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Overview

R. Roth — 01/2002

n The World of Trapped Atomic Fermi Gases

n Theoretical Description of Trapped Degenerate Fermi Gases

• The Many-Body Problem

• Correlations & Effective Interaction

• Mean-Field & Thomas-Fermi Approximation

• Energy Functional

n Structure of Single- and Two-Component Fermi Gases

• Energy Landscapes & Density Profiles

• Mean-Field Induced Collapse

• Component Separation

• Phase Diagram
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Trapped Degenerate Fermi Gas
Boulder / Colorado — September 1999

R. Roth — 01/2002

Science 285 (1999) 1703

cooling a cloud of
neutral 40K atoms kept

in a magnetic trap
40K has fractional
total spin: fermion

F = 4
I

± 1/2
S

= 9
2 , 7

2

two-component mixture
∣

∣F = 9
2
, mF = 9

2

〉

∣

∣F = 9
2
, mF = 7

2

〉

N ≈ 105...106

` ≈ 1 µm

T ≈ 300 nK
≈ 0.5 εF

τ ≈ 300 s

ρ ≈ 10 µm−3
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Degenerate Boson-Fermion Mixtures
Houston / Texas — March 2001
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Science 291 (2001) 2570

7Li 6Li

T = 810 nK

T = 510 nK

T = 240 nK

simultaneous trapping of
7Li → F = 2 → boson
6Li → F = 3

2 → fermion

evaporative cooling of the
bosons → sympathetic
cooling of the fermions

NB ≈ NF ≈
105...106

T ≈ 240 nK
≈ 0.25 εF
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Fermion Experiments — Today

R. Roth — 01/2002

Two-Component Fermi Gases

Binary Boson-Fermion Mixtures

09/1999 40K T = 0.5εF NF ∼ 106 JILA, Boulder/Colorado,
B. DeMarco, D.S. Jin

11/2001 6Li T = 0.5εF NF ∼ 105 Duke Univ., Durham/North Carolina,
S.R. Granade,..., J.E. Thomas

03/2001 7Li/6Li T = 0.25εF NF ∼ 105 Rice Univ., Houston/Texas,
A.G. Truscott,..., R.G. Hulet

07/2001 7Li/6Li T = 0.2εF NF ∼ 104 ENS, Paris
F. Schreck,..., C. Salomon

08/2001 87Rb/40K — NF ∼ 107 JILA, Boulder/Colorado
J. Goldwin,..., D.S. Jin

12/2001 23Na/6Li T = 0.5 εF NF ∼ 106 MIT, Cambridge/Massachusetts
Z. Hadzibabic,..., W. Ketterle
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Theoretical Description of
Trapped Degenerate (Fermi) Gases

• The Many-Body Problem

• Correlations & Effective Interaction

• Mean-Field & Thomas-Fermi Approximation

• Energy Functional
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Route Through the Many-Body Problem
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Hamiltonian
H =

∑

i

U(~xi)+
1

2m

∑

i

~p2
i +

∑

i<j

Vij

Model Space
mean-field states: antisym.

product of single-particle states

Energy Functional
energy expectation value as

functional of the density Thomas-Fermi Approx.
neglect all gradients of the

density in the energy functional

Functional Variation
ground state density is obtained

by energy minimization
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Short-Range Correlations
The Problem

R. Roth — 01/2002

Interaction
many realistic two-body

interactions show a strong
short-range repulsion

(e.g. nucleon-nucleon & van der
Waals interactions)

Product States
short-range correlations

cannot be described
by product-type states

(e.g. mean-field, superposition
of few product states,...)

