### Ab Initio Calculations of Nuclear Structure

### Lecture 4: Precision, Uncertainties,...

#### Robert Roth

Institut für Kernphysik - Theoriezentrum









### Overview

#### Lecture 1: Hamiltonian

Prelude • Many-Body Quantum Mechanics • Nuclear Hamiltonian • Matrix Elements • Two-Body Problem • Correlations & Unitary Transformations

#### Lecture 2: Light Nuclei

#### Lecture 3: Medium-Mass Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group • Many-Body Perturbation Theory

#### Project: Do-It-Yourself NCSM

Three-Body Problem 

• Numerical SRG Evolution 

• NCSM Eigenvalue Problem 

Lanczos Algorithm

#### Lecture 4: Precision, Uncertainties, and Applications

Chiral Interactions for Precision Calculations • Uncertainty Quantification • Applications to Nuclei and Hypernuclei

# Chiral Interactions for Precision Calculations

### A Brief History... Incomplete and Totally Biased

| 0 |  |
|---|--|
|   |  |
|   |  |
|   |  |
| 0 |  |
| Ē |  |
|   |  |
| G |  |
|   |  |
| s |  |
|   |  |
|   |  |

2<sup>nd</sup> Generation

**3rd Generation** 

- **2007:** first ab initio calculation of mid-p-shell nuclei with local chiral 3N interaction: N3LO<sub>EM</sub> + N2LO<sub>L,500</sub> PRL 99, 042501 (2007)
- 2012: SRG transformed NN+3N interactions and reduced 3N cutoffs for oxygen & calcium isotopes PRL 109, 052501 (2012)
- **2014:** overbinding beyond oxygen and catastrophic radii
- **2015:** combined fit of few and many-body observables to improve radii, sacrificing phase-shifts: N2LO<sub>SAT</sub> *PRC 91, 051301(R) (2015)*
- **2016:** magic interactions constructed from a SRG evolved NN interaction plus bare 3N parametrization PRC 83, 031301(R) (2011) PRC 93, 011302 (2016)
- 2016: systematic order-by-order calculations up to N3LO of neutron and nuclear matter PRC 94, 054307 (2016) PRL 122, 042501 (2019)
- **2019:** systematic order-by-order calculations up to N3LO in light and medium-mass nuclei...

PRC 96, 024004 (2017) arXiv:1911.04955 (2019)

PLB 736, 119 (2014)

## A Brief History... Incomplete and Totally Biased

| Antiquity | <b>2007:</b> first ab initio calculation of mid-p-shell nuclei with local chiral 3N interaction: N3LO <sub>EM</sub> + N2LO <sub>L,500</sub> PRL 99, 042501 (2007) |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <b>2012:</b> SRG transformed NN+3N interactions and reduced 3N cutoffs for oxygen & calcium isotopes PRL 109, 052501 (2012)                                       |
|           | 2014: overbinding beyond oxygen and catastrophic radii PLB 736, 119 (2014)                                                                                        |
| e Ages    | <b>2015:</b> combined fit of few and many-body observables to improve radii, sacrificing phase-shifts: N2LO <sub>SAT</sub> <i>PRC 91, 051301(R) (2015)</i>        |
| Middle    | <b>2016:</b> magic interactions constructed from a SRG evolved NN interaction plus bare 3N parametrization PRC 83, 031301(R) (2011) PRC 93, 011302 (2016)         |
| ssance    | <b>2016:</b> systematic order-by-order calculations up to N3LO of<br>neutron and nuclear matter PRC 94, 054307 (2016)<br>PRL 122, 042501 (2019)                   |
| Renai     | <b>2019:</b> systematic order-by-order calculations up to N3LO in<br>light and medium-mass nuclei PRC 96, 024004 (2017)<br>arXiv:1911.04955 (2019)                |

### Nuclear Interactions from Chiral EFT



### Medium-Mass Nuclei: Antiquity



### Nuclear Interactions from Chiral EFT



### Medium-Mass Nuclei: Renaissance



Hüther et al.; PLB 808, 135651 (2020)

9

## Let's Go Slowly...

Hüther et al.; PLB 808, 135651 (2020)

PRC 96, 024004 (2017)

#### start from chiral NN interaction by Entem, Machleidt & Nosyk

- LO to N3LO
- non-local regulator
- cutoff 450, 500, 550 MeV
- accurate reproduction of NN scattering data up to  $\sim$ 300 MeV

