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Why Effective Interactions?

The Problem: Short-Range Correlations

Interaction

many realistic two-body
interactions show a strong
short-range repulsion

(e.g. nucleon-nucleon & van der
Waals interactions)
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Correlations

core induces strong
short-range correlations
in many-body state

(e.g. correlation hole in
two-body density)
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nuclear matter

liquid “He (bosonic)

po = 0.17fm ™3
po = 0.022 A3

Product States

short-range correlations
cannot be described by
product-type states

(e.g. mean-field, superposition
of few product states,...)
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Why Effective Interactions?
The Problem: Short-Range Correlations

Interaction Correlations Product States
many realistic two-body core induces strong short-range correlations
interactions show a strong short-range correlations cannot be described by
short-range repulsion in many-body state product-type states
(e.g. nucleon-nucleon & van der (e.g. correlation hole in (e.g. mean-field, superposition
Waals interactions) two-body density) of few product states,...)
Effective Interaction Correlated States
replace the full potential by a include correlations in many-body
tamed effective interaction model-space

Unitary Correlation Operator Method
UCOM
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P
L. Basic Elements of the

- c v Unitary Correlation

A-cnc  Operator Method

e Correlation Operator
e Correlated States & Effective Interaction

e Two-Body Approximation

e Many-Body Correlations



Concept of the
Unitary Correlation Operator Method

Correlation Operator

Short-range correlations are represented by a
state-independent unitary correlation operator C that
describes a radial distance-dependent shift in the
relative coordinate of the two-body system.

C =exp[—iG| =exp [— iZgij}
ot =@ i ) <7 s(r) ~ shift
clc=1 g=3[s(r) Eq+qZLs(r) distance
Correlated States Correlated Operators
%) =C [v) 0=cfoc

(¥]O]¢") = (p|CT O C ') = (¥| O |¢")
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Two-Body System
Correlated Wave Function

Correlated Wave Function Correlation Function R (r)
e correlator acts only on the relative part of the e metric factor and inverse transformation
two-body wave function R
il o R (r) = ), [ )
(X, 7] C ) = (X[®em) (7| C ) s
. . . Ryi[R=(r)] =7
e norm-conserving coordinate transformation
~ = e connection with s(7)
(F] C |¢) =R_(r) (R—(7)E|#) Ra) gz
, o, +1= —
(710" [6) = R+ () (R (PZ]9) L

0 2 4 6 8 10
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Two-Body System
Optimal Correlation Function — One Way

Exact Two-Body Solution Optimal Correlator
e take full two-body interaction, e solve implicit integral equation
e.g. Lennard-Jones potential by iteration
e calculate exact £ = 0 solution the optimal <§\¢0>2

Ri(r) =3 [dg ¢

0

for rel. wave function <r|gbex> correlator should
map the short range
part of a given trial

state onto the exact N /5
two-body solution RY(r) =7+ a(r/B)" exp(—e"")

<R+(£)|¢GX>2

e construct a suitable trial state
<7“ ‘ qb0> with correct long-range
behavior but without
correlations

' [A]
(r| C|go) = (r|¢ex)

forr < \

e parameterize short range part

|
I

1.5
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Many-Body System
Correlated Operators & Cluster Expansion

Cluster
Decomposition

Cluster Expansion Principle

decompose the correlated operator into
a sum of irreducible k-body operators

H=CHCc=HY+H? + 75 +...

if the range of correlations is small compared
to the average distance between the particles
then higher cluster orders are negligible

Smallness Parameter Ve =/d3r[<r} C1) — (r[1)]?
w=pVo = [@®r (R ()~ 11
k<1 k<K 1

Two-Body Three-Body
Approximation Approximation

HC? = gY + g H 3= g + g® + g

Efttective Corrections

e.g. density-dependent
correlation functions

in HE?
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Local Potentials
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v(r) = v[R+(r)]

Two-Body Approximation
Correlated Hamiltonian & Effective Interaction

1<J

- 1 R (r)
u(r) = 2
() 2,uR’+2(7’)< rR' (r)
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Eftective Mass Corrections

6
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Two-Body Scattering Problem
Properties of the Effective Interaction

H ’¢%X> =k, ‘¢ZX>
C'HCC' |¢) = E,, CT |[p2)

~~ ~~ —
Ho i) =B o)

6 (1)

0 5 10 15

the eigenstates of the original Hamiltonian H and
the correlated Hamiltonian H = CTHC are
connected by the unitary transformation

[vi) = Clent)

consider the two-body scattering problem for the
original H and the correlated Hamiltonian H

the scattering solutions for a given energy differ
only within the range of the correlator, i.e. all
asymptotic properties are equal

effective interaction and original potential are
phase-shift equivalent by construction!

