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The Problem: Short-Range Correlations
Why Effective Interactions?

Interaction
many realistic two-body

interactions show a strong
short-range repulsion

(e.g. nucleon-nucleon & van der
Waals interactions)

Correlations
core induces strong

short-range correlations
in many-body state
(e.g. correlation hole in

two-body density)

Product States
short-range correlations
cannot be described by

product-type states
(e.g. mean-field, superposition

of few product states,...)
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nuclear matter ρ0 = 0.17 fm−3

liquid 4He (bosonic) ρ0 = 0.022 Å−3
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The Problem: Short-Range Correlations
Why Effective Interactions?

Interaction
many realistic two-body

interactions show a strong
short-range repulsion

(e.g. nucleon-nucleon & van der
Waals interactions)

Correlations
core induces strong

short-range correlations
in many-body state
(e.g. correlation hole in

two-body density)

Product States
short-range correlations
cannot be described by

product-type states
(e.g. mean-field, superposition

of few product states,...)

Effective Interaction
replace the full potential by a

tamed effective interaction

Correlated States
include correlations in many-body

model-space

Unitary Correlation Operator Method
UCOM
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Basic Elements of the

Unitary Correlation
Operator Method

• Correlation Operator

• Correlated States & Effective Interaction

• Two-Body Approximation

• Many-Body Correlations
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Unitary Correlation Operator Method
Concept of the

Correlation Operator
Short-range correlations are represented by a

state-independent unitary correlation operator C that
describes a radial distance-dependent shift in the

relative coordinate of the two-body system.

C = exp[−iG] = exp
[
− i

∑

i<j

gij

]

g = 1
2 [s(r) ~r

r
~q + ~q ~r

r
s(r)]

G† = G

C†C = 1
s(r) ∼ shift

distance

Correlated States
∣∣ψ̃

〉
= C

∣∣ψ
〉

Correlated Operators

Õ = C† O C

〈
ψ̃

∣∣O
∣∣ψ̃′

〉
=

〈
ψ

∣∣C† O C
∣∣ψ′

〉
=

〈
ψ

∣∣ Õ
∣∣ψ′

〉
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Correlated Wave Function
Two-Body System

Correlated Wave Function
• correlator acts only on the relative part of the

two-body wave function
〈
~X,~r

∣∣C
∣∣ψ

〉
=

〈
~X

∣∣Φcm
〉〈
~r
∣∣C

∣∣φ
〉

• norm-conserving coordinate transformation
〈
~r
∣∣ C

∣∣φ
〉

= R−(r)
〈
R−(~r)~r

r

∣∣φ
〉

〈
~r
∣∣C†

∣∣φ
〉

= R+(r)
〈
R+(~r)~r

r

∣∣φ
〉

Correlation Function R±(r)

• metric factor and inverse transformation

R±(r) =
R±(r)

r

√
R′

±(r)

R±[R∓(r)] = r

• connection with s(r)

±1 =

∫ R±(r)

r

dξ

s(ξ)
R±(r) ≈ r ± s(r)
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Optimal Correlation Function — One Way
Two-Body System

Exact Two-Body Solution

• take full two-body interaction,
e.g. Lennard-Jones potential

• calculate exact E = 0 solution
for rel. wave function

〈
r
∣∣φex

〉

• construct a suitable trial state〈
r
∣∣φ0

〉
with correct long-range

behavior but without
correlations
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the optimal
correlator should

map the short range
part of a given trial
state onto the exact
two-body solution

〈
r
∣∣C

∣∣φ0

〉 !
=

〈
r
∣∣φex

〉

for r < λ

Optimal Correlator

• solve implicit integral equation
by iteration

R3
+(r) = 3

r∫

0

dξ ξ2
〈
ξ
∣∣φ0

〉2

〈
R+(ξ)

∣∣φex
〉2

• parameterize short range part

Rpar
+ (r) = r + α(r/β)η exp(−er/β)
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Correlated Operators & Cluster Expansion
Many-Body System

Cluster
Decomposition

PrincipleCluster Expansion
decompose the correlated operator into
a sum of irreducible k-body operators

H̃ = C† H C = H̃[1] + H̃[2] + H̃[3] + · · ·

if the range of correlations is small compared
to the average distance between the particles

then higher cluster orders are negligible

Smallness Parameter
κ = ρ VC

VC =

∫
d3r

[〈
r
∣∣C

∣∣1
〉
−

〈
r
∣∣1

〉]2

=

∫
d3r [R+(r) − 1]2

κ� 1 κ�/ 1

Two-Body
Approximation

H̃
C2 = H̃

[1] + H̃
[2]

