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Mission Statement
• recent experiments on the Mott-insulator

transition for bosonic atoms in optical lat-
tices [1] reveal a huge potential for the
study of the complex mechanisms behind
quantum phase transitions

• we discuss the microscopic definition of
the superfluid fraction (order parameter) in
the framework of the Bose-Hubbard model
and relate it to experimental observables
like the interference pattern after expansion

• we perform exact numerical calculations
for the superfluid to Mott-insulator transi-
tion in one-dimensional systems and com-
pare superfluid fraction, number fluctua-
tions, and fringe visibility

• we study the influence of simple non-
uniform lattice potentials as they can be
produced in two-color lattices and map out
a phase diagram as function of modulation
amplitude and interaction strength

Summary of Results
• the superfluid fraction is not a static ground

state property but the response of the sys-
tem to a perturbation (phase twist)

• it depends crucially on the excited states
of the system; they are responsible for the
vanishing of fs in the insulating phase

• ground state observables like the matter
wave interference pattern cannot provide
full information on superfluid properties
and the Mott-insulator transition

• a sinusoidal modulation of the well depth
together with the two-body interaction
generates a rich phase diagram with sev-
eral distinct insulating phases (localized,
Bose glass, Mott insulator) which can be
detected through their interference patterns

• one has to devise specialized experimental
schemes to probe superfluidity; e.g. accel-
erate the lattice (impose phase variation)
and measure flow velocity after expansion

Bose-Hubbard Model
• one-dimensional lattice with I sites and N bosons

• single-particle states described in terms of Wannier func-
tions w(x − ξi) of the lowest band; define operator a†i that
creates a boson in the Wannier state at site i

• usual Hamiltonian of the interacting many-boson system
translates into the Bose-Hubbard Hamiltonian [2]

H = −J
I
∑

i=1

(a†i+1ai + h.a.) +
I
∑

i=1

εi ni +
V
2

I
∑

i=1

ni(ni − 1)

J : tunneling strength between adjacent sites
εi : on-site single-particle energies
V : on-site two-body interaction strength

• ground state |Ψ0〉 is obtained from the exact solution of
eigenvalue problem in a complete basis of Fock states
|n1, ..., nI〉 with all compositions of occupation numbers ni

• alternative representation in terms of Bloch functions ψq(x)
for quasi-momentum q; from the relation between Bloch
and Wannier functions we can construct the creation opera-
tors for a boson in a Bloch state

c†q =
I
∑

i=1

e−i qξi a†i with q = multiples of 2π
I a

• this allows us to determine occupation numbers for the
Bloch states, i.e., the quasi-momentum distribution

ñq = 〈Ψ0| c†qcq |Ψ0〉

• the quasi-momentum q = 0 state describes the condensate,
i.e., we can define the condensate fraction fc = ñq=0/N

Interference Pattern
• simplest experimental observable is the matter-wave inter-

ference pattern after release from the lattice and expansion

• intensity at a detection point ~y after a time-of-flight τ is
given by (interactions neglected) [3]

I(~y) = 〈Ψ0|A†(~y) A(~y) |Ψ0〉

• approximating the expanded wave packets from the indi-
vidual sites by Gaussians χi(~y) and neglecting the spatial
structure of the envelope leads to the amplitude operator

A(~y) =
I
∑

i=1

χi(~y) ai ∼

I
∑

i=1

eiφi(~y) ai

where φi(~y) is the phase accumulated on the path from site
i to the detection point

• intensity as function of the phase difference δφ = φi+1 − φi

between adjacent sites

I(δφ) =
1
I

[

N +
I−1
∑

d=1

Bd cos(d δφ)
]

with the exp. values of the dth neighbor hopping operators

Bd =

I−d
∑

i=1

〈Ψ0| a†i+dai + a†i ai+d |Ψ0〉

• there is a one-to-one correspondence between intensity and
quasi-momentum distribution

