Ab Initio Calculations of Nuclear Structure

Lecture 2: Light Nuclei

Robert Roth

Institut für Kernphysik - Theoriezentrum

TECHNISCHE UNIVERSITÄT
DARMSTADT

Overview

- Lecture 1: Hamiltonian

Prelude • Many-Body Quantum Mechanics • Nuclear Hamiltonian • Matrix Elements • Two-Body Problem • Correlations \& Unitary Transformations

- Lecture 2: Light Nuclei

Similarity Renormalization Group • Many-Body Problem • Configuration Interaction • No-Core Shell Model • Basis Optimization

- Lecture 3: Medium-Mass Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group • Many-Body Perturbation Theory

- Project: Do-It-Yourself NCSM

Three-Body Problem • Numerical SRG Evolution • NCSM Eigenvalue Problem • Lanczos Algorithm

- Lecture 4: Precision, Uncertainties, and Applications

Chiral Interactions for Precision Calculations • Uncertainty Quantification • Applications to Nuclei and Hypernuclei

Similarity Renormalization Group

Similarity Renormalization Group

continuous unitary transformation to pre-diagonalize the Hamiltonian with respect to a given basis

- start with an explicit unitary transformation of the Hamiltonian with a unitary operator U_{α} with continuous flow parameter α

$$
\mathrm{H}_{\alpha}=\mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha}
$$

- differentiate both sides with respect to flow parameter

$$
\begin{aligned}
\frac{d}{d \alpha} \mathrm{H}_{\alpha} & =\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}^{\dagger}\right) \mathrm{H} \mathrm{U}_{\alpha}+\mathrm{U}_{\alpha}^{\dagger} \mathrm{H}\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}\right) \\
& =\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}^{\dagger}\right) \mathrm{U}_{\alpha} \mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha}+\mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha} \mathrm{U}_{\alpha}^{\dagger}\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}\right) \\
& =\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}^{\dagger}\right) \mathrm{U}_{\alpha} \mathrm{H}_{\alpha}+\mathrm{H}_{\alpha} \mathrm{U}_{\alpha}^{\dagger}\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}\right)
\end{aligned}
$$

Similarity Renormalization Group

- define the antihermitian generator of the unitary transformation via

$$
\eta_{\alpha}=-\mathrm{U}_{\alpha}^{\dagger}\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}\right)=\left(\frac{d}{d \alpha} \mathrm{U}_{\alpha}^{\dagger}\right) \mathrm{U}_{\alpha}=-\eta_{\alpha}^{\dagger}
$$

where the antihermiticity follows explicitly from differentiating the unitarity condition $1=\mathrm{U}_{\alpha}{ }^{\dagger} \mathrm{U}_{\alpha}$

- we thus obtain for the derivative of the transformed Hamiltonian

$$
\begin{aligned}
\frac{d}{d \alpha} \mathrm{H}_{\alpha} & =\eta_{\alpha} \mathrm{H}_{\alpha}-\mathrm{H}_{\alpha} \eta_{\alpha} \\
& =\left[\eta_{\alpha}, \mathrm{H}_{\alpha}\right]
\end{aligned}
$$

thus, that change of the Hamiltonian as function of the flow parameter is governed by the commutator of the generator with the Hamiltonian

- this is the SRG flow equation, which has a close resemblance to the Heisenberg equation of motion

Similarity Renormalization Group

continuous unitary transformation to

 pre-diagonalize the Hamiltonian with respect to a given basis- consistent unitary transformation of Hamiltonian and observables

$$
\mathrm{H}_{\alpha}=\mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha} \quad \mathrm{O}_{\alpha}=\mathrm{U}_{\alpha}^{\dagger} \mathrm{O} \mathrm{U}_{\alpha}
$$

- flow equations for H_{α} and U_{α} with continuous flow parameter α

$$
\frac{d}{d \alpha} \mathrm{H}_{\alpha}=\left[\eta_{\alpha}, \mathrm{H}_{\alpha}\right] \quad \frac{d}{d \alpha} \mathrm{O}_{\alpha}=\left[\eta_{\alpha}, \mathrm{O}_{\alpha}\right] \quad \frac{d}{d \alpha} \mathrm{U}_{\alpha}=-\mathrm{U}_{\alpha} \eta_{\alpha}
$$