Three-Body
Approximation

H̃
C3= H̃

[1] + H̃
[2] + H̃

[3]

Effective Corrections
e.g. density-dependent
correlation functions

in H̃
C2
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Correlated Hamiltonian & Effective Interaction
Two-Body Approximation

H̃ = C† H C = H̃[1] + H̃[2] + H̃[3] + · · ·
C2
= T0 +

∑

i<j

[
ṽ(rij) + ũ(rij) + ~qij

1

2µ̃∇(rij)
~qij + ~qij

~rij

rij

1

2µ̃r(rij)

~rij

rij
~qij

]

Local Potentials

ṽ(r) = v[R+(r)]

ũ(r) =
1

2µR′
+

2(r)

(
2
R′′

+(r)

rR′
+(r)

−
5

4

R′′
+

2
(r)

R′
+

2(r)
+

1

2

R′′′
+ (r)

R′
+(r)

)
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ṽ(r)

0 2 4 6 8 10
r [Å]
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Effective Mass Corrections
µ

µ̃∇(r)
=

r2

R+
2(r)

− 1

µ
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=

1
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+
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Properties of the Effective Interaction
Two-Body Scattering Problem

H
∣∣ψex

n

〉
= En

∣∣ψex
n

〉

C†HC
︸ ︷︷ ︸

C†
∣∣ψex

n

〉
︸ ︷︷ ︸

= En C†
∣∣ψex

n

〉
︸ ︷︷ ︸

H̃
∣∣ψeff

n

〉
= En

∣∣ψeff
n

〉

I the eigenstates of the original Hamiltonian H and
the correlated Hamiltonian H̃ = C†HC are
connected by the unitary transformation

∣∣ψex
n

〉
= C

∣∣ψeff
n

〉

0 5 10 15
r [a.u.]

-1

0

1
rφex(r)

rφeff(r)

rφfree(r)

• consider the two-body scattering problem for the
original H and the correlated Hamiltonian H̃

• the scattering solutions for a given energy differ
only within the range of the correlator, i.e. all
asymptotic properties are equal

I effective interaction and original potential are
phase-shift equivalent by construction!

I tool to generate systematically a class of infinitely
many phase-shift equivalent interactions
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Generalized Coordinate Transformation
Many-Body System

Two-Body Correlations — Revisited

• the correlator acts like a norm conserving coordinate transformation
〈
~r, ~X

∣∣ψ̃
〉

= R−(r)
〈
R−(~r)~r

r

∣∣φ
〉〈
~X

∣∣Φcm
〉

• rewrite the transformation in terms of the one-body coordinates
〈
~x1, ~x2

∣∣ψ̃
〉

= X−(~x1, ~x2)
〈
~X−

1 (~x1, ~x2), ~X
−
2 (~x1, ~x2)

∣∣ψ
〉

~X−
1 (~x1, ~x2) = ~x1 + ~∆−(~r12)

~X−
2 (~x1, ~x2) = ~∆−(~r21) + ~x2

~∆−(~r) = 1
2
[R−(r) − r]~r

r
X−(~x1, ~x2) = Jacobian of ~X−

i

Three-Body Correlations

• define a correlated three-body wave function in an analogous way
〈
~x1, ~x2, ~x3

∣∣ψ̃
〉

:= X−(~x1, ~x2, ~x3) ×

×
〈
~X−

1 (~x1, ~x2, ~x3), ~X
−
2 (~x1, ~x2, ~x3), ~X

−
3 (~x1, ~x2, ~x3)

∣∣ψ
〉

• simplest generalization of the two-body transformation that obeys the
cluster decomposition principle

~X−
1 (~x1, ~x2, ~x3) = ~x1 + ~∆−(~r12) + ~∆−(~r13)

~X−
2 (~x1, ~x2, ~x3) = ~∆−(~r21) + ~x2 + ~∆−(~r23)

~X−
3 (~x1, ~x2, ~x3) = ~∆−(~r31) + ~∆−(~r32) + ~x3

8 question: formal link to the correlation operator in three-body system
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Dense Bosonic Matter:

Helium-4 Liquid &
Small Droplets

• Equation of State

• Two- & Three-Body Approximation

• Density-Dependent Correlators

• Energies & Radii of Small Droplets
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A Simple Model For Liquid 4He
Unitary Correlation Operator Method

looking for the equation of state ε(ρ) for
a homogeneous liquid of 4He at T = 0 K

Interaction

v(r) = 4ε
[
(σ/r)12 − (σ/r)6

]