Correlations
core induces strong

short-range correlations
in many-body state
(e.g. correlation hole in

two-body density)
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r [ρ
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0 ]

0

0.25

0.5

0.75

1

[ρ2
0]

ρ
(2)
prod(r)

nuclear matter ρ0 = 0.17 fm−3

liquid 4He (bosonic) ρ0 = 0.022 Å−3
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Short-Range Correlations
The Problem

R. Roth — 01/2002

Interaction
many realistic two-body

interactions show a strong
short-range repulsion

(e.g. nucleon-nucleon & van der
Waals interactions)

Product States
short-range correlations

cannot be described
by product-type states

(e.g. mean-field, superposition
of few product states,...)

Correlations
core induces strong

short-range correlations
in many-body state
(e.g. correlation hole in

two-body density)

Effective Interaction
replace the full potential by a
tamed effective interaction

Correlated States
include correlations in

many-body model-space

Effective Contact
Interaction
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A Suitable Effective Interaction...
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system is very dilute and cold
ρ−1/3

� range of interaction
q−1

� range of interaction

treat the many-body problem in
a restricted model-space that
does not contain correlations

looking for the structure of
non-selfbound states in an

external potential

hermitean interaction operator
that obeys standard symmetries

(translation, rotation,...)

Effective Contact Interaction (ECI)

• zero-range potential (for each partial wave)

• expectation value in two-body model-
states equals the energy shift induced by
the full interaction

〈

φmod
n

∣

∣vECI
∣

∣φmod
n

〉 !
= ∆En

En

0

without
interaction

with
interaction

∆En

project
out
bound
states

1
2

3

4

5
n
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Effective Contact Interaction
Construction of an

R. Roth — 01/2002

Energy Shift

• relative two-body wave function w/o and
with interaction (outside the range of v(r))

φnlm(~r) = Rnl(r)Ylm(ϑ, ϕ)

Rnl(r) ∝ jl(qnlr)

R̄nl(r) ∝ jl(q̄nlr) − tan ηl(q̄nl) nl(q̄nlr)

• auxiliary boundary condition Rnl(Λ) = 0 to
obtain discrete momentum spectrum

qnlΛ = π(n + l
2 )

q̄nlΛ = π(n + l
2 ) − [ηl(q̄nl) − π nbound

l ]

• momentum shift
∆qnlΛ = (q̄nl − qnl)Λ

= −[ηl(qnl) − π nbound
l ] =: −η̂l(qnl)

• relative energy shift
∆Enl

Enl
= − 2

qnlΛ
η̂l(qnl)

Interaction Operator

• ansatz for a nonlocal contact interaction for
the lth partial wave

vECI
l = (~q · ~r

r
)l gl δ(3)(~r) (~r

r
· ~q)l

=

∫

d3r
∣

∣~r
〉

�

∂ l

∂rl
gl δ(3)(~r)

�

∂ l

∂rl

〈

~r
∣

∣

• expectation value in non-interacting two-
body states

〈

φnlm

∣

∣vECI
l

∣

∣φnlm

〉 !
= ∆Enl

• interaction strengths gl determined by η̂l(q)

gl = − 4π

2mred

[

(2l + 1)!!

l!

]2
η̂l(q)

q2l+1

• parametrization of η̂l(q) in terms of the
scattering lengths al for |q al| � 1

gl =
4π

2mred

(2l + 1)

(l!)2
a2l+1

l +O(q2)
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Trapped Degenerate Fermi Gas
A Model for a

R. Roth — 01/2002

• trapped gas of Ξ distinguishable fermionic
species (ξ = 1, ..., Ξ) interacting via the s-
and p-wave contact interaction

• for simplicity: equal trapping potentials
and s- and p-wave scattering lengths, a0

and a1, for all components

Hamiltonian

H =
∑

i

U(~xi) +
1

2m

∑

i

~p2
i +

4πa0

m

∑

i<j

δ(3)(~rij) +
12πa3

1

m

∑

i<j

(

~qij ·
~rij

rij

)

δ(3)(~rij)
(~rij

rij
· ~qij

)

trap kinetic s-wave p-wave

Mean-Field States (homogeneous)

