the quasi-momentum distribution

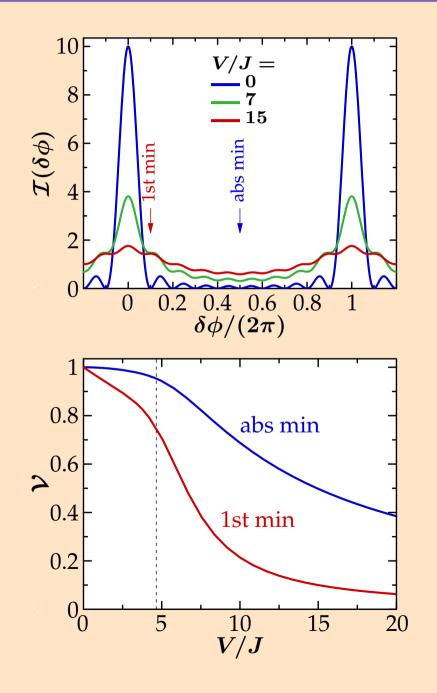
$$\tilde{n}_q = \mathcal{I}(\delta \phi = qa)$$

Mott-Insulator Transition Interference Pattern



- peaks at $\delta \phi = 0, \pm 2\pi, \dots$ correspond to the principal interference peaks seen in experiment
- with increasing V/J principal peaks are depleted and broadened; background emerges
- equivalently: with increasing V/J the condensate is depleted and the band is filled successively
- pronounced fringes still visible in the insulating phase
- fringes are a measure for coherence properties not for superfluidity

Mott-Insulator Transition Interference Pattern & Visibility



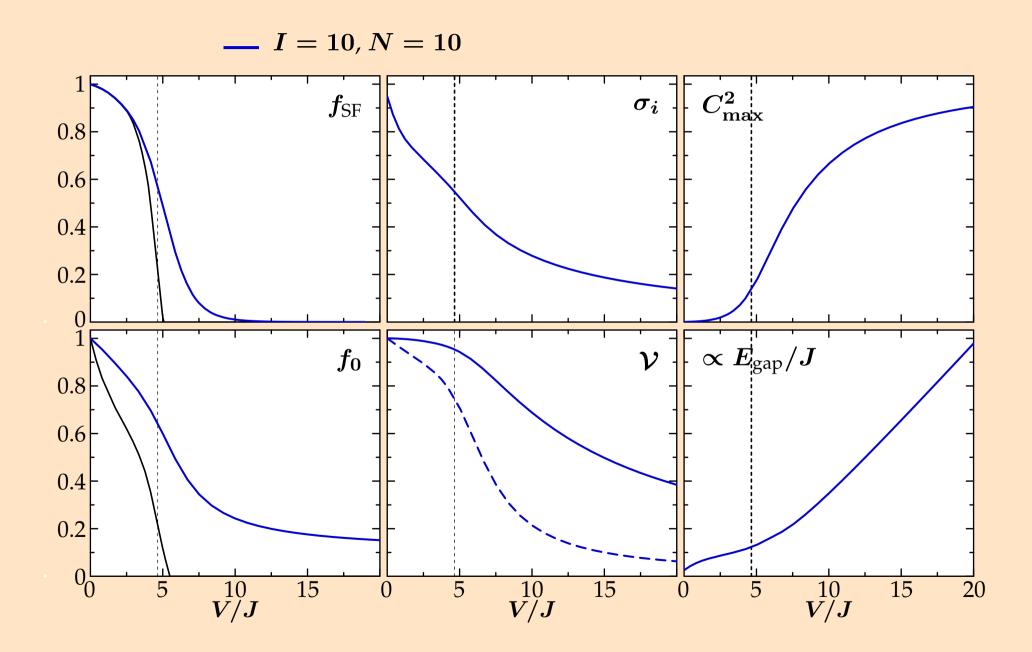
- wanted: simple measure for the presence or absence of fringes
- standard definition of fringe visibility

$$\mathcal{V} = rac{\mathcal{I}_{ ext{max}} - \mathcal{I}_{ ext{min}}}{\mathcal{I}_{ ext{max}} + \mathcal{I}_{ ext{min}}}$$