σ = 2.556 Å , ε = 10.22 K

Optimal Correlator
• parameters determined by mapping of

the exact E = 0 two-body solution

R+(r) = r + α
( r
β

)η
exp(− exp[r/β])

α = 6.267Å, β = 3.520Å, η = 0.052

Uncorrelated State
• direct product of N identical constant

one-body states
∣∣ψ,N

〉
=

∣∣ψ, 1
〉
⊗ · · · ⊗

∣∣ψ, 1
〉

︸ ︷︷ ︸
N states

〈
~x
∣∣ψ, 1

〉
= 1/

√
V

H̃C2, H̃C3

correlated
Hamiltonian in

two- or three-body
approximation

ε̃C2(ρ), ε̃C3(ρ)

energy per particle
in two- and
three-body

approximation
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Equation of State in Two-Body and Three-Body Approx.
4He Liquid

ε̃C2(ρ) = ṽ[2](ρ) + ũ[2](ρ) = C2 ρ

ṽ[2](ρ) =
ρ

2

∫
d3r ṽ(r)

4 core is tamed completely; overall attraction

8 two-body approx. by construction not able to
describe saturation in homogeneous Bose liquid

8 interesting region far beyond smallness-limit

ε̃C3(ρ) = ε̃C2(ρ) + ṽ[3](ρ) + ũ[3](ρ) = C2 ρ+ C3 ρ
2

ṽ[3](ρ) =
ρ2

6

∫
d3r12 d3r13 ṽ[3](~r12, ~r13)

4 three-body approximation is able to describe
saturation

8 correlator has to be optimized in three-body
approximation; genuine three-body correlations

8 how about four-body, five-body...?
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ρ [Å−3]

-15

-10

-5

0

5

10

[K]

ε̃C2ṽ[2]
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effective description of

higher-order correlations
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Density-Dependent Correlators
Beyond Two-Body Approximation

simulate the effects of

• higher orders of the cluster expansion
• genuine many-body correlations

by an effective density-dependent correlator
that is used in two-body approximation

density-dependent
effective interaction

• two-body approximation may shift
a particle pair into the core of a
neighboring “third particle”

R+(r)

• three-body correlations will prevent
from a shift into the core of a “third
particle”

R+(r, ρ)

• reduce the range β and the shift-distance
α of the correlator linear with density

ξ(ρ) = 1 − γ ρ

R+(r, ρ) = r + αξ(ρ)
( r

βξ(ρ)

)η
H

[ r

βξ(ρ)

]

• fix γ by experimental results or “exact”
many-body calculations 0 2 4 6 8

r [Å]

0

0.5

1

1.5

[Å]

R+(r, ρ) − r

ρ increases
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Equation of State with Density-Dependent Correlators
4He Liquid

ε̃C2ρ(ρ) = ṽ[2]ρ(ρ) + ũ[2]ρ(ρ)

ṽ[2]ρ(ρ) =
ρ

2

∫
d3r ṽ(r, ρ)

I the parameter γ of the density-dependence is
chosen such that

ε̃C2ρ(ρref
sat) = εref

sat

ρref
sat = 0.0219Å−3 εref

sat = −6.58K

4 density-dependent correlator gives saturation at
the right point

ρsat = 0.0212Å−3 εsat = −6.86K

4 one free parameter enables to reproduce the
position of the minimum and the shape of ε(ρ)

4 contains the relevant physics of many-body
correlations in a very efficient way
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Small Droplets of 4He
Unitary Correlation Operator Method

calculate binding energies and
radii of small droplets (N = 3, ..., 70) of

4He at T = 0 K

Interaction

v(r) = 4ε
[
(σ/r)12 − (σ/r)6

]

σ = 2.556 Å , ε = 10.22 K

Correlator (Density-Dep.)
• determined by mapping of the exact
E = 0 two-body solution

R+(r) = r + α
( r
β

)η
exp(− exp[r/β])

α = 6.267Å, β = 3.520Å, η = 0.052

• density dependence fixed for the
homogeneous liquid

ξ(ρ) = 1 − γ ρ

γ = 3.696 Å3

Uncorrelated State
• Gaussian one-body trial state with

variable width a
∣∣ψ,N

〉
=

∣∣ψ, 1
〉
⊗ · · · ⊗

∣∣ψ, 1
〉

〈
~x
∣∣ψ, 1

〉
=

1

(πa)3/4
exp

(
− ~x2

2a

)

H̃C2, H̃C2ρ

correlated
Hamiltonian in

two-body approx.
without and with

dens-dep.