• N -body state
∣

∣Ψ
〉

is an antisymmetrized
product of single-particle momentum
eigenstates

∣

∣~ki, ξi

〉

∣

∣Ψ
〉

= A
(
∣

∣~k1, ξ1

〉

⊗ · · · ⊗
∣

∣~kN , ξN

〉)

• for each component ξ all momenta |~k| up
to the Fermi momentum κξ appear

Thomas-Fermi Approximation

• energy density of the trapped gas is locally
given by the energy density of the homo-
geneous system

Ehom(κ1, ..., κΞ) =
1

V

〈

Ψ
∣

∣Hhom
∣

∣Ψ
〉

• i.e. the Fermi momenta κξ are replaced by
local Fermi momenta κξ(~x)
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Energy-Density for Trapped Fermions

R. Roth — 01/2002

—— trap ——

—— kinetic ——

—— s-wave ——

—— p-wave ——

Single-Component System

E1[κ](~x) =

=
1

6π2
U(~x) κ3(~x)

+
1

20π2m
κ5(~x)

+
a3
1

30π3m
κ8(~x)

7

Two-Component System

E2[κ1, κ2](~x) =

=
1

6π2
U(~x)

[

κ3
1(~x) + κ3

2(~x)
]

+
1

20π2m

[

κ5
1(~x) + κ5

2(~x)
]

+
a0

9π3m
κ3

1(~x) κ3
2(~x)

+
a3
1

30π3m

[

κ8
1(~x) + κ8

2(~x)+

+ 1
2κ3

1(~x) κ5
2(~x) + 1

2κ5
1(~x) κ3

2(~x)
]

• energy expectation value

EΞ[κ1, ..., κΞ] =

∫

d3x EΞ[κ1, ..., κΞ](~x)

• density

ρξ(~x) =
1

6π2
κ3

ξ(~x)

• particle number

N [κξ] =
1

6π2

∫

d3x κ3
ξ(~x)
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Ground State — Variationally

R. Roth — 01/2002

Functional Variation
minimization of the energy EΞ[κ1, ..., κΞ] for
fixed numbers of particles N1, ..., NΞ gives

the ground state density profile

• chemical potentials: implement con-
straints on the particle numbers via a set
of Lagrange multipliers µ1, ..., µΞ

• unconstraint minimization of the trans-
formed energy functional

FΞ[κ1, ..., κΞ] = EΞ[κ1, ..., κΞ] −
Ξ

∑

ξ=1

µξN [κξ]

=

∫

d3x FΞ[κ1, ..., κΞ](~x)

• stationary points of the energy density are
solutions of the Euler-Lagrange equations

∂

∂κξ(~x)
FΞ[κ1, ..., κΞ](~x) = 0 , ∀ξ

• since FΞ is local (does not depend on gra-
dients) the ground state has to minimize FΞ

for each ~x

Recipe
ground-state densities at some ~x are given
by the minimum of the transformed energy

density FΞ[κ1, ...κΞ](~x) for this ~x
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Structure of a Trapped Degenerate
Two-Component Fermi Gas

• Energy Landscapes & Density Profiles

• Mean-Field Induced Collapse

• Component Separation

• Phase Diagram
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Density Profiles
Two-Component Fermi Gas

R. Roth — 01/2002

• assume a spherical symmetric
parabolic trapping potential

U(~x) =
mω2

2
x2 =

1

2m`4
x2

• determine the densities for µ1, µ2

chosen such that the desired parti-
cle numbers are reproduced

• a0 > 0: repulsive interactions flat-
ten the density profile

• a0 < 0: attractive interactions en-
hance the central density

• outside a certain range of scatter-
ing lengths a0 no solutions of this
type exist anymore

0 5 10 15 20
x [`]

0

50

100

150

200

250

300

.
ρ
1
(~x

)
=

ρ
2
(~x

)
[`
−

3
]

a0/`

−0.053

−0.05

−0.04

−0.03

−0.02

0.0

+0.02

+0.04

+0.06

+0.095

N1 = N2 = 106

a1/` = 0

for a typical trap with ` = 1 µm:

a0 = 200 aBohr → a0/` = 0.01

a0 = 2000 aBohr → a0/` = 0.1
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Energy-Density Landscape: a0 < 0

Two-Component Fermi Gas

R. Roth — 01/2002

0 20 40 60
κ1 [`−1]

0

20

40

60

.