#### supplement non-local 3N interaction at N2LO and N3LO

- N2LO or N3LO, consistent with NN interaction
- non-local regulator, as in NN interaction
- cutoff 450, 500, 550 MeV, consistent with NN interaction

#### ■ fix *c*<sub>E</sub> in few-body sector, keep *c*<sub>D</sub> as a parameter

- *c*<sub>E</sub> fit to triton binding energy
- alternative: *c*<sub>E</sub> from combined fit to <sup>3</sup>H, <sup>4</sup>He energy and <sup>4</sup>He radius

### <sup>4</sup>He Ground State: *c*<sub>D</sub> Scan

Hüther et al.; PLB 808, 135651 (2020)



- Jacobi-NCSM calculations for <sup>3</sup>H and <sup>4</sup>He with bare interaction
- scanning  $c_D$  over large range,  $c_E$  always fit to <sup>3</sup>H binding energy

### <sup>4</sup>He Ground State: *c*<sub>D</sub> Scan

Hüther et al.; PLB 808, 135651 (2020)



- Jacobi-NCSM calculations for <sup>3</sup>H and <sup>4</sup>He with bare interaction
- scanning *c*<sub>D</sub> over large range, *c*<sub>E</sub> always fit to <sup>3</sup>H binding energy

### Medium-Mass Nuclei: c<sub>D</sub> Scan

Hüther et al.; PLB 808, 135651 (2020)



### Non-Local vs. Local 3N Regulator



### Uncertainties

### Ab Initio Nuclear Structure Theory

### $\mathsf{H} | \Psi_n \rangle = E_n | \Psi_n \rangle$

#### Hamiltonian

Chiral Effective Field Theory

#### **Pre-Conditioning**

Similarity Renormalization Group

#### **Many-Body Solution**

CI, NCSM, IM-SRG, CC, SCGF, MBPT...

each step involves truncations and induces uncertainties that have to be quantified...

...in order to claim the `ab initio' label

### Interaction Uncertainties

Hüther et al.; PLB 808, 135651 (2020)



### Interaction Uncertainties



Hüther et al.; PLB 808, 135651 (2020)

- quantify uncertainties from order-by-order systematics
- simplified protocol based on expansion parameter  $Q = q/\Lambda_{\rm B}$

 $\delta X_{\rm N3LO} = \max($  $Q |X_{N3LO} - X_{N2LO}|,$  $Q^2|X_{N2LO}-X_{NLO}|,$  $Q^4 |X_{NLO} - X_{LO}|,$  $Q^{5}|X_{LO}|$ 

PRC 98, 014002 (2018) PRC 93, 044002 (2016)



### Many-Body Uncertainties I



Hüther et al.; PLB 808, 135651 (2020)

- probing model-space truncations
- fully converged with respect to emax and *E*<sub>3max</sub> truncations

### Many-Body Uncertainties II



Hüther et al.; PLB 808, 135651 (2020)

### Medium-Mass Nuclei

Hüther et al.; PLB 808, 135651 (2020)



IM-SRG(M2), natural orbitals,  $\hbar\Omega = 20$  MeV,  $\alpha = 0.04$  fm<sup>4</sup>,  $e_{max} = 12$ ,  $E_{3max} = 16$ Robert Roth - TU Darmstadt - March 2021 error bands show interaction uncertainties

### Medium-Mass Nuclei

Hüther et al.; PLB 808, 135651 (2020)



IM-SRG(M2), natural orbitals,  $\hbar\Omega$ =20 MeV, a=0.04 fm<sup>4</sup>,  $e_{max}$ =12,  $E_{3max}$ =16 Robert Roth - TU Darmstadt - March 2021 error bands show interaction + many-body uncertainties

### Oxygen Isotopic Chain

Hüther et al.; PLB 808, 135651 (2020)



IM-NCSM, natural orbitals,  $\hbar\Omega$ =20 MeV, a=0.04 fm<sup>4</sup>,  $e_{max}$ =12,  $E_{3max}$ =14,  $N_{ref}$ =2 Robert Roth - TU Darmstadt - March 2021 error bands show interaction + many-body uncertainties

## p-Shell Spectra

Hüther et al.; PLB 808, 135651 (2020)



NCSM/IM-NCSM,  $\Lambda$ =500 MeV,  $\hbar\Omega$ =20 MeV error bands show interaction uncertainties