ε̃C2, ε̃C2ρ

energy per particle
in two-body

approx. without
and with dens-dep.
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Minimization in Two-Body Approximation
4He Droplets

• minimization of the correlated energy expectation
value in two-body approximation

ε̃C2 =
1

N

〈
Tint + Ṽ[2] + Ũ[2] + T̃

[2]
∇ + T̃[2]

r

〉

4 unitary correlator is able to tame the core and
describe the extremely weak bound 4He-droplets

4 binding energies for N ≤ 6 are in very good
agreement with VMC calculations

8 for N > 6 overbinding occurs; simultaneously the
smallness parameter exceeds the limit κ = 0.3

8 rms-radii are systematically too low; for small
particle numbers caused by Gaussian trial state; for
higher particle number consequence of overbinding

I κ < 0.3: two-body approximation gives good results

I κ > 0.3: many-body correlations become important;
include three-body contributions or use
density-dependent correlators
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Minimization with Density-Dependent Correlator
4He Droplets

• minimization of the correlated energy expectation
value in two-body approximation with density-
dependent correlator

ε̃C2ρ =
1

N

〈
Tint + Ṽ[2]ρ + Ũ[2]ρ + T̃

[2]ρ
∇ + T̃[2]ρ

r

〉

• correlator and effective interaction are completely
fixed by two-body system and homogeneous liquid,
i.e. there is no free parameter

4 density-dependent correlator reproduces the binding
energy with high accuracy

4 rms-radii are qualitatively right; underestimation for
small droplets is due to the Gaussian trial state

I calculations have full predictive power and can be
done for any droplet size

I even better accuracy could be achieved with
improved trial states
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Dense Fermionic Matter:

Bethe’s Homework
Problem

• Equation of State for Neutron Matter

• Density-Dependent Correlators

• Correlated Densities and Occupation Numbers

20
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Interacting Fermi Liquid
Unitary Correlation Operator Method

looking for the equation of state ε(ρ)
and densities/occupation numbers for a
homogeneous Fermi liquid at T = 0 K

Interaction — Homework Problem
• neutron matter (λ = 2) interacting via the repulsive

core of the 1S0 component of the Reid potential

v(r) = 9263.1 MeV fm exp(−4.9 fm−1 r)/r

Correlator
• mapping onto an exact two-body solution works only

if there is some attraction

• energy minimization for the two-body system with
constrained range parameter β

• energy minimization in the many-body system without
constraint

Uncorrelated State

• one-body states with momentum ~ki and spin-isospin
quantum number mi = 1, ..., λ∣∣i

〉
=

∣∣~ki

〉
⊗

∣∣mi

〉

• antisymmetrized product of all N one-body states with
|~ki| ≤ kF∣∣ψ,N

〉
= A

( ∣∣i1
〉
⊗ · · · ⊗

∣∣iN
〉)

H̃C2

H̃C3

H̃C2ρ

ε̃C2(ρ)
ε̃C3(ρ)
ε̃C2ρ(ρ)
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Structure of the Equation of State
Interacting Fermi Liquid

Two-Body Approximation

ε̃C2 = 1
N

〈
H̃C2

〉

= t0 + ṽ[2] + ũ[2] + t̃
[2]
∇+r

• direct terms of orders k2
F , k3

F and k5
F

• possible to describe saturation for attractive
potentials because of the effective mass
contributions (∼ k5

F )

Three-Body Approximation

ε̃C3? = 1
N

〈
H̃C2 + Ṽ[3] + Ũ[3]

〉

= ε̃C2 + ṽ[3] + ũ[3]

• additional direct term of order k6
F from local

three-body potentials

• non-local three-body terms neglected (∼ k8
F )

t0 =
3

10m
k2

F

ṽ[2] + ũ[2] =
λ

12π2
k3

F

∫
d3r

[
ṽ(r) + ũ(r)

]
+ xch.

t̃
[2]
∇+r =

λ

80π2
k5

F

∫
d3r

[
1

µ̃∇(r)
+

1

3µ̃r(r)

]
+ xch.

ṽ[3] + ũ[3] =
λ2

216π4
k6

F

∫
d3r12 d3r13 ×

×
[
ṽ[3](~r12, ~r13) + ũ[3](~r12, ~r13)

]
+ xch.