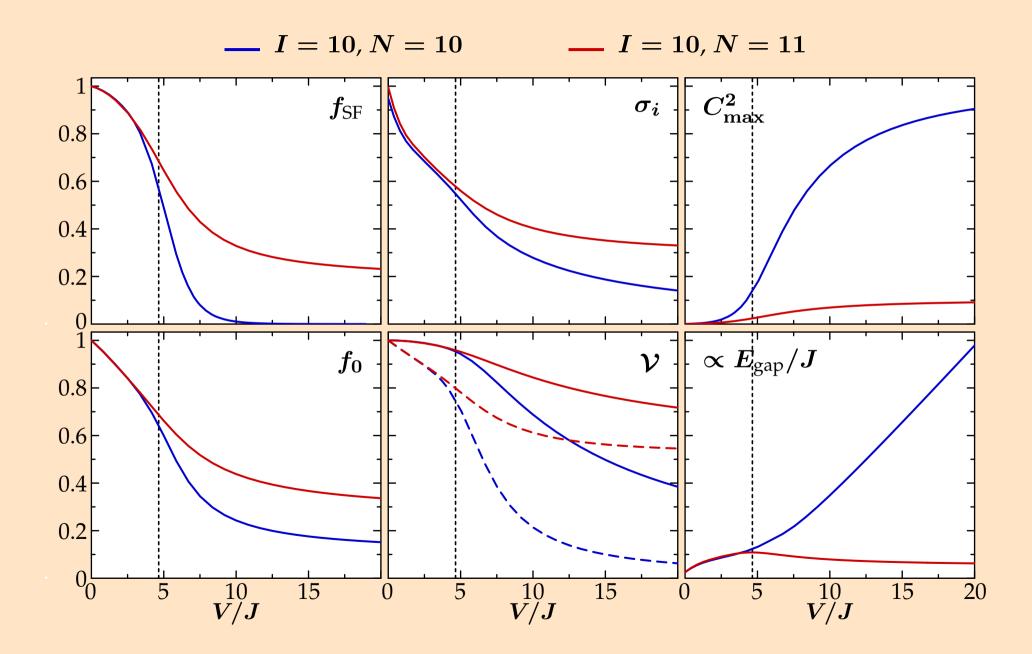
- $\mathcal{I}_{\min} = absolute minimum$
 - measures non-uniformity of quasimomentum distribution
 - very insensitive
- $\mathcal{I}_{\min} = \text{first minimum}$
 - measures occupation difference between condensate and 1st excited Bloch state
 - better sensitivity but problematic experimentally

Superfluid to Mott-Insulator Transition

Commensurate Filling Relevant Quantities



Non-Commensurate Filling Relevant Quantities



Summary Superfluid to Mott-Insulator Transition

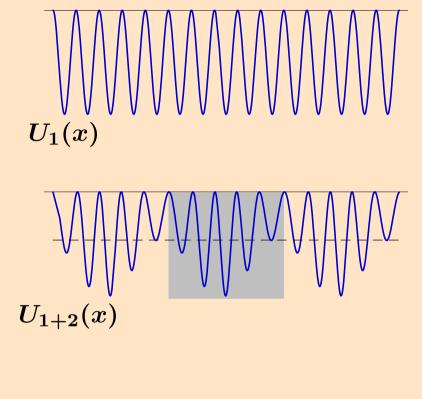
• **quantum phase transition** for commensurate fillings governed by the competition between kinetic energy (large fluctuations) and repulsive interactions (small occupation numbers)

	superfluid regime	Mott-insulator regime
ground state	superpos. of many FS	almost pure FS
number fluctuations	large	small
superfluid fraction	finite	zero
energy gap	small	increasing
interference fringes	present	slowly vanishing

- order parameter of the transition is the superfluid fraction $f_{\rm SF}$, which depends significantly on the excited states
- ground state quantities (like interference pattern, fluctuations, etc.) cannot give direct information on superfluidity or the phase transition
- one has to devise experimental schemes that probe superfluidity directly