tool to generate systematically a class of infinitely
many phase-shift equivalent interactions
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Many-Body System
Generalized Coordinate Transformation

Two-Body Correlations — Revisited
e the correlator acts like a norm conserving coordinate transformation
(7, X[9) = R-(r) (R—()E|$)( X[ @em)
e rewrite the transformation in terms of the one-body coordinates

(Z1,2:|9) = X_(Z1, %) (X] (#1,52), X5 (T1, T) |[)

Xl_(fl,fg) = 1 F &_<7?12)
X5 (B1,82) = A_(fa) + &
A_(F) = L[R_(r) —r)E X_(Z1,Z>) = Jacobian of X,

Three-Body Correlations

e define a correlated three-body wave function in an analogous way

<fl,fzaf3w> = X_(Z1, %2, T3) X

X (X1 (Z1, @2, T3), X5 (F1, T2, T3), X5 (&1, T2, T3)|9))

e simplest generalization of the two-body transformation that obeys the
cluster decomposition principle
X[ (&1,%,8) = Z1  + A_(f)

)

A (713
A_(Fa3)

—

+
)22_(51752753) = A_(’FQl) + To s
+ I3

)25(5:’1,53’2,5:’3) = 5_(?731) + 5—(7?32)

X question: formal link to the correlation operator in three-body system
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Dense Bosonic Matter:

\

Helium-4 Liquid &
fé' Small Droplets

e Equation of State
e Two- & Three-Body Approximation

e Density-Dependent Correlators

e Energies & Radii of Small Droplets



Unitary Correlation Operator Method

A Simple Model For Liquid *He

looking for the equation of state €(p) for
a homogeneous liquid of *He at 7' = 0K

Interaction

v(r) =4e [(o/r)"* = (a/r)°]

o=2556A, €=10.22K

Optimal Correlator

e parameters determined by mapping of
the exact ¥ = 0 two-body solution

Ri(r)=r+a (%)" exp(— explr/ )

a = 6.267A, B = 3.520A, n = 0.052

Uncorrelated State

e direct product of NV identical constant
one-body states

7

~

N states

(2w, 1) = 1/VV

I’CIC2 ﬁcs

correlated
Hamiltonian in
two- or three-body
approximation

502( ;{73(

), €7°(p)

energy per particle
in two- and
three-body
approximation
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‘He Liquid
Equation of State in Two-Body and Three-Body Approx.

e (p) =0 (p) +ull(p) = Ca p KT, T ]

o 10| .
5 (p) = £ / 37 5(r) _

5 - -
v/ core is tamed completely; overall attraction I
X two-body approx. by construction not able to 0 _

describe saturation in homogeneous Bose liquid sl _

X interesting region far beyond smallness-limit i .

10k i

I =3 |

e (p) = E7%(p) + 0N (p) + ul(p) = Ca p + C5 p? ASE L NG

9 0 0.01 0.02 0.03
oPl(p) = % /d37“12 d®ri3 0Pl (719, 713) p [A77]

v three-body approximation is able to describe
saturation better look for an

effective description of

X correlator has to be optimized in three-body D Tt Y

approximation; genuine three-body correlations

X how about four-body, five-body...?
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Beyond Two-Body Approximation
Density-Dependent Correlators

simulate the effects of
e higher orders of the cluster expansion
e genuine many-body correlations

by an effective density-dependent correlator

that is used in two-body approximation .
density-dependent

effective interaction

e two-body approximation may shift e three-body correlations will prevent

a particle pair into the core of a from a shift into the core of a “third
neighboring “third particle” particle”
e oo
.- "
! \
~ - ’«‘ - ’ ol ’V‘ -
: | A
R (r) R (r,p)

|

T T T T ]

R+<T, p) —-r

e reduce the range /3 and the shift-distance  [A]
« of the correlator linear with density

E(p)=1—7p

1.5¢

p increases

Ri(r,p) =7+ ak(p) (#@))ﬁ H[#(p)]

e fix v by experimental results or “exact” ol | . .
many-body calculations o 2 4 6 8
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‘He Liquid
Equation of State with Density-Dependent Correlators

£9% (p) = 0P (p) + ) (p) K]f
-5.5
W) = 4 [a*r 3(r.p) |

» the parameter ~y of the density-dependence is
chosen such that [K][ - T

~C2p ref\ __ _ref
€ (psat) - gsat 10 -7

ol = 0.0219A7° el = _6.58K

v/ density-dependent correlator gives saturation at
the right point

psa = 0.0212A73 fat = —6.86K

v/ one free parameter enables to reproduce the
position of the minimum and the shape of €(p)

~

1 I
¢/ contains the relevant physics of many-body 0 0.01 0.02 0.03
correlations in a very efficient way p [A77]
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Unitary Correlation Operator Method