## Hypernuclei

$$N_{\rm f} = 2 \rightarrow N_{\rm f} = 3$$

### Ab Initio Hypernuclear Structure



- precise data on ground states & spectroscopy of hypernuclei
- ab initio few-body and phenomen. shell-model, mean-field or cluster-model calculations done so far
- chiral YN & YY interactions at (N)LO are available

time to transfer ab initio toolbox to hypernuclei

### Ab Initio Hypernuclear Structure



- Lattice QCD can be a game changer in hypernuclear physics
- extract YN & YY phase shifts from Lattice QCD, possibly also YNN
- compute light hypernuclei directly on the lattice

structure theory for consistency check and access to heavier hypernuclei

#### Hamiltonian from chiral EFT

- NN+3N: standard chiral Hamiltonian (Entem&Machleidt, Navrátil)
- YN: LO chiral interaction (Haidenbauer et al.), NLO in progress

#### Similarity Renormalization Group

- consistent SRG-evolution of NN, 3N, YN interactions
- using particle basis and including  $\Lambda\Sigma$ -coupling (larger matrices)
- $\Lambda$ - $\Sigma$  mass difference and  $p\Sigma^{\pm}$  Coulomb included consistently

#### Importance Truncated No-Core Shell Model

- include explicit  $(p, n, \Lambda, \Sigma^+, \Sigma^0, \Sigma^-)$  with physical masses
- larger model spaces easily tractable with importance truncation
- all p-shell single-Λ hypernuclei are accessible

## Application: $^{7}_{\Lambda}$ Li

Wirth et al.; PRL 113, 192502 (2014); PRL 117, 182501 (2016)



Robert Roth - TU Darmstadt - March 2021

## Application: $^{7}_{\Lambda}$ Li

Wirth et al.; PRL 113, 192502 (2014); PRL 117, 182501 (2016)



Robert Roth - TU Darmstadt - March 2021

## Light Neutron-Rich Hypernuclei

Wirth et al.; PLB 779, 336 (2018)



## Light Neutron-Rich Hypernuclei

Wirth et al.; PLB 779, 336 (2018)



Robert Roth - TU Darmstadt - March 2021

## Light Neutron-Rich Hypernuclei

Wirth et al.; PLB 779, 336 (2018)



### More Ab Initio...

#### Quantum Monte-Carlo Approches

- Variational Monte Carlo
- Green's Function Monte Carlo, Diffusion / Auxiliary Field Monte Carlo

#### Nuclear Lattice EFT

• chiral EFT meets Lattice QCD technology

#### Propagator Methods

• Self-Consistent (Gorkov) Green's Function

#### Nuclear and Neutron Matter

- Quantum Monte Carlo
- Many-Body Perturbation Theory

#### Coupling to Continuum

- Gamow basis and resonating group method
- bridge to reaction theory

#### ab initio theory is entering new territory...

#### QCD frontier

nuclear structure connected systematically to QCD via chiral EFT

#### precision frontier

precision spectroscopy of light nuclei, including current contributions

#### mass frontier

ab initio calculations up to heavy nuclei with quantified uncertainties

#### • **open-shell frontier** extend to medium-mass open-shell nuclei and their excitation spectrum

#### continuum frontier

include continuum effects and scattering observables consistently

strangeness frontier
 ab initio predictions for hyper-nuclear structure & spectroscopy

## ...providing a coherent theoretical framework for nuclear structure & reaction calculations

#### thanks to my group and my collaborators

- S. Alexa, T. Hüther, M. Knöll, D. Kromm, L. Mertes, T. Mongelli, J. Müller, M. Müller, K. Schröder, K. Vobig, C. Walde, L. Wagner, C. Wenz, T. Wolfgruber & K. Hebeler, A. Tichai Technische Universität Darmstadt
- T. Duguet & friends CEA Saclay
- P. Navrátil TRIUMF, Vancouver
- H. Hergert, R. Wirth NSCL / Michigan State University
- J. Vary, P. Maris Iowa State University
- E. Epelbaum, H. Krebs & the LENPIC Collaboration Universität Bochum, ...



Deutsche Forschungsgemeinschaft

DFG

#### Helmholtz Forschungsakademie Hessen für FAIR



Exzellente Forschung für Hessens Zukunft





Bundesministerium für Bildung und Forschung