Ab Initio Calculations of Nuclear Structure

Lecture 1: Hamiltonian

Robert Roth

Institut für Kernphysik - Theoriezentrum

TECHNISCHE UNIVERSITÄT DARMSTADT

Overview

- Lecture 1: Hamiltonian

Prelude • Many-Body Quantum Mechanics • Nuclear Hamiltonian • Matrix Elements • Two-Body Problem • Correlations \& Unitary Transformations

- Lecture 2: Light Nuclei

Similarity Renormalization Group • Many-Body Problem • Configuration Interaction • No-Core Shell Model • Basis Optimization

- Lecture 3: Medium-Mass Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group • Many-Body Perturbation Theory

- Project: Do-It-Yourself NCSM

Three-Body Problem • Numerical SRG Evolution • NCSM Eigenvalue Problem • Lanczos Algorithm

- Lecture 4: Precision, Uncertainties, and Applications

Chiral Interactions for Precision Calculations • Uncertainty Quantification • Applications to Nuclei and Hypernuclei

Prelude

Theoretical Context

The Problem

The Problem

$\mathrm{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$

ab initio :=

solve nuclear many-body problem based on realistic interactions
using controlled and improvable truncations with quantified theoretical uncertainties

The Problem

$\mathrm{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$

Assumptions

- use nucleons as effective degrees of freedom
- use non-relativistic framework, relativistic corrections are absorbed in Hamiltonian
- use Hamiltonian formulation, i.e., conventional many-body quantum mechanics
- focus on bound states, though continuum aspects are very interesting

The Problem

$\mathrm{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$

What is this many-body Hamiltonian?
nuclear forces, chiral effective field theory, three-body interactions, consistency, convergence,...

What about these many-body states?

many-body quantum mechanics, antisymmetry, second quantisation, many-body basis, truncations,...

How to solve this equation?

ab initio methods, correlations, similarity transformations, largescale diagonalization, coupledcluster theory,...

Many-Body Quantum Mechanics

... a very quick reminder

Single-Particle Basis

- effective constituents are nucleons characterized by position, spin and isospin degrees of freedom

$$
|\alpha\rangle=\mid \text { position }\rangle \otimes \mid \text { spin }\rangle \otimes \mid \text { isospin }\rangle
$$

- typical basis choice for configuration-type bound-state methods

$$
\begin{array}{ll}
\left.\mid \text { position }\rangle=|n| m_{l}\right\rangle & \begin{array}{l}
\text { spherical harmonic oscillator or oth } \epsilon \\
\text { spherical single-particle potential }
\end{array} \\
|\operatorname{spin}\rangle=\left|s=\frac{1}{2}, m_{s}\right\rangle & \text { eigenstates of } s^{2} \text { and } s_{z} \text { with } s=1 / 2 \\
\mid \text { isospin }\rangle=\left|t=\frac{1}{2}, m_{t}\right\rangle & \text { eigenstates of } t^{2} \text { and } t_{3} \text { with } t=1 / 2
\end{array}
$$

- use spin-orbit coupling at the single-particle level

$$
\left.\left|n\left(\left\lvert\, \frac{1}{2}\right.\right) j m ; \frac{1}{2} m_{t}\right\rangle=\sum_{m_{l}, m_{s}} c\left(\begin{array}{cc|c}
l & 1 / 2 & j \\
m_{l} & m_{s} & m
\end{array}\right)|n| m_{l}\right\rangle \otimes\left|\frac{1}{2} m_{s}\right\rangle \otimes\left|\frac{1}{2} m_{t}\right\rangle
$$

Identical Particles \& Spin-Statistics Theorem

- systems of identical particles: many-body states have to be eigenstates of the transposition operator for any particle pair with eigenvalues ± 1

$$
\begin{array}{ll}
\mathrm{T}_{i j}|\Psi\rangle=+1|\Psi\rangle & \begin{array}{l}
\text { states symmetric under transposition of any pair } \\
\text { of particle indices }
\end{array} \\
\mathrm{T}_{i j}|\Psi\rangle=-1|\Psi\rangle & \begin{array}{l}
\text { states antisymmetric under transposition of any } \\
\text { pair of particles }
\end{array}
\end{array}
$$