ñq = 〈Ψ0| c†qcq |Ψ0〉 = I(δφ = qa) .

i.e. the interference pattern provides full information about
the quasi-momentum distribution

Superfluidity
• superfluidity is the rigidity of the system under variations

of the condensate phase, i.e., it measures the response to a
perturbation and not a mere ground state property

• assume a condensate wave function Φ(~x) = eiθ(~x)|Φ(~x)| with
a spatially varying phase θ(~x); the phase variation gives rise
to a velocity field

~vs(~x) = ~m ~∇θ(~x)

which describes the irrotational, non-dissipative flow of the
superfluid component

• to probe the superfluid content of a system we impose a
linear phase variation by means of twisted boundary condi-
tions or phase factors in the hopping term

a†i+1ai → e−iΘ/I a†i+1ai

• the energy change EΘ − E0 caused by the imposed phase
variation is for small twist angles Θ identical to the kinetic
energy of the superflow Ts =

1
2 mN fsv2

s

• by computing the ground state energies of the twisted and
the non-twisted Hamiltonian we can determine the super-
fluid fraction [3]

fs =
I2

N
EΘ − E0

JΘ2

• alternatively we can calculate the energy difference in sec-
ond order perturbation theory (analogous Drude weight)

fs = f (1)
s − f (2)

s =
1

NJ

(

−
1
2
〈Ψ0|T |Ψ0〉 −

∑

ν,0

|〈Ψν| J |Ψ0〉|
2

Eν − E0

)

T = −J
∑I

i=1(a†i+1ai + h.a.) , J = iJ
∑I

i=1(a†i+1ai − h.a.)

Superfluid to Mott-Insulator Transition (N/I = 1)
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• the repulsive two-body interaction drives a quantum
phase transition from a superfluid phase at small
V/J to the Mott-insulator at large V/J

• exact Monte Carlo calculations and strong coupling
expansions predict the transition at (V/J)crit = 4.65
for a 1D system with filling N/I = 1 [5]

• the order parameter for this transition is the super-
fluid fraction fs which, in an infinite lattice, vanishes
above (V/J)crit

• our exact calculations show that the vanishing of fs
in the insulator phase is due to a cancellation of

a) the first order contribution f (1)
s which depends

only on the ground state and still has a substan-
tial size in the insulating phase

b) the second order term f (2)
s , which involves the

full excitation spectrum, exhibits a threshold-like
increase around (V/J)crit

ä properties of the excitation spectrum are crucial for
superfluidity and the Mott-insulator transition; hence
ground state observables cannot provide full infor-
mation on the phase transition

• number fluctuations and fringe visibility decrease
much slower than the superfluid fraction and do not
show a clear signature for the phase transition

• e.g. in the insulating phase where fs vanishes the
visibility can still be up to 75%

• however, the visibility measures the non-uniformity
of the quasi-momentum distribution; vanishing visi-
bility indicates uniform occupation of the band

Two-Color Lattices: Localization & Bose Glass

−∆

0

.

ε i
I = N = 8
∆/J = 40

• the superposition of two standing wave lat-
tices with different wavelengths generates a
superlattice with sinusoidal modulation of
the well depth, i.e., the on-site energies εi

• the interplay between interaction and “dis-
order” generates a rich phase diagram with
various insulating phases [4]:

localized phase: all particles at the deepest
well of each unit cell; in the presence of
weak interactions a few sites are populated;
large number fluctuations

Bose glass: integer occupation with sudden
rearrangements between different distribu-
tions; small number fluctuations except near
rearrangements; disordered Mott insulator

Mott insulator: despite non-uniform on-site
energies a Mott insulator with an uniform
population appears for V > ∆

• superfluidity is destroyed by both interaction
and disorder; however, their competition can
also restore superfluidity

ä again: the fringe contrast is not suitable as
a measure for the superfluid properties

ä but: the interference pattern and the varia-
tions in the visibility can be used to distin-
guish the various insulating phases experi-
mentally
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