κ
2

[`
−

1
]

a0/` = 0

0 20 40 60
κ1 [`−1]

a0/` = −0.035

0 20 40 60
κ1 [`−1]

a0/` = −0.040

F2[κ1, κ2](~x = 0) , µ1 = µ2

F2 = 0

F2 < 0

µ m`2 = 300

a1/` = 0

• minimum of F2 is only local for attractive inter-
actions (a0 < 0 or a1 < 0)

• NB: physically the state is metastable for all
signs of the scattering lengths

• local minimum vanishes if the attractive s-wave
interaction exceeds a critical strength

attractive interactions can
induce a collapse of the
Fermi gas towards high

densities
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Collapse — Stability Condition
Two-Component Fermi Gas

R. Roth — 01/2002

F2[κ, κ](~x) =
1

3π2

[

U(~x) − µ
]

κ3(~x) +
1

10π2m
κ5(~x) +

a0

9π3m
κ6(~x) +

a3
1

10π3m
κ8(~x)

0 20 40 60
κ [`−1]

-2

-1

0

1

.

F
2
[κ

,κ
](

~x
=

0
)

[a
rb

.u
ni

ts
]

a0/` = −0.037

a1/` = 0.0

µ m`2

240

270

300

330

• onset of instability is indicated by the appear-
ance of a saddle point in the energy density,
i.e., a vanishing first and second derivative

• stability condition: metastable states exist
only for

µ < µcr(a0, a1) and κ(~x) < κcr(a0, a1)

• the critical Fermi momentum and the critical
chemical potential are given by

−2 a0 κcr − 4 (a1 κcr)
3 = π

m µcr =
1

2
κ2

cr +
2 a0

3π
κ3

cr +
8 a3

1

15π
κ5

cr
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Collapse — Critical Particle Number
Two-Component Fermi Gas

R. Roth — 01/2002

• assume parabolic trapping potential with
mean oscillator length `

• obtain the density profile for the critical
chemical potential µcr and calculate Ncr

abs. stabilization due
to p-wave repulsion
a1/|a0| > 2/(3π2/3)

p-wave attraction
lowers critical particle
number substantially

p-wave induced
collapse and inter-

ference with separation

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
a0/`

4

5

6

7

8

9

.

lo
g
1
0
N

cr

a1/`

+0.030

+0.025

+0.020

+0.015

+0.010

+0.000

−0.010

−0.020

−0.030

−0.040

−0.050
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Energy-Density Landscape: a0 > 0

Two-Component Fermi Gas

R. Roth — 01/2002

0 10 20 30
κ1 [`−1]

0

10

20

30

40

.

κ
2

[`
−

1
]

a0/` = 0.0

0 10 20 30
κ1 [`−1]

a0/` = 0.06

0 10 20 30
κ1 [`−1]

a0/` = 0.12

F2[κ1, κ2](~x = 0) , µ1 = µ2

F2 = 0

F2 < 0

µ m`2 = 300

a1/` = 0

• overlapping configuration: for moderate re-
pulsive s-wave interactions a unique minimum
exists at κ1 = κ2

• separation: beyond a critical interaction
strength two separate minima emerge at

κ1 = 0, κ2 > 0 and κ1 > 0, κ2 = 0

repulsive interactions can
induce a spatial separation

of the two components
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Separation — Density Distributions
Two-Component Fermi Gas