- simple product states are not suitable for systems of identical particles

$$
|\Phi\rangle=\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \otimes \cdots \otimes\left|\alpha_{A}\right\rangle
$$

■ spin-statistics theorem connects transposition symmetry to particle spin:

- bosons = integer spin = symmetric states
- fermions $=$ half-integer spin $=$ antisymmetric states
- focus on fermions, i.e., antisymmetric states in the following

Slater Determinants

- antisymmetric states can be constructed via the antisymmetrization operator

- technically it is a projection operator onto the antisymmetric A-body Hilbert space and has the same structure as a general determinant

■ Slater determinants: antisymmetrized product states

$$
\begin{aligned}
\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle & =\sqrt{A!} \mathcal{A}\left(\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \otimes \cdots \otimes\left|\alpha_{A}\right\rangle\right) \\
& =\frac{1}{\sqrt{A!}} \sum_{\pi} \operatorname{sgn}(\pi) \mathrm{P}_{\pi}\left(\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \otimes \cdots \otimes\left|\alpha_{A}\right\rangle\right)
\end{aligned}
$$

- Pauli principle is a consequence of antisymmetry: you cannot antisymmetrize a product state that contains two identical single-particle states

Slater Determinants as Basis

- given a complete single-particle basis $\{|\alpha\rangle\}$ then the set of Slater determinants formed by all possible combinations of A different single-particle states is a complete basis of the antisymmetric A-body Hilbert space
- resolution of the identity operator

$$
1=\sum_{\alpha_{1}<\alpha_{2}<\ldots<\alpha_{A}}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle\left\langle\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right|=\frac{1}{A!} \sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{A}}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle\left\langle\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right|
$$

- careful with double counting: Slater determinants that differ only by the order of the single-particle states are identical up to a sign...
- expansion of general antisymmetric state in Slater determinant basis

$$
|\Psi\rangle=\sum_{\alpha_{1}<\alpha_{2}<\ldots<\alpha_{A}} C_{\alpha_{1} \alpha_{2} \ldots \alpha_{A}}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle=\sum_{i} C_{i}\left|\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\}_{i}\right\rangle
$$

Second Quantization: Basics

- define Fock-space as direct sum of A-particle Hilbert spaces

$$
\mathcal{F}=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \cdots \oplus \mathcal{H}_{A} \oplus \cdots
$$

- vacuum state: the only state in the zero-particle Hilbert space

$$
|0\rangle \in \mathcal{H}_{0} \quad\langle 0 \mid 0\rangle=1 \quad|0\rangle \neq 0
$$

- creation operators: add a particle in single-particle state $|\alpha\rangle$ to an A-body Slater determinant yielding an (A+1)-body Slater determinant

$$
\begin{gathered}
\mathrm{a}_{\alpha}^{\dagger}|0\rangle=|\alpha\rangle \\
\mathrm{a}_{\alpha}^{\dagger}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle= \begin{cases}\left|\alpha \alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle & ; \quad \alpha \notin\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\} \\
0 & ; \text { otherwise }\end{cases}
\end{gathered}
$$

- resulting states are automatically normalized and antisymmetrized
- new single-particle state is added in the first slot, can be moved elsewhere through transpositions

Second Quantization: Basics

- annihilation operators: remove a particle with single-particle state $|\alpha\rangle$ from an A-body Slater determinant yielding an (A-1)-body Slater determinant

$$
\begin{gathered}
\mathrm{a}_{\alpha}|0\rangle=0 \\
\mathrm{a}_{\alpha}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle= \begin{cases}(-1)^{i-1}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{i-1} \alpha_{i+1} \ldots \alpha_{A}\right\rangle & ; \alpha=\alpha_{i} \\
0 & ; \text { otherwise }\end{cases}
\end{gathered}
$$