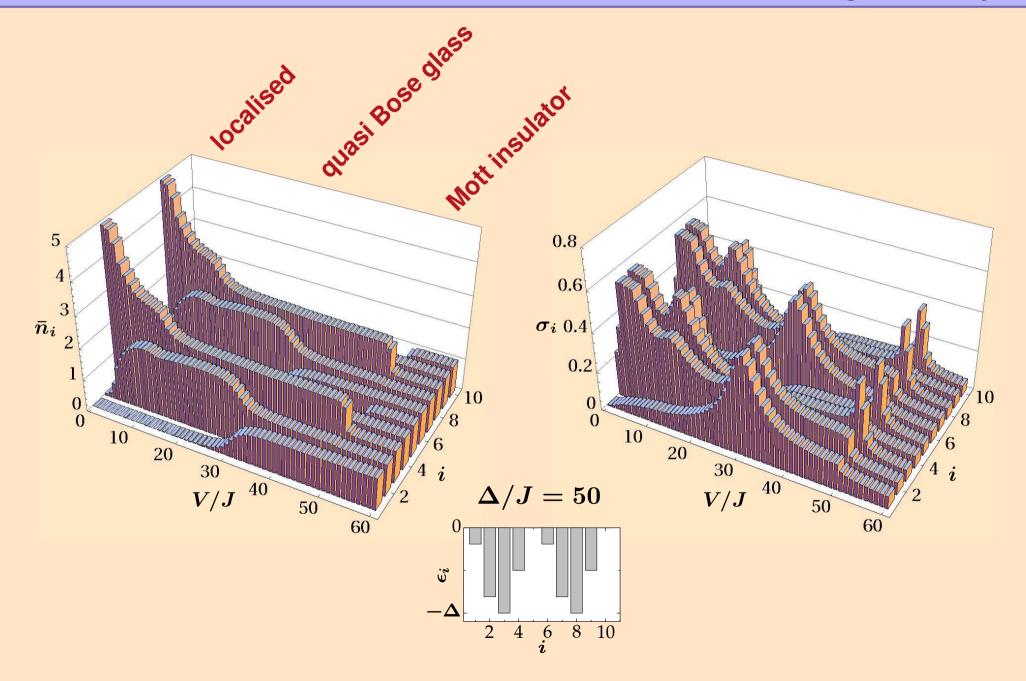
Two-Colour Superlattices

Two-Colour Superlattices

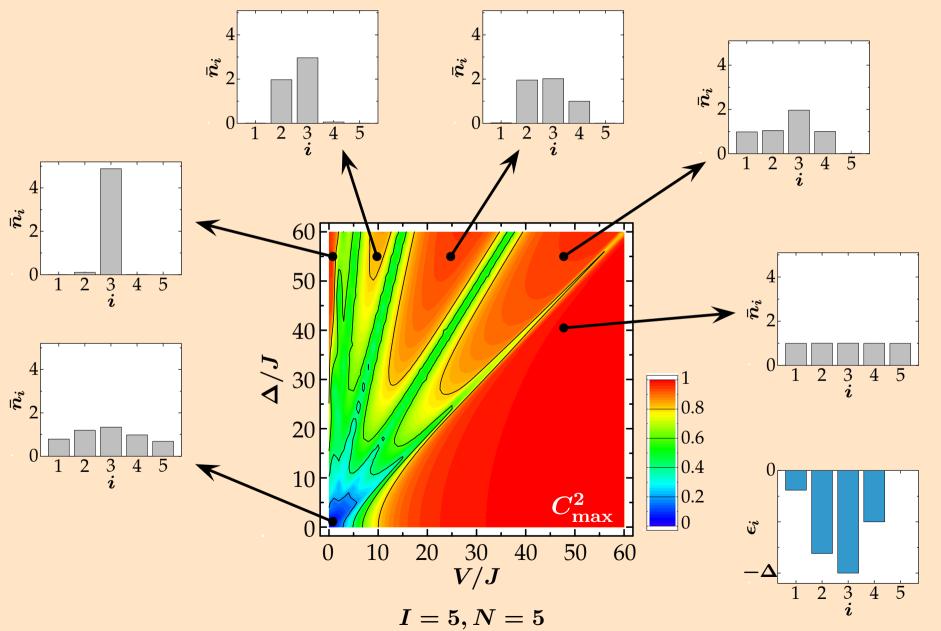


- start with the conventional standing wave created by a laser with wavelength λ_1
- add a second standing wave created by a laser with wavelength $\lambda_2 = \frac{5}{7}\lambda_1$ and much smaller intensity (here 4%)
- potential exhibits a periodic modulation of the well-depth with a period of 5 sites
- in the language of the Bose-Hubbard model this means varying on-site energies ϵ_i
- amplitude Δ of the modulation is controlled by the intensity of the second laser
- these completely controlled lattice irregularities open novel possibilities to study fundamental "disorder" effects; more complex topologies easily possible

Two-Colour Superlattices Interaction -vs- Lattice Irregularity