R. Roth — 01/2002

ρ1(r, z) = ρ2(r,−z)

a0/` = 0 a0/` = 0.06 a0/` = 0.066

a0/` = 0.07 a0/` = 0.08 a0/` = 0.10

N1 =N2 =107

a1/` = 0
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Separation — Critical Particle Number
Two-Component Fermi Gas

R. Roth — 01/2002

• assume parabolic trapping potential with
mean oscillator length `

• obtain the density profile for the critical
chemical potential µcr and calculate Ncr

interference with
collapse induced by

p-wave attraction

p-wave attraction
lowers critical particle
number substantially

abs. stabilization
due to p-wave repulsion

a1/a0 > 24/3/(3π2/3)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
a0/`
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.
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−0.04
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Stability Map
Two-Component Fermi Gas

R. Roth — 01/2002
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.

a
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log10 Ncr
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7
8

∞ ∞

overlapping conf.
is stable for all

particle numbers
p-wave

stabilized
high-density
phase above

Ncr

mean-field
collapse

above critical
particle
number

components
separate

above critical
particle
number
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Stability Map & Feshbach Resonances
Two-Component Fermi Gas

R. Roth — 01/2002

-0.1 -0.05 0 0.05 0.1
a0/`

-0.1
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0
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.

a
1
/`

log10 Ncr
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5

6

B [G]

180

190

191.6

191.7

193 194 195.5196.5 197.5 200

• Feshbach resonances allow to tune
the strength of the atom-atom interaction
(scattering lengths) via an external mag-
netic field

• simultaneous s- and p-wave Feshbach res-
onance predicted for a two-component 40K
system with F = 9

2 , mF = − 9
2 ,− 7

2

[J. Bohn, Phys. Rev. A61 (2000) 053409]
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Phase Diagram
Two-Component Fermi Gas
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-0.1 -0.05 0 0.05 0.1
a0/`

3

4

5

6

7

8

9

.

lo
g
1
0
N
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a0/`

-0.1 -0.05 0 0.05 0.1
a0/`

a1/` = 0.0 a1/` = 0.025 a1/` = −0.025

identical overlap-
ping density distri-
butions

spatial separation
of the components

unstable against
collapse towards
high densities

p-wave stabilized
high-density phase
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What’s about the
Single-Component Fermi Gas?

• Density Profiles

• p-Wave Induced Collapse
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Density Profiles & Collapse
Single-Component Fermi Gas

R. Roth — 01/2002

F1[κ](~x) =
1

6π2

[

U(~x) − µ
]

κ3(~x) +
1

20π2m
κ5(~x) +

a3
1

30π3m
κ8(~x)

0 5 10 15 20
x [`]

0

50

100
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200

.

ρ
(~x

)
[`
−

3
]

a1/`

−0.044

−0.04

−0.03

−0.02

0.0

+0.02

+0.04

+0.06

+0.08

+0.1

N = 106

• the p-wave interaction can have a strong
effect on the density profile

• attractive p-wave interactions can cause
a collapse of the single component gas

• stability conditions for the existence of
a metastable state

κcr =
3
√

3π

2|a1|
µcr =

3(3π)2/3

40m|a1|2

Ncr =
(

0.445
`

|a1|
)6

• p-wave attraction can cause a severe
limitation of the fermion number

a1/` = −0.01 → Ncr = 7.8 × 109

a1/` = −0.1 → Ncr = 7800
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Summary

R. Roth — 01/2002

Strategy

• developed a simple framework to describe interacting
degenerate quantum gases

• effective contact interaction + mean-field states +
Thomas-Fermi approximation → energy functional

• investigated the influence of s- and p-wave interactions
on structure and stability of degenerate Fermi gases

Results

• s- and p-wave interactions have strong influence on the
density profiles and the stability of the gas

• collapse: attractive interactions can induce a collapse of
the dilute gas towards high densities

• separation: repulsive interactions can cause a spatial
separation of the different components

• in all cases a complex interplay between s- and p-wave
interactions is observed

...have a look at
http://theory.gsi.de/˜trap
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