- annihilation operator acts on first slot, need transpositions to get correct singleparticle state there
- based on these definitions one can easily show that creation and annihilations operators satisfy anticommutation relations

$$
\left\{a_{\alpha}, a_{\alpha^{\prime}}\right\}=0 \quad\left\{a_{\alpha}^{\dagger}, a_{\alpha^{\prime}}^{\dagger}\right\}=0 \quad\left\{a_{\alpha}, a_{\alpha^{\prime}}^{\dagger}\right\}=\delta_{\alpha \alpha^{\prime}}
$$

- complication of handling permutations in "first quantization" are translated to the commutation behaviour of strings of operators

Second Quantization: States

- Slater determinants can be written as string of creation operators acting on vacuum state

$$
\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle=a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger} \cdots a_{\alpha_{A}}^{\dagger}|0\rangle
$$

- alternatively one can define an A-body reference Slater determinant

$$
|\Phi\rangle=\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle=a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger} \cdots a_{\alpha_{A}}^{\dagger}|0\rangle
$$

and construct arbitrary Slater determinants through particle-hole excitations on top of the reference state

$$
\begin{aligned}
\left|\Phi_{a}^{p}\right\rangle & =\mathrm{a}_{\alpha_{p}}^{\dagger} \mathrm{a}_{\alpha_{a}}|\Phi\rangle \\
\left|\Phi_{a b}^{p q}\right\rangle & =\mathrm{a}_{\alpha_{p}}^{\dagger} \mathrm{a}_{\alpha_{q}}^{\dagger} \mathrm{a}_{\alpha_{b}} \mathrm{a}_{\alpha_{a}}|\Phi\rangle
\end{aligned}
$$

index convention: a, b, c, \ldots : hole states, occupied in reference state p, q, r, \ldots : particle state, unoccupied in reference states

Second Quantization: Operators

- operators can be expressed in terms of creation and annihilation operators as well, e.g., for one-body kinetic energy and two-body interactions:
'first quantization'

$$
\begin{aligned}
& \mathrm{T}=\sum_{i=1}^{A} \mathrm{t}_{i} \\
& \mathrm{~V}=\sum_{i<j=1}^{A} \mathrm{v}_{i j}
\end{aligned}
$$

second quantization

$$
\begin{aligned}
& \mathrm{T}=\sum_{\alpha \alpha^{\prime}}\langle\alpha| \mathrm{t}\left|\alpha^{\prime}\right\rangle \mathrm{a}_{\alpha}^{\dagger} \mathrm{a}_{\alpha^{\prime}} \\
& \mathrm{V}=\frac{1}{4} \sum_{\alpha_{1} \alpha_{2} \alpha_{1}^{\prime} \alpha_{2}^{\prime}}\left\langle\alpha_{1} \alpha_{2}\right| v\left|\alpha_{1}^{\prime} \alpha_{2}^{\prime}\right\rangle \mathrm{a}_{\alpha_{1}}^{\dagger} \mathrm{a}_{\alpha_{2}}^{\dagger} \mathrm{a}_{\alpha_{2}^{\prime}} \mathrm{a}_{\alpha_{1}^{\prime}}
\end{aligned}
$$

- set of one or two-body matrix elements fully defines the one or two-body operator in Fock space
- second quantization is extremely convenient to compute matrix elements of operators with Slater determinants

Nuclear Hamiltonian

Nuclear Hamiltonian

- general form of many-body Hamiltonian can be split into a center-of-mass and an intrinsic part

$$
\begin{aligned}
\mathrm{H} & =\mathrm{T}+\mathrm{V}_{N N}+\mathrm{V}_{3 N}+\cdots=\mathrm{T}_{\mathrm{cm}}+\mathrm{T}_{\mathrm{int}}+\mathrm{V}_{N N}+\mathrm{V}_{3 N}+\cdots \\
& =\mathrm{T}_{\mathrm{cm}}+\mathrm{H}_{\mathrm{int}}
\end{aligned}
$$