- the physics of the transformation is governed by the dynamic generator η_{α} and we choose an ansatz depending on the type of "pre-diaognalization" we want to achieve

SRG Generator \& Fixed Points

■ standard choice for antihermitian generator: commutator of intrinsic kinetic energy and the Hamiltonian

$$
\eta_{\alpha}=(2 \mu)^{2}\left[\mathrm{~T}_{\mathrm{int}}, \mathrm{H}_{\alpha}\right]
$$

- this generator vanishes if
- kinetic energy and Hamiltonian commute
- kinetic energy and Hamiltonian have a simultaneous eigenbasis
- the Hamiltonian is diagonal in the eigenbasis of the kinetic energy, i.e., in a momentum eigenbasis
- a vanishing generator implies a trivial fix point of the SRG flow equation - the r.h.s. of the flow equation vanishes and the Hamiltonian is stationary
- SRG flow drives the Hamiltonian towards the fixed point, i.e., towards the diagonal in momentum representation

Solving the SRG Flow Equation

- convert operator equations into a basis representation to obtain coupled evolution equations for \boldsymbol{n}-body matrix elements of the Hamiltonian

$$
\begin{array}{ll}
n=2: \text { two-body relative momentum } & |q(L S) J T\rangle \\
n=3: \text { antisym. three-body Jacobi HO } & \left|E i J^{\pi} T\right\rangle
\end{array}
$$

- matrix-evolution equations for $\mathrm{n}=3$ with antisym. three-body Jacobi HO states:

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} \alpha}\langle E i\rangle^{\pi} T \right\rvert\, & \mathrm{H}_{\alpha}\left|E^{\prime} i^{\prime} J^{\pi} T\right\rangle=(2 \mu)^{2} \sum_{E^{\prime \prime}, i^{\prime \prime}}^{E_{\text {SRG }}} \sum_{E^{\prime \prime \prime}, i^{\prime \prime \prime}}^{E_{\text {SRG }}}[\\
& \langle E i \ldots| \mathrm{T}_{\mathrm{int}}\left|E^{\prime \prime} i^{\prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime} i^{\prime \prime} \ldots\right| \mathrm{H}_{\alpha}\left|E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right| \mathrm{H}_{\alpha}\left|E^{\prime} i^{\prime} \ldots\right\rangle \\
- & 2\langle E i \ldots| \mathrm{H}_{\alpha}\left|E^{\prime \prime} i^{\prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime} i^{\prime \prime} \ldots\right| \mathrm{T}_{\text {int }}\left|E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right| \mathrm{H}_{\alpha}\left|E^{\prime} i^{\prime} \ldots\right\rangle \\
& \left.+\langle E i \ldots| \mathrm{H}_{\alpha}\left|E^{\prime \prime} i^{\prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime} i^{\prime \prime} \ldots\right| \mathrm{H}_{\alpha}\left|E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right\rangle\left\langle E^{\prime \prime \prime} i^{\prime \prime \prime} \ldots\right| \mathrm{T}_{\text {int }}\left|E^{\prime} i^{\prime} \ldots\right\rangle\right]
\end{aligned}
$$

■ note: when using n-body matrix elements, components of the evolved Hamiltonian with particle-rank > n are discarded

SRG Evolution in Two-Body Space

Argonne V18

$J^{\pi}=1^{+}, T=0$

SRG Evolution in Two-Body Space

SRG Evolution in Two-Body Space

chiral NN

Entem \& Machleidt. N3 LO, 500 MeV

$$
J^{\pi}=1^{+}, T=0
$$

deuteron wave-function

SRG Evolution in Two-Body Space

$$
\underset{\substack{\wedge=1.58 \mathrm{fm}^{-1}}}{\alpha=0.160 \mathrm{fm}^{4}}
$$

deuteron wave-function

SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

chiral NN+3N
N^{3} LO $+N^{2}$ LO, triton-fit, 500 MeV

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathrm{H}$

SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

$\alpha=0.160 \mathrm{fm}^{4}$
$\Lambda=1.58 \mathrm{fm}^{-1}$
$J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}$
NCSM ground state ${ }^{\mathbf{3}} \mathbf{H}$

SRG Evolution in A-Body Space

- assume initial Hamiltonian and intrinsic kinetic energy are two-body operators written in second quantization

$$
H_{0}=\sum \ldots \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a \mathrm{a}, \quad \mathrm{~T}_{\mathrm{int}}=\mathrm{T}-\mathrm{T}_{\mathrm{cm}}=\sum \ldots \mathrm{a}^{\dagger} \mathrm{a}^{\dagger} a \mathrm{a}
$$