ρ =
λ

6π2
k3

F
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Energy in Two-Body Approximation
Homework-Problem

ε̃C2 = t0 + ṽ[2] + ũ[2] + t̃
[2]
∇ + t̃[2]r

• parameters of the optimal correlator
determined by minimization of ε̃C2(ρ)
for ρ = 1fm−3

4 energy is reduced by 1/3 compared to the
uncorrelated expectation value

4 good agreement with sophisticated many-
body methods for low densities (κ < 0.3)

8 underestimates energies systematically for
high densities

I higher orders of the cluster expansion
necessary to describe behavior for high
densities

0 0.5 1 1.5 2
ρ [fm−3]

0 2 2.5 3 3.5

0

500

1000

1500

2000

[MeV]

ε̃C2

0 0.1 0.2 0.3 0.4 0.5

0 1 1.5 2
kF [fm−1]

0

100

200

300

[MeV]
κ = 0.3

ε̃C2

�
FH

N
C

[P
R

A
16

(1
97

7)
12

58
]

�
FH

N
C

[P
L

61
B

(1
97

6)
39

3]
l

V
M

C
[P

R
D

16
(1

97
7)

30
81

]

23



R. Roth - 09/2000

Energy in Three-Body Approximation
Homework-Problem

ε̃C3? = ε̃C2 + ṽ[3] + ũ[3]

• non-local three-body terms neglected

• “optimal” correlator determined by
minimization of ε̃C2(ρ) for ρ = 1fm−3

4 only small three-body contribution for low
densities (κ < 0.3)

4 very good agreement with the reference for
low and intermediate densities

8 energies systematically too high for high
densities

I optimization of the correlator parameters by
minimization of the energy in three-body
approximation
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Energy with Density-Dependent Correlator
Homework-Problem

ε̃C2ρ = t0 + ṽ[2]ρ + ũ[2]ρ + t̃
[2]ρ
∇+r

• density-dependent scaling of the correlator
parameters α and β

α→ αξ(ρ)

β → βξ(ρ)
; ξ(ρ) = 1 − γρ1/3

• parameter γ chosen such that the energy for
ρ = 1.0fm−3 matches the VMC result

4 energies are in very good agreement with
the reference for all densities

I one tunable parameter fixed at one selected
density allows to describe the energies over
a large density range

I again: density-dependent correlators contain
the relevant physics of many-body
correlations 0 0.5 1 1.5 2
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Correlated Two-Body Density
Homework-Problem

ρ(2)(r) = ρ2

[
1 − 9

λ

(j1(kF r)

kF r

)2
]

ρ̃
(2)
C2(r) = R2

−(r) ρ(2)[R−(r)]

4 correlator generates a large correlation hole
in the two-body density

4 strength is shifted out of the core-region
and leads to enhanced densities at
intermediate radii

8 static correlator: size of the correlation
hole grows with density compared to the
average particle distance

I density-dependence reduces the growth and
leads to a nearly constant ratio of hole size
to particle distance
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Correlated Momentum-Space Occupation Numbers
Homework-Problem

n(k) = λΘ(kF − k)

ñC2(k) = n(k) + ñ[2](k)

4 due to short-range correlations states
outside the Fermi sphere are populated

4 states inside the Fermi sphere are
de-populated; total particle number is
conserved

8 two-body approximation with static
correlator leads to pathological momentum
tails and negative occupation numbers for
intermediate and high densities

I density-dep. correlator cures this problem
and gives reasonable momentum tails

I density distributions are much more
sensitive to failures of the two-body
approximation than energies
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UCOM versus Jastrow-Correlators
Gammel-Christian-Thaler Potential
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• spin-isospin-dependent hard-core potential

• optimal global/spin-isospin-dependent
correlators fixed by minimization of the
nuclear-matter energy for ρ = 0.6 fm−3
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4 unitary correlator gives saturation in
two-body approximation

8 Jastrow correlation functions need
three-body contributions to get saturation
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Summary
UCOM for Dense Quantum Liquids

St
ra

te
gy

• developed the Unitary Correlation Operator that describes
short-range correlations by a two-body coordinate
transformation

• evaluated the correlated Hamiltonian in two- and three-body
approximation and correlated energies for the groundstate of
Bose and Fermi liquids

• introduced density-dependent correlation functions

R
es

ul
ts

• two-body approximation gives a good (ab initio) description
for low densities, i.e. κ = ρ VC < 0.3

• three-body contributions compensate the over-binding of the
two-body approximation at higher densities... but expensive

• density-dependent correlators are an efficient way to describe
the effects of many-body correlations

• reproduce the energy of the 4He liquid with one adjustable
parameter and predict the groundstate structure of droplets

• similar results for energy, densities and occupation numbers
for neutron (Homework) and nuclear (GCT-potential) matter

...have a look at
http://theory.gsi.de/˜rroth/phd
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