- intrinsic Hamiltonian is invariant under translation, rotation, Galilei boost, parity, time evolution, time reversal,...

$$
\begin{aligned}
\mathrm{H}_{\text {int }} & =\mathrm{T}_{\text {int }}+\mathrm{V}_{N N}+\mathrm{V}_{3 N}+\cdots \\
& =\sum_{i<j}^{A} \frac{1}{2 m A}\left(\overrightarrow{\mathrm{p}}_{i}-\overrightarrow{\mathrm{p}}_{j}\right)^{2}+\sum_{i<j}^{A} \mathrm{v}_{N N, i j}+\sum_{i<j<k}^{A} \mathrm{v}_{3 N, i j k}+\cdots
\end{aligned}
$$

- these symmetries constrain the possible operator structures that can appear in the interaction terms...
... but how can we really determine the nuclear interaction ?

Nature of the Nuclear Interaction

- nuclear interaction is not fundamental

- residual force analogous to van der Waals interaction between neutral atoms
- based on QCD and induced via polarization of quark and gluon distributions of nucleons
- encapsulates all the complications of the QCD dynamics and the structure of nucleons
- acts only if the nucleons overlap, i.e. at short ranges
- irreducible three-nucleon interactions are important

Yesterday... from Phenomenology

- until 2005: high-precision phenomenological NN interactions were state-of-the-art in ab initio nuclear structure theory
- Argonne V18: long-range one-pion exchange plus phenomenological parametrization of medium- and short-range terms, local operator form
- CD Bonn 2000: more systematic one meson-exchange parametrization including pseudo-scalar, scalar and vector mesons, inherently nonlocal
- parameters of the NN potential (~ 40) fit to $N N$ phase shifts up to $\sim 300 \mathrm{MeV}$ and reproduce them with high accuracy
- supplemented by phenomenological 3N interactions consisting of a Fujita-Miyazawa-type term plus various handpicked contributions
- fit to ground states and spectra of light nuclei, sometimes
 up to $\mathrm{A} \leq 8$

Argonne V18 Potential

Tomorrow... from Lattice QCD

- first attempts towards construction of nuclear interactions directly from lattice QCD simulations
- compute relative two-nucleon wave function on the lattice

■ invert Schrödinger equation to extract effective two-nucleon potential

- only schematic results so far (unphysical masses and mass dependence, model dependence,...)
- alternatives: phase-shifts or lowenergy constants from lattice QCD

Today... from Chiral EFT

- low-energy effective field theory for relevant degrees of freedom (π, N) based on symmetries of QCD
- explicit long-range pion dynamics
- unresolved short-range physics absorbed in contact terms, low-energy constants fit to experiment
- systematic expansion in a small parameter with power counting enable controlled improvements and error quantification
- hierarchy of consistent NN, 3N, 4N,... interactions
- consistent electromagnetic and weak operators can be constructed in the same framework

Many Choices...

- standard chiral NN+3N

- NN: N3LO, Entem\&Machleidt, nonlocal, cutoff 500 MeV
- 3N: N2LO, Navratil, local, cutoff 500 (400) MeV

■ N2LO-opt, N2LO-sat, ...

- NN: N2LO, Ekström+, nonlocal, cutoff 500 MeV
- 3N: N2LO, Ekström+, nonlocal, cutoff 500 MeV

- local N2LO

- NN: N2LO, Gezerlis+, local, cutoff 1.0...1.2 fm
- 3N: N2LO, Gezerlis+, local, cutoff 1.0...1.2 fm

■ nonlocal LO...N4LO

- NN: LO...N4LO, Machleidt, nonlocal, cutoff 450... 550 MeV
- 3N: N2LO...N3LO, Hüther+, nonlocal, cutoff 450... 550 MeV
- semilocal LO...N4LO+
- NN: LO...N4LO, Epelbaum, semilocal, cutoff 0.8...1.2 fm
- 3N: N2LO..., LENPIC, semilocal, cutoff 0.8...1.2 fm
first generation, most widely used up to now
improved fitting, also many-body inputs
designed specifically for QMC applications
the future...
...systematic variation of chiral order enables quantification of theory uncertainties