- perform single Euler-type evolution step $\Delta \alpha$ in Fock-space operator form

$$
\begin{aligned}
& \mathrm{H}_{\Delta \alpha}=\mathrm{H}_{0}+\Delta \alpha\left[\left[\mathrm{T}_{\mathrm{int}}, \mathrm{H}_{0}\right], \mathrm{H}_{0}\right] \\
& =\sum \ldots a^{\dagger} a^{\dagger} a \alpha+\Delta \alpha \sum \ldots\left[\left[a^{\dagger} a^{\dagger} a a, a^{\dagger} a^{\dagger} a \alpha\right], a^{\dagger} a^{\dagger} a \alpha\right] \\
& =\sum \ldots a^{\dagger} a^{\dagger} a \alpha+\Delta \alpha \sum \ldots a^{\dagger} a^{\dagger} a^{\dagger} a^{\dagger} a \alpha a \alpha+\Delta \alpha \sum \ldots a^{\dagger} a^{\dagger} a^{\dagger} a \alpha a+\ldots
\end{aligned}
$$

- SRG evolution induces many-body contributions in the Hamiltonian
- induced many-body contributions are the price to pay for the pre-diagonalization of the Hamiltonian

SRG Evolution in A-Body Space

- decompose evolved Hamiltonian into irreducible \boldsymbol{n}-body contributions $\mathbf{H}_{\alpha}{ }^{[n]}$

$$
\mathrm{H}_{\alpha}=\mathrm{H}_{\alpha}^{[1]}+\mathrm{H}_{\alpha}^{[2]}+\mathrm{H}_{\alpha}^{[3]}+\mathrm{H}_{\alpha}^{[4]}+\cdots
$$

- truncation of cluster series formally destroys unitarity and invariance of energy eigenvalues (independence of α)
- flow-parameter variation provides diagnostic tool to assess neglected contributions of higher particle ranks

SRG-Evolved Hamiltonians

> NNonly : use initial NN, keep evolved NN
> $\mathbf{N N}+\mathbf{3} \mathbf{N}_{\text {ind }}:$ use initial $N N$, keep evolved $N N+3 N$
> $\mathbf{N N}+\mathbf{3} \mathbf{N}_{\text {full }}$: use initial $N N+3 N$, keep evolved $N N+3 N$
> $\mathbf{N N}+\mathbf{3} \mathbf{N}_{\text {full }}+\mathbf{4} \mathbf{N}_{\text {ind }}$: use initial $N N+3 N$, keep evolved $N N+3 N+4 N$

Many-Body Problem

Configuration Interaction

 Approaches

Configuration Interaction (CI)

- select a convenient single-particle basis

$$
|\alpha\rangle=\mid n\left\langle j m m_{t}\right\rangle
$$

- construct A-body basis of Slater determinants from all possible combinations of A different single-particle states

$$
\left|\Phi_{i}\right\rangle=\left|\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\}_{i}\right\rangle
$$

- convert eigenvalue problem of the Hamiltonian into a matrix eigenvalue problem in the Slater determinant representation

$$
\begin{aligned}
& H_{\text {int }}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \\
& \quad\left|\Psi_{n}\right\rangle=\sum_{i} C_{i}^{(n)}\left|\Phi_{i}\right\rangle \\
& \left(\begin{array}{ccc}
\\
\ldots & \left\langle\Phi_{i}\right| H_{\text {int }}\left|\Phi_{i^{\prime}}\right\rangle & \ldots \\
\vdots
\end{array}\right)\left(\begin{array}{c}
\vdots \\
C_{i^{\prime}}^{(n)} \\
\vdots
\end{array}\right)=E_{n}\left(\begin{array}{c}
\vdots \\
C_{i}^{(n)} \\
\vdots
\end{array}\right)
\end{aligned}
$$

Model Space Truncations

- have to introduce truncations of the single/many-body basis to make the Hamilton matrix finite and numerically tractable
- full CI:
truncate the single-particle basis, e.g., at a maximum single-particle energy
- particle-hole truncated CI:
truncate single-particle basis and truncate the many-body basis at a maximum n-particle-n-hole excitation level
- interacting shell model:
truncate single-particle basis and freeze low-lying single-particle states (core)
- in order to qualify as ab initio one has to demonstrate convergence with respect to all those truncations
- there is freedom to optimize the single-particle basis, instead of HO states one can use single-particle states, e.g., from a Hartree-Fock calculation

