

Trupped Onnacona Permi Oases using Effective s- and p-Wave Contact Interactions

R. Roth and H. Feldmeier

Email: r.roth@gsi.de, URL: http://theory.gsi.de/~trap

Effective Contact Interaction

- · zero-range potential for each partial wave
- reproduces the exact two-body energy spectrum when applied in mean-field fashion
- energy-density for trapped multi component Fermi gases in Thomas-Fermi approximation including s- and p-wave interactions (T = 0 K)

Effective Contact Interaction (ECI)

- What is a proper effective interaction to describe properties of dilute ultracold quantum gases?
- system is dilute and cold $\rho^{-1/3} \gg$ interaction range $q^{-1} \gg$ interaction range
- · particles experience an average interaction and do not probe details of the potential
- · the many-body problem can be treated in a mean-field approach with an proper effective interaction instead of the full atom-atom potential

Concept of the ECI

- consists of a non-local zero-range interaction for each partial wave
- interaction strength is chosen such that the expectation value of the ECI in the two-body system (calculated with free angular-momentum eigenstates) equals the energy-shift induced by the full interaction

 $\langle nlm_l | \mathbf{v}^{\text{ECI}} | nlm_l \rangle \stackrel{!}{=} \Delta E_{nl}$

One Component — Stability

- · s-wave contact interaction does not contribute due to the Pauli principle; p-wave is the leading interaction term
- the groundstate densities [+ figure A] are obtained by point-wise solution of the extremum condition

$$m[\mu - U(\vec{x})] = \frac{1}{2}\kappa^2(\vec{x}) + \frac{8\frac{a_1}{1}}{15\pi}\kappa^5(\vec{x})$$

• for attractive p-wave interactions (a1 < 0) the r.h.s of the extremum condition exhibits a maximum at (Kerit, Herit) [+ figure B]

$$\begin{aligned} \kappa_{\rm crit} &= \frac{(3\pi)^{1/3}}{2|a_1|} \qquad \rho_{\rm crit} = \frac{1}{16\pi |a_1|^3} \\ \mu_{\rm crit} &= \frac{3(3\pi)^{3/2}}{40m |a_1|^2} \qquad N_{\rm crit} = \frac{(0.445 \, \ell)^6}{|a_1|^6} \\ \ell \cdot \text{mean oscillator length} \end{aligned}$$

 beyond the critical values the mean-field attraction is not stabilized by the kinetic energy contribution any more and the system collapses to a self-bound state

Two Components — p-Wave Stabilized High-Density Phase

- · given a system with attractive s-wave and repulsive p-wave interaction, such that $0.274 < \frac{a_1}{|a_0|} < 0.311$
- the r h s of the extremum condition shows two separated branches at low and high densities, respectively [+ figure E]
- for $[\mu U(\vec{x})] > \mu_{\text{trans}}$ the high-density solution is energetically favored otherwise the low-density solution is preferred (Maxwell construction)
- depending on the value of µ(N) the solution shows different density profiles $[\rightarrow figure F]$
 - (1) $\mu < \mu_{\text{trans}}$: smooth low density
 - $\mu_{as} < \mu < \mu_{crit}$: the energetically preferred 2 <u>1</u> configuration exhibits a region of high density in the center of the trap; the smooth low-density solution may occur as metastable state
 - (3) $\mu_{crit} < \mu$: no low-density solution exists for the central region of the trap; high-density phase must occur
- central density is increased by at least one order of magnitude; life-time is reduced significantly but may be still sufficient to observe the phenomenon

 $m[\mu - U(\vec{x})]$

 $\kappa [\ell^{-1}]$

30 40

 $\rho(x)$

60

55 3

50

45

40

 $[\ell^{-3}]$

600

400

200

0

35 L

2

2

1

3

4

 $x [\ell]$

E

F

 a_0/ℓ

-0.1

 a_1/ℓ

+0.03

Construction of the ECI

two particles interacting via a potential v(r)with phase shifts $\eta_l(q)$ for the *l*-th partial wave

