

Theoretische Physik II: Quantenmechanik

Wintersemester 2021/22

Übungsblatt 12

Abgabe der mit (*) gekennzeichneten Aufgaben: Dienstag, 25. Januar, Anfang der Vorlesung
18. Januar 2022

Aufgabe P11: Zwei-Minuten-Fragen

- 1. Wie ändern sich Kugelflächenfunktionen unter der Paritätstransformation $r \to -r$? Für welche l ist die Parität gerade bzw. ungerade?
- 2. Zeigen Sie mit Hilfe der Eigenschaften der Kugelflächenfunktionen, wie man auf einfache Weise beliebige Funktionen der Form $f(\theta, \phi)$ in ihnen entwickeln kann.
- 3. Betrachen Sie ein (dreidimensionales) sphärisch symmetrisches Potential. In wie vielen Dimensionen muss man die Schrödingergleichung effektiv lösen? Wie heißt die zugehörige Gleichung?
- 4. Warum kann man die Lösung der Schrödingergleichung für ein sphärisch symmetrisches Potential schreiben als $\psi_{E,l,m}(\mathbf{r}) = \frac{1}{r} u_{E,l}(r) Y_l^m(\theta,\phi)$? Erklären Sie jeden Faktor auf der rechten Seite und die Indizes.
- 5. Gegeben sei ein beliebiges sphärisch symmetrisches Potential mit endlicher Reichweite, d.h. V = 0 für r > R. Was sind die Eigenfunktionen für r > R?
- 6. Nehmen Sie an, ein sphärisch symmetrisches Potential hat einen gebundenen Zustand in der P-Welle (l=1). Würden Sie dann auch gebundene Zustände mit l=0 erwarten? Begründen Sie Ihre Antwort.

Aufgabe H34: Entartung des starren Rotors (*) (6 Punkte)

Betrachten Sie einen sphärisch-symmetrischen starren Rotor mit Trägheitsmoment $I = I_x = I_y = I_z$, dessen Energie klassisch gegeben ist durch

$$E = \frac{L^2}{2I} \,. \tag{1}$$

- 1. Bestimmen Sie die Eigenzustände und Eigenwerte des Hamiltonoperators.
- 2. Wie oft ist der n-te Energieeigenwert entartet?
- 3. Das Trägheitsmoment in z-Richtung ändert sich nun zu $I_z = (1 + \epsilon)I$, während I_x und I_y unverändert sind.

Bestimmen Sie die neuen Eigenzustände und Eigenwerte des Hamiltonoperators.

- 4. Skizzieren Sie das Energiespektrum als Funktion von ϵ . Für welches Vorzeichen von ϵ nähern sich die Energien an? Begründen Sie.
- 5. Wie oft ist der *n*-te Energieeigenwert jetzt entartet? Wurde die Entartung vollständig aufgehoben? Falls ja, diskutieren Sie, wie die Entartung nur teilweise aufgehoben werden kann. Falls nein, wie könnte die Entartung vollständig aufgehoben werden?

Aufgabe H35: Sphärisches Shell-Potential (*) (4 Punkte)

Ein Teilchen bewegt sich in dem sphärisch-symmetrischen Potential (mit 0 < a < b)

$$V(r) = \begin{cases} \infty & r < a, \\ 0 & a \leqslant r \leqslant b, \\ \infty & r > b. \end{cases}$$
 (2)

Berechnen Sie das Spektrum für Drehimpuls l = 0.

HINWEIS: Machen Sie den Ansatz

$$R_l(r) = j_l(kr)\cos\alpha + n_l(kr)\sin\alpha \tag{3}$$

mit sphärischen Bessel- und Neumann-Funktionen $(j_l \text{ und } n_l)$ und leiten Sie zwei Gleichungen her, die k und α bestimmen.

Aufgabe H36: Harmonischer Oszillator plus \hat{L}_z Term

Betrachten Sie den Hamiltonoperator

$$\widehat{H} = \frac{\widehat{\mathbf{p}}^2}{2m} + \frac{1}{2}m\omega^2\widehat{\mathbf{r}}^2 - \omega_z\widehat{L}_z,$$

und bestimmen Sie die Eigenfunktionen und entsprechenden Eigenwerte. Gibt es Einschränkungen für die erlaubten Werte von ω_z ?