Variational Perspective

- solving the eigenvalue problem in a finite model space is equivalent to a variational calculation with a trial state

$$
\left|\Psi_{n}(D)\right\rangle=\sum_{i=1}^{D} C_{i}^{(n)}\left|\Phi_{i}\right\rangle
$$

- formally, the stationarity condition for the energy expectation value directly leads to the matrix eigenvalue problem in the truncated model space
- Ritz variational principle: the ground-state energy in a D-dimensional model space is an upper bound for the exact ground-state energy

$$
E_{0}(D) \geq E_{0}(\text { exact })
$$

- Hylleraas-Undheim theorem: all states of the spectrum have a monotonously decreasing energy with increasing model space dimension

$$
E_{n}(D) \geq E_{n}(D+1)
$$

Theory Uncertainties

- model-space truncation is the sole source of uncertainties in the solution of the many-body problem
- absolute energies are protected by the variational principle, i.e., smooth and monotonic dependence on model-space size (not so for other observables)
convergence with respect to model-space size is the only thing we have to worry about
- efficient truncations: get closer to convergence with smaller model-space dimension, i.e., physics-informed truncation scheme
- extrapolations: extrapolate observables to infinite model-space from a sequence of finite-space calculations
- uncertainty quantification: extract many-body uncertainty from residual model-space dependence or extrapolation

No-Core Shell Model

No-Core Shell Model (NCSM)

- special case of a CI approach:
- single-particle basis is a spherical HO basis
- truncation in terms of the total number of HO excitation quanta $\mathbf{N}_{\text {max }}$ in the many-body states

- technical advantages of the NCSM:
- many-body energy truncation ($N_{\max }$) truncation is much more efficient than single-particle energy truncation ($e_{\text {max }}, \mathrm{cf} . \mathrm{FCI}$)
- equivalent NCSM formulation in relative / Jacobi coordinates for each $N_{\max }$
- explicit separation of center of mass and intrinsic motion for each $N_{\max }$

NCSM Model-Space Convergence

3B-Jacobi HO matrix elements

chiral NN+3N
N^{3} LO $+\mathrm{N}^{2}$ LO, triton-fit, 500 MeV

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathbf{H}$

NCSM Model-Space Convergence

3B-Jacobi HO matrix elements

$\alpha=0.080 \mathrm{fm}^{4}$ $\Lambda=1.88 \mathrm{fm}^{-1}$
$J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}$
NCSM ground state ${ }^{\mathbf{3}} \mathrm{H}$

NCSM Basis Dimension

Computational Strategy

- key properties of the computational problem:
- only interested in a few low-lying eigenstates
- Hamilton matrix is very sparse (typically $<0.01 \%$ non-zeros)
- Lanczos-type algorithms for an iterative solution of the eigenvalue problem
- amount of fast storage for non-zero matrix elements \& a few eigenvectors sets the limits and drives parallelization strategies

Lanczos Algorithm

■ Lanczos Algorithm: convert the eigenvalue problem of a huge matrix \boldsymbol{H} in an iterative process to eigenvalue problems of small matrices $\boldsymbol{T}_{\boldsymbol{m}}$ that converge to the same extremal eigenvalues

Lanczos Algorithm

- Lanczos Algorithm: convert the eigenvalue problem of a huge matrix \boldsymbol{H} in an iterative process to eigenvalue problems of small matrices $\boldsymbol{T}_{\boldsymbol{m}}$ that converge to the same extremal eigenvalues

Importance Truncation

Importance Truncation

- converged NCSM calculations limited to lower \& mid p-shell nuclei
- example: full $N_{\max }=10$ calculation for ${ }^{16} \mathrm{O}$ would be very difficult, basis dimension $D>10^{10}$

Importance Truncation

- converged NCSM calculations limited to lower \& mid p-shell nuclei
- example: full $N_{\max }=10$ calculation for ${ }^{16} \mathrm{O}$ would be very difficult, basis dimension $D>10^{10}$

Importance Truncation

reduce model space to the relevant basis states using an a priori importance measure derived from MBPT