Momentum-Space Matrix Elements

$$
\left\langle q(L S) J M ; T M_{T}\right| v_{N N}\left|q^{\prime}\left(L^{\prime} S\right) J M ; T M_{T}\right\rangle
$$

Argonne V18

J=1
$L=0$
$\mathrm{L}^{\prime}=2$
$\mathrm{S}=1$
$\mathrm{T}=0$

chiral NN
(N3LO, E\&M, 500 MeV)

Matrix Elements

Partial-Wave Matrix Elements

- relative partial-wave matrix elements of NN and 3 N interaction are universal input for many-body calculations
- selection of relevant partial-wave bases in two and three-body space with all M quantum numbers suppressed:
two-body relative momentum: two-body relative HO :
three-body Jacobi momentum:
three-body Jacobi HO:
antisym. three-body Jacobi HO:

```
|q(LS)JT\rangle
|N (LS)JT\rangle
| }\mp@subsup{\pi}{1}{}\mp@subsup{\pi}{2}{\prime;[(LL}\mp@subsup{L}{1}{})\mp@subsup{J}{1}{},(\mp@subsup{L}{2}{}\frac{1}{2})\mp@subsup{J}{2}{}]\mp@subsup{J}{12}{};(\mp@subsup{T}{1}{}\frac{1}{2})\mp@subsup{T}{12}{}
|N N N N ; [(L L S S ) J J, (L2 \frac{1}{2})\mp@subsup{J}{2}{\prime}]\mp@subsup{J}{12}{};(\mp@subsup{T}{1}{}\frac{1}{2})\mp@subsup{T}{12}{}\rangle
|E 12 i | | | | T T2 
```

- lots of transformations between the different bases are needed in practice
- exception: Quantum Monte Carlo methods working in coordinate representation need local operator form

Symmetries and Matrix Elements

- relative partial-wave matrix elements make maximum use of the symmetries of the nuclear interaction
- consider, e.g., the relative two-body matrix elements in HO basis

$$
\left\langle N(L S) J M ; T M_{T}\right| v_{N N}\left|N^{\prime}\left(L^{\prime} S^{\prime}\right) J^{\prime} M^{\prime} ; T^{\prime} M_{T}^{\prime}\right\rangle
$$

- the matrix elements of the NN interaction
... do not connect different J
... do not connect different M and are independent of M
... do not connect different parities
... do not connect different S
... do not connect different T
... do not connect different M_{T}

$$
\Rightarrow \quad\left\langle N(L S) J ; T M_{T}\right| v_{N N}\left|N^{\prime}\left(L^{\prime} S\right) J ; T M_{T}\right\rangle
$$

- relative matrix elements are efficient and simple to compute

Transformation to Single-Particle Basis

- most many-body calculations need matrix elements with single-particle quantum numbers (cf. second quantization)

$$
\begin{aligned}
& \left\langle\alpha_{1} \alpha_{2}\right| \mathrm{v}_{N N}\left|\alpha_{1}^{\prime} \alpha_{2}^{\prime}\right\rangle= \\
& \quad=\left\langle n_{1} l_{1} j_{1} m_{1} m_{t 1}, n_{2} l_{2} j_{2} m_{2} m_{t 2}\right| \mathrm{v}_{N N}\left|n_{1}^{\prime} l_{1}^{\prime} j_{1}^{\prime} m_{1}^{\prime} m_{t 1}^{\prime}, n_{2}^{\prime} l_{2}^{\prime} j_{2}^{\prime} m_{2}^{\prime} m_{t 2}^{\prime}\right\rangle
\end{aligned}
$$