Small Droplets of *He

calculate binding energies and
radii of small droplets (N = 3, ..., 70) of
‘HeatT = 0K

Interaction

v(r) =4e [(o/r)"* = (a/7)°]

o=2556A, €=10.22K

Correlator (Density-Dep.)

e determined by mapping of the exact

E = 0 two-body solution
r

Ry (r) =+ (5] exp(=explr/)

a = 6.267A, B = 3.520A, n = 0.052

e density dependence fixed for the
homogeneous liquid

Ep)=1—7p
v = 3.696 A3

Uncorrelated State

e Gaussian one-body trial state with
variable width a

=2

(2, 1) = o exp — =)

(wa)3/4 2a

i_VI C?2 ﬁ C2p
correlated
Hamiltonian in
two-body approx.

without and with
dens-dep.

é‘CQ é:CQp

9

energy per particle
in two-body
approx. without
and with dens-dep.
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1He Droplets
Minimization in Two-Body Approximation

o ) [K][T | | | | | | |
minimization of the correlated energy expectation Oke -
value in two-body approximation I q

1 ~ ~ ~ ~ 021 o -
29 = (T + VP + TP 4 T+ T)
*
0.4+ L -

: : .
unitary correlator is able to tame the core and I =C2
describe the extremely weak bound “He-droplets 0.6 . 7
binding energies for N < 6 are in very good 08k e |
agreement with VMC calculations (A] 1

’7 - —
for N > 6 overbinding occurs; simultaneously the
smallness parameter exceeds the limit x = 0.3 61 =C2 -
‘ rms
rms-radii are systematically too low; for small .
particle numbers caused by Gaussian trial state; for S o T """ MR
higher particle number consequence of overbinding 0.6F" | | | | | | ]
.
k < 0.3: two-body approximation gives good results 0.4+ K ‘» -
x > 0.3: many-body correlations become important; 02F ‘0 -
include three-body contributions or use e
density-dependent correlators ot o+ v v
3 4 5 6__7 8 9 10
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1He Droplets
Minimization with Density-Dependent Correlator

e minimization of the correlated energy expectation [K(]) _l\ S -
value in two-body approximation with density- R W
dependent correlator 02k ¢ _
~ ~ ~ ~ I ‘.
N gC2r 0
e correlator and effective interaction are completely 0.6 » .
fixed by two-body system and homogeneous liquid, - T8
1.e. there is no free parameter 08, 4 4 44T
[ A] | | | | | | | |
’7 — —
¢ density-dependent correlator reproduces the binding o
energy with high accuracy 6re T'rms 7
_ &
¢ rms-radii are qualitatively right; underestimation for sk M i
small droplets is due to the Gaussian trial state 0 S O W N—
» calculations have full predictive power and can be [
done for any droplet size 04r Kp ‘—
» even better accuracy could be achieved with 0.2 ,” ¢ -
improved trial states ) o *
| | | | | | L
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Dense Fermionic Matter:
Bethe’s Homework
Problem

e Equation of State for Neutron Matter

e Density-Dependent Correlators

e Correlated Densities and Occupation Numbers



Unitary Correlation Operator Method
Interacting Fermi Liquid

looking for the equation of state £(p)
and densities/occupation numbers for a
homogeneous Fermi liquid at 7' = 0K

Interaction — Homework Problem

e neutron matter (A = 2) interacting via the repulsive
core of the 1Sy component of the Reid potential

v(r) = 9263.1 MeV fm exp(—4.9fm™" r)/r

Correlator

e mapping onto an exact two-body solution works only
if there is some attraction

HC2
e energy minimization for the two-body system with FC3
constrained range parameter 3 FLC20

e energy minimization in the many-body system without
constraint

Uncorrelated State

e one-body states with momentum k; and spin-isospin
quantum number m; = 1, ..., A ~C

3} = [ks) ® |ms)
e antisymmetrized product of all NV one-body states with
kil < kr
4. N) = A(|i) ®--- @ |in))
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Interacting Fermi Liquid

Structure of the Equation of State

Two-Body Approximation

~ 3 9
~C2 _ 1 C2 to=-—E%F
e = N<H > "7 1om F
— o121 o 2l 4 32
tO + v + U + tV—I—T’ ~[2] ~[2] A 3 3 [~ ~
v Ut = o3 kr [d°r [0(r) 4+ @(r)] + xch.
e direct terms of orders k%, k% and k2, m
° posmb.le to describe saturation for attractive %‘[VQ]_{_T _ A : kS / & | 1 n Nl + xch.
potentials because of the effective mass 807 v (r) 3 (r)

contributions (~ k%)