One Component Fermi Gas

is suppressed by the Pauli principle

of p-wave scattering length

only p-wave interactions contribute, since s-wave

- impose a boundary condition $R_{nl}(\Lambda) = 0$ for the relative wave-function energy-shift ΔE_{nl} of the *n*-th positive energy
- state of the interacting spectrum \overline{E}_{nl} compared to the *n*-th level of the free spectrum E_{nl}

$$\frac{\Delta E_{nl}}{E_{nl}} = -\frac{2}{q_{nl}\Lambda} [\eta_l(q_{nl}) - \pi n_{\rm bs}]$$

$$\mathbf{v}_{l}^{\mathrm{ECI}} = \int \mathrm{d}^{3}r \; \left| \vec{r} \right\rangle \frac{\partial^{l}}{\partial r^{l}} \; g_{l} \; \frac{\delta(r)}{4\pi r^{2}} \; \frac{\partial^{l}}{\partial r^{l}} \left\langle \vec{r} \right\rangle$$

interaction strength g_l obtained from evaluation of the energy-shift condition (*)

$$g_{l} = -\frac{4\pi}{m} \left[\frac{(2l+1)!!}{l!} \right]^{2} \frac{[\eta_{l}(q) - \pi n_{\rm bs}]}{q^{2l+1}}$$

determines stability

Two Component Fermi Gas

· interplay between s- and p-wave interactions

novel effects like absolute stabilization due to

Energy-Density for Trapped Fermions

- assume a gas of Ξ different fermionic components at T = 0 K interacting via the s-wave and the p-wave part of the ECI
- · the energy-density of the inhomogeneous Fermi gas is calculated in a mean-field approach using the Thomas-Fermi approximation

One Component $\mathcal{E}[\kappa](\vec{x}) =$ $= \frac{1}{6\pi^2} U(\vec{x}) \kappa^3(\vec{x})$ \leftarrow trap \rightarrow $+\frac{1}{20\pi^2 m}\kappa^5(\vec{x})$ \leftarrow kinetic \rightarrow \leftarrow s-wave \rightarrow $+\frac{a_1^3}{30\pi^3m}\kappa^8(\vec{x})$ \leftarrow p-wave \rightarrow

 local Fermi momentum $E = \int d^3x \, \mathcal{E}[\kappa_1, ..., \kappa_{\Xi}](\vec{x})$ $\kappa_{\xi}(\vec{x}) = [6\pi^2 \rho_{\xi}(\vec{x})]^{1/3}$

Two Components — Stability

- · s-wave and p-wave terms of the ECI contribute, their interplay has a strong influence on the stability
- extremum condition under the assumption of equal $[\mu - U(\vec{x})]$ and equal $\kappa(\vec{x})$ for both components
- $m[\mu U(\vec{x})] = \frac{1}{2}\kappa^2(\vec{x}) + \frac{2a_0}{3\pi}\kappa^3(\vec{x}) + \frac{4a_1^3}{5\pi}\kappa^5(\vec{x})$
- metastable states exist only for densities below ρ_{crit} given by $[\rightarrow figure \ C]$
 - $-(6\pi^2)^{1/3} \frac{a_0}{a_0} \rho_{\rm crit}^{1/3} 12\pi^2 \frac{a_1^3}{a_1} \rho_{\rm crit} = \pi/2$
- the collapse can occur if the s-wave and/or the p-wave interaction is attractive
- · if one of the interactions is repulsive then it stabilizes the system, i.e., it increases the critical density
- a repusive p-wave interaction leads to an absolute stabilization ($\rho_{crit} \rightarrow \infty$) of the Fermi gas against s-wave induced collapse if $|a_1/|a_0| > 2/(3\pi^{2/3})$

assuming a harmonic trap with mean oscillator

length ℓ one obtains the particle number N_{crit} where the critical density is reached $[\rightarrow figure D]$

Two Components — Component Separation

- · for strong repulsive s-wave interactions it is energetically favorable to separate the two components spatially, i.e., $\kappa_1(\vec{x})\kappa_2(\vec{x}) \equiv 0$
- comparison of the energies of overlapping and separated configurations leads to a critical density ρ_{sep} beyond which the separated configuration is preferred $[\rightarrow figure G]$

$$2.01 \ a_0 \rho_{sep}^{1/3} - 24.9 \ a_1^3 \rho_{sep} = 1$$

- separation occurs for repulsive s-wave interactions only; p-wave repulsion alone does not lead to component separation
- repulsive p-wave interactions increase the critical density for separation and lead to an absolute stabilization ($\rho_{sep} \rightarrow \infty$) if

 $a_1/a_0 > 0.349$

attractive p-wave interactions lead to an interference with the collapse; the separated configuration collapses immediately if

$$|a_1|/a_0 > 0.394$$

 critical particle number N_{sen} for component separation can be obtained from ρ_{sep} for a harmonic trap with mean oscillator length $\ell \rightarrow figure H$]

Conclusions

· p-wave interaction can have significant influence on the structure and stability of ultracold singleand multi-component Fermi gases

> It is not appropriate to neglect the p-wave interaction from the outset!

- groundstate is described by the density that minimizes the energy under the constraint of given particle numbers N_e
- functional variation leads to the extremum condition that has to be solved for each point \vec{x}

 a_1/ℓ

+0.03

C

 a_0/ℓ

(*)