- obtained from relative HO matrix elements via Moshinsky-transformation

$$
\begin{aligned}
& \left\langle n_{1} l_{1} j_{1}, n_{2} l_{2} j_{2} ; J T\right| v_{N N}\left|n_{1}^{\prime} l_{1}^{\prime} j_{1}^{\prime}, n_{2}^{\prime} l_{2}^{\prime} j_{2}^{\prime} ; J T\right\rangle= \\
& \quad=\sqrt{\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)\left(2 j_{1}^{\prime}+1\right)\left(2 j_{2}^{\prime}+1\right)}>ص \leftharpoondown
\end{aligned}
$$

this analytic transformation from relative to single-particle matrix elements only 2) ${ }_{1}$ transformatrix elements only exists for the harmonic oscillat

$$
\begin{aligned}
& \times \quad \text { exists } \\
& \times(\angle J+1)(2 S+1)(2 L+1)\left(2 L^{\prime}+1\right)(-1)^{L+L^{\prime}}\left\{1-(-1)^{\lambda+S+T}\right\} \\
& \times\langle v(\lambda S) j T| v_{N N}\left|v^{\prime}\left(\lambda^{\prime} S\right) j T\right\rangle
\end{aligned}
$$

Matrix Element Machinery

- beneath any ab initio many-body method there is a machinery for computing, transforming and storing matrix elements of all operators entering the calculation
compute and store relative two-body HO matrix elements of NN interaction
compute and store Jacobi three-body HO matrix elements of 3 N interaction
perform unitary transformations of the two- and three-body relative matrix elements
(e.g. Similarity Renormalization Group)
same for 4 N with four-body matrix elements
transform to single-particle
JT-coupled two-body HO matrix elements and store
transform to single-particle JT-coupled three-body HO matrix elements and store

Two-Body Problem

Solving the Two-Body Problem

- simplest ab initio problem: the only two-nucleon bound state, the deuteron
- start from Hamiltonian in two-body space, change to center of mass and intrinsic coordinates

$$
\begin{aligned}
\mathrm{H}=\mathrm{H}_{\mathrm{cm}}+\mathrm{H}_{\mathrm{int}} & =\mathrm{T}_{\mathrm{cm}}+\mathrm{T}_{\mathrm{int}}+\mathrm{V}_{\mathrm{NN}} \\
& =\frac{1}{2 M} \overrightarrow{\mathrm{P}}_{\mathrm{cm}}^{2}+\frac{1}{2 \mu} \overrightarrow{\mathrm{q}}^{2}+\mathrm{V}_{\mathrm{NN}}
\end{aligned}
$$

- separate two-body state into center of mass and intrinsic part

$$
|\psi\rangle=\left|\Phi_{\mathrm{cm}}\right\rangle \otimes\left|\phi_{\mathrm{int}}\right\rangle
$$

- solve eigenvalue problem for intrinsic part (effective one-body problem)

$$
\mathrm{H}_{\mathrm{int}}\left|\phi_{\mathrm{int}}\right\rangle=E\left|\phi_{\mathrm{int}}\right\rangle
$$

Solving the Two-Body Problem

- expand eigenstates in a relative partial-wave HO basis

$$
\begin{gathered}
\left|\phi_{\mathrm{int}}\right\rangle=\sum_{N L S J M T M_{T}} C_{N L S J M T M_{T}}\left|N(L S) J M ; T M_{T}\right\rangle \\
\left|N(L S) J M ; T M_{T}\right\rangle=\sum_{M_{L} M_{S}} c\left(\stackrel{L_{L}}{M_{L}} S_{S} \left\lvert\, \begin{array}{l}
\prime \\
\hline
\end{array}\right.\right)\left|N L M_{L}\right\rangle \otimes\left|S M_{S}\right\rangle \otimes\left|T M_{T}\right\rangle
\end{gathered}
$$

- symmetries simplify the problem dramatically:
- Hint does not connect/mix different J, M, S, T, M_{T} and parity п
- angular mom. coupling only allows $J=L+1, L, L-1$ for $S=1$ or $J=L$ for $S=0$
- total antisymmetry requires $L+S+T=$ odd
- for given J п at most two sets of angular-spin-isospin quantum numbers contribute to the expansion