Three-Body Approximation

~ ~ ~ _ _ 2
gU3x — %<H02 + VB4 U[3]> B bl = 3163 k%/d37“12 d’riz x
— zC2 4 #3] 4 7l3] 3]/ = B> =
=g " +vT Fu X [U[?’] (712, T13) + ! (712, 7“13)} + xch.
e additional direct term of order kY. from local
three-body potentials

e non-local three-body terms neglected (~ k%)
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Homework-Problem

Energy in Two-Body Approximation

kr [fm™']

202 — g 13 4 g2 4 72 4 7 [MeV]rT T /7
, 300} .
e parameters of the optimal correlator
determined by minimization of £°2(p)
for p = 1fm—3 200

v energy is reduced by 1/3 compared to the 100
uncorrelated expectation value

v/ good agreement with sophisticated many-
body methods for low densities (k < 0.3)

X underestimates energies systematically for
high densities

» higher orders of the cluster expansion
necessary to describe behavior for high
densities
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Homework-Problem

Energy in Three-Body Approximation

kr [fm™']
~ ~ 01 1.5 2

gU3 =02 4 ik + a3l [MeV]fmT 1 ' T
non-local three-body terms neglected 300 ]
“optimal” correlator determined by
minimization of €92 (p) for p = 1fm~—3 200 -

o Heo

only small three-body contribution for low 100
densities (x < 0.3)
very good agreement with the reference for ok

0 o 0,0 ] 1 | ) )
low and intermediate densities 0 01 02
energies systematically too high for high 1000
densities
optimization of the correlator parameters by 500
minimization of the energy in three-body
approximation 0

R. Roth - 09/2000



Homework-Problem

Energy with Density-Dependent Correlator

5C2% — 4 e L gl o ﬁé]ﬁr

density-dependent scaling of the correlator

parameters « and 3
a— af(p)
B — BE(p)

parameter v chosen such that the energy for
p = 1.0fm~3 matches the VMC result

E(p) =1—p'/?

energies are in very good agreement with
the reference for all densities

one tunable parameter fixed at one selected
density allows to describe the energies over
a large density range

again: density-dependent correlators contain
the relevant physics of many-body
correlations

[MeV]F

300

200

100

kr [fm™']
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Homework-Problem

Correlated Two-Body Density

[,02] L ' | ' | ' | ' ]

o) =2 |1 (2] 1

]CFT

par) =R2(r) p@[R_(r)]

correlator generates a large correlation hole
in the two-body density

strength is shifted out of the core-region
and leads to enhanced densities at
intermediate radii

static correlator: size of the correlation
hole grows with density compared to the
average particle distance

density-dependence reduces the growth and
leads to a nearly constant ratio of hole size
to particle distance
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Homework-Problem
Correlated Momentum-Space Occupation Numbers

n(k) =XO(krp — k) L B e —

n%(k) = n(k) + 02 (k)

0.1
due to short-range correlations states
outside the Fermi sphere are populated 0.01
states inside the Fermi sphere are
de-populated; total particle number is 0.001
conserved

two-body approximation with static
correlator leads to pathological momentum
tails and negative occupation numbers for
intermediate and high densities

-
—_
|
]
A
I
o
09)
3

density-dep. correlator cures this problem 0.0LF

and gives reasonable momentum tails

density distributions are much more 0.001F

sensitive to failures of the two-body
approximation than energies k [kr]
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Gammel-Christian-Thaler Potential
UCOM versus Jastrow-Correlators

kr [fm™']

[MeVIp 15 175 20 225
[MeV]PTT T T 1T T T —
O i -
-200 -10
-400
20
-600h -
0
30
] ] ] ) ] ] ]
0 0.2 0.4 0.6 0.8 1
p [fm™?]
e spin-isospin-dependent hard-core potential ¢/ unitary correlator gives saturation in

. .. : two-body approximation
e optimal global/spin-isospin-dependent

correlators fixed by minimization of the X Jastrow correlation functions need
nuclear-matter energy for p = 0.6 fm 3 three-body contributions to get saturation
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Results

UCOM for Dense Quantum Liquids
Summary

e developed the Unitary Correlation Operator that describes
short-range correlations by a two-body coordinate
transformation

evaluated the correlated Hamiltonian in two- and three-body
approximation and correlated energies for the groundstate of
Bose and Fermi liquids

Strategy

e introduced density-dependent correlation functions

two-body approximation gives a good (ab initio) description
for low densities, i.e. kK = p Vo < 0.3

three-body contributions compensate the over-binding of the
two-body approximation at higher densities... but expensive

density-dependent correlators are an efficient way to describe
the effects of many-body correlations

reproduce the energy of the *He liquid with one adjustable
parameter and predict the groundstate structure of droplets

similar results for energy, densities and occupation numbers ...have a look at
for neutron (Homework) and nuclear (GCT-potential) matter http://theory.gsi.de/ rroth/phd
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