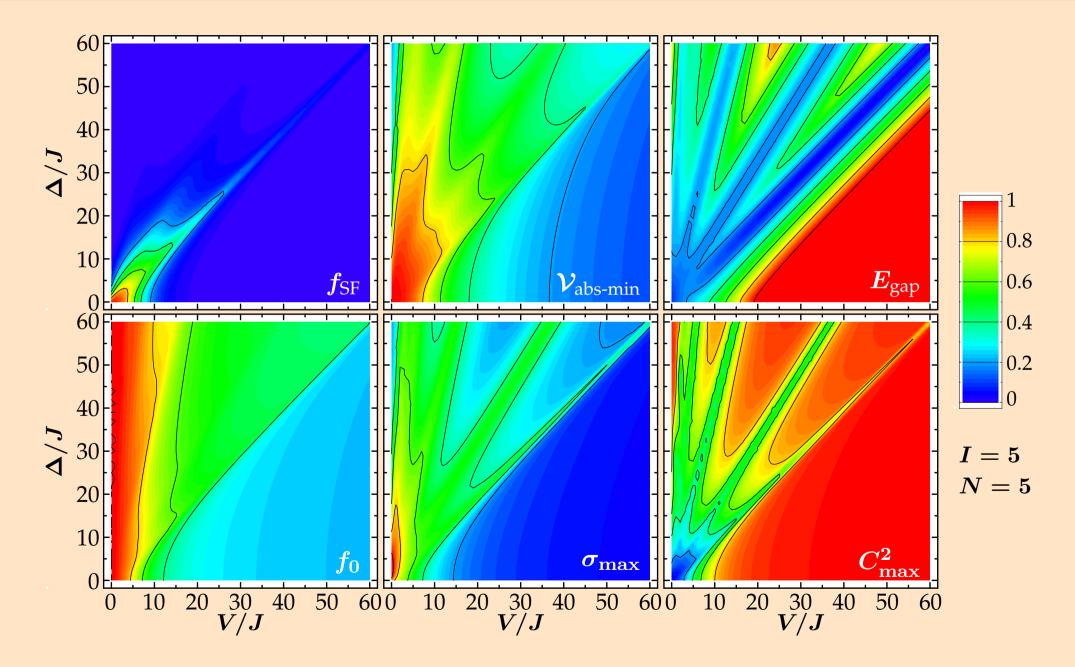


Two-Colour Superlattices $V-\Delta$ Phase Diagram



R. Roth - 10/2002

Two-Colour Superlattices More Phase Diagrams



- three competing terms in the Bose-Hubbard Hamiltonian generate a rich phase diagram with various quantum phase transitions
 - hopping: prefers wide distribution of occupation number
 - interaction: favours small occupation numbers
 - lattice irregularity: prefers large occupation numbers at deep wells
- several distinct insulating phases
 - localised phase: all particles localised at the deepest wells of each unit cell; large fluctuations
 - **quasi Bose glass**: integer non-uniform occupation with small fluctuations; rearrangements between different configurations
 - Mott insulator: whenever $V \gtrsim \Delta$ the uniform Mott-insulator phase appears for commensurate fillings