Deuteron Problem

- assume $J п=1+$ for the deuteron ground state, then the basis expansion reduces to

$$
\left|\phi_{\text {int }}, J^{\pi}=1^{+}\right\rangle=\sum_{N} C_{N}^{(0)}|N(01) 1 M ; 00\rangle+\sum_{N} C_{N}^{(2)}|N(21) 1 M ; 00\rangle
$$

- inserting into Schrödinger equation and multiplying with basis bra leads to matrix eigenvalue problem

- truncate \quad es to $\mathbf{N} \leq \boldsymbol{N}_{\text {max }}$ and choose $N_{\text {max }}$ large enough so that observables are converged, i.e., do not depend on $N_{\max }$ anymore

Deuteron Solution

Argonne V18

chiral NN

- deuteron wave function show two characteristics that are signatures of correlations in the two-body system:
- suppression at small distances due to short-range repulsion
- L=2 admixture generated by tensor part of the NN interaction

Correlations \&

Unitary Transformations

Correlations

correlations: everything beyond the independent particle picture

- many-body eigenstates of independent-particle models described by one-body Hamiltonians are Slater determinants
- thus, a single Slater determinant does not describe correlations
- but Slater determinants are a basis of the antisym. A-body Hilbert space, so any state can be expanded in Slater determinants
- to describe short-range correlations, a superposition of many Slater determinants is necessary

Why Unitary Transformations ?

realistic nuclear interactions generate strong short-range correlations in many-body states

Unitary Transformations

- adapt Hamiltonian to truncated lowenergy model space
- improve convergence of many-body calculations
- preserve the physics of the initial Hamiltonian and all observables
many-body methods rely on truncated Hilbert spaces not capable of describing these correlations

Unitary Transformations

- unitary transformations conserve the spectrum of the Hamiltonian, with a unitary operator U we get

$$
\begin{aligned}
& \mathrm{H}|\psi\rangle=E|\psi\rangle \\
& U^{\dagger} H U U^{\dagger}|\psi\rangle=E U^{\dagger}|\psi\rangle \quad \text { with } \quad \tilde{H}=U^{\dagger} H U \\
& \tilde{\mathrm{H}}|\tilde{\psi}\rangle=E|\tilde{\psi}\rangle \\
& 1=U^{\dagger} U=U U^{\dagger} \\
& |\tilde{\psi}\rangle=U^{\dagger}|\psi\rangle
\end{aligned}
$$

- for other observables defined via matrix elements of an operator A with the eigenstates we obtain

$$
\langle\psi| \mathrm{A}\left|\psi^{\prime}\right\rangle=\langle\psi| \cup \mathrm{U}^{\dagger} \mathrm{AU} \mathrm{U}^{\dagger}\left|\psi^{\prime}\right\rangle=\langle\tilde{\psi}| \tilde{\mathrm{A}}\left|\tilde{\psi}^{\prime}\right\rangle
$$

unitary transformations conserve all observables as long as the Hamiltonian and all other operators are transformed consistently

Overview

- Lecture 1: Hamiltonian

Prelude • Many-Body Quantum Mechanics • Nuclear Hamiltonian • Matrix Elements •
Two-Body Problem • Correlations \& Unitary Transformations

- Lecture 2: Light Nuclei

Similarity Renormalization Group • Many-Body Problem • Configuration Interaction • No-Core Shell Model • Basis Optimization

- Lecture 3: Medium-Mass Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group • Many-Body Perturbation Theory

- Project: Do-It-Yourself NCSM

Three-Body Problem • Numerical SRG Evolution • NCSM Eigenvalue Problem • Lanczos Algorithm

- Lecture 4: Precision, Uncertainties, and Applications

Chiral Interactions for Precision Calculations • Uncertainty Quantification • Applications to Nuclei and Hypernuclei