Importance Truncation

- starting point: approximation $\left|\Psi_{\text {ref }}\right\rangle$ for the target state within a limited reference space $\mathcal{M}_{\text {ref }}$

$$
\left|\Psi_{\text {ref }}\right\rangle=\sum_{\nu \in \mathcal{M}_{\text {ref }}} C_{\nu}^{(\text {ref })}\left|\Phi_{\nu}\right\rangle
$$

- measure the importance of individual basis state $\left|\Phi_{\mathcal{V}}\right\rangle \notin \mathcal{M}_{\text {ref }}$ via first-order multiconfigurational perturbation theory

$$
K_{\nu}=-\frac{\left\langle\Phi_{\nu}\right| \mathrm{H}\left|\Psi_{\text {ref }}\right\rangle}{\Delta \epsilon_{\nu}}
$$

- construct importance-truncated space $\mathcal{M}\left(\kappa_{\text {min }}\right)$ from all basis states with $\left|\kappa_{\nu}\right| \geq K_{\text {min }}$
- solve eigenvalue problem in importance truncated space $\mathcal{M}_{\mathrm{T}}\left(K_{\text {min }}\right)$ and obtain improved approximation of target state

Threshold Extrapolation

- repeat calculations for a sequence of importance thresholds $K_{\text {min }}$
- observables show smooth threshold dependence and systematically approach the full NCSM limit

■ use a posteriori extrapolation $K_{\text {min }} \rightarrow 0$ of observables to account for effect of excluded configurations

- uncertainty quantification via set of extrapolations

Basis Optimization

Single-Particle Basis

- Harmonic-Oscillator Basis
- essential for computation of matrix elements, always first step
- separation of center of mass and intrinsic states, translational invariance
- wrong asymptotic behavior, slow convergence of long-range observables

■ Hartree-Fock Basis

- spherical Hartree-Fock calculation to optimize single-particle basis
- adapt basis to typical size of nuclear ground state
- only for soft interactions, pathological asymptotics for unbound states

■ Natural-Orbital Basis

- one-body density matrix obtained from second-order MBPT calculation
- natural orbital basis adapted to size of correlated ground state
- correct asymptotic behavior, independence of underlying basis

NCSM Convergence: Energies

- MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

NCSM Convergence: Radii

- MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

NCSM Convergence: Spectroscopy

Tichai, Müller, Vobig, Roth; PRC 99, 034321 (2019)

[^0]
$N N+3 N(500), \alpha=0.08 \mathrm{fm}^{4}, e_{\max }=12$

Oxygen Isotopes

Oxygen Isotopes

- excellent convergence with natural-orbital basis for all oxygen isotopes
- very good agreement with experimental systematics and dripline
- NO2B instead of explicit 3N causes $\sim 1 \%$ overbinding

The NCSM Family

- NCSM

HO Slater determinant basis with $N_{\text {max }}$ truncation

- Jacobi NCSM
relative-coordinate Jacobi HO basis with $N_{\text {max }}$ truncation
- Importance Truncated NCSM

HO Slater determinant basis with $N_{\text {max }}$ and importance truncation

- Natural-Orbital NCSM
use optimized single-particle basis to accelerate convergence
- Symmetry Adapted NCSM
group-theoretical basis with $\operatorname{SU}(3)$ deformation quantum numbers \& truncations
- Gamow NCSM/CI

Slater determinant basis including Gamow single-particle resonance states

- NCSM with Continuum

NCSM for sub-clusters with explicit RGM treatment of relative motion

Overview

- Lecture 1: Hamiltonian

Prelude • Many-Body Quantum Mechanics • Nuclear Hamiltonian • Matrix Elements •
Two-Body Problem • Correlations \& Unitary Transformations

- Lecture 2: Light Nuclei

Similarity Renormalization Group • Many-Body Problem • Configuration Interaction • No-Core Shell Model • Basis Optimization

- Lecture 3: Medium-Mass Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group • Many-Body Perturbation Theory

- Project: Do-It-Yourself NCSM

Three-Body Problem • Numerical SRG Evolution • NCSM Eigenvalue Problem • Lanczos Algorithm

- Lecture 4: Precision, Uncertainties, and Applications

Chiral Interactions for Precision Calculations • Uncertainty Quantification • Applications to Nuclei and Hypernuclei

[^0]: Robert Roth - TU Darmstadt - March 2021

