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Abstract

The infrared behavior of gluon and ghost propagators should be

closely related to confinement in Yang-Mills theories. A nonper-

turbative study of these propagators from first principles is possi-

ble in lattice simulations, but one must consider significantly large

lattice sizes in order to approach the infrared limit. We present

data obtained for pure SU(2) gauge theory in Landau gauge, us-

ing the largest lattice sizes to date. We propose constraints based

on the properties of the propagators as a way to gain control over

the extrapolation of our data to the infinite-volume limit.
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IR gluon propagator and confinement

Green’s functions carry all information of a QFT’s physical

and mathematical structure.

Gluon propagator (two-point function) as the most basic

quantity of QCD.

Confinement given by behavior at large distances (small

momenta) ⇒ nonperturbative study of IR gluon propagator.

Landau gluon propagator

Dab
µν(p) =

1

V

∑

x,y

e−2iπk·(x−y)〈Aa
µ(x) Ab

ν(y)〉

= δab

(
gµν −

pµ pν

p2

)
D(p2)
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IR gluon propagator and confinement (II)

Gribov-Zwanziger confinement scenario (1978– ) in Landau

gauge predicts a gluon propagator D(p2) suppressed in the

IR limit.

In particular, D(0) = 0 implying that reflection positivity is

maximally violated.

This result may be viewed as an indication of gluon

confinement.

On large lattice volumes the gluon propagator decreases in

the limit p → 0, but D(0) > 0.

Can one find D(0) = 0 in lattice simulations? Yes in 2d (A. Maas)

using lattices up to (42.7fm)2. What about 4d and 3d?
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Confining gluons

From the Wilson loop

W ≡ 〈TrP exp

[
i g0

∮
dxµ Aµ(x)

]
〉

we can find the static QCD potential

V (r) = lim
t→∞

[
−

1

t
log (Wt,r)

]
.

If Wt,r ∼ exp (−σ r t) (area law) then

V (r) ∼ σ r .

One can prove (Seiler, 1978) that V (r) ≤ σ
′
r and that

(Zwanziger, 2003) there is no confinement without Coulomb

confinement.
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Confining gluons (II)

At the lowest order

W = 1 −
g2
0

2
Tr

∮
dxµ

∮
dyν 〈Aµ(x) Aν(y) 〉 + . . .

Of course, the Wilson loop is a gauge-independent quantity, while the
gluon propagator depends on the gauge.

Ax exact result (West, 1982):

W ≤ exp

[
−

g2
0

2
δab

∮
dxµ

∮
dyν Dab

µν(x − y)

]
.

If in some gauge and for small momenta D(k) ∼ k−4, then D(r) ∼ 1

and we obtain an area law.
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IR ghost propagator and confinement

Ghost fields are introduced as one evaluates functional integrals

by the Faddeev-Popov method, which restricts the space of

configurations through a gauge-fixing condition. The ghosts are

unphysical particles, since they correspond to anti-commuting

fields with spin zero.

On the lattice, the (minimal) Landau gauge is imposed as a

minimization problem and the ghost propagator is given by

G(p) =
1

N2
c − 1

∑

x, y, a

e−2πi k·(x−y)

V
〈M−1(a, x; a, y) 〉 ,

where the Faddeev-Popov matrix M is obtained from the second

variation of the minimizing functional.
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IR ghost propagator and confinement (II)

Gribov-Zwanziger confinement scenario: infinite volume favors

configurations on the first Gribov horizon, where λmin of M goes

to zero. In turn, G(p) should be IR enhanced, introducing

long-range effects, related to the color-confinement mechanism.

Large lattice sizes are needed to observe the predicted behavior.

Studies (with small lattices) in Landau and Coulomb gauge

showed enhancement of G(p).

In MAG one finds an IR-finite G(p).

New results in Landau gauge on very large lattices seem to

show no enhancement in the 3d and 4d cases.

Enhancement is seen (A. Maas) in 2d.

Do we see an IR-enhanced Landau-gauge G(p) in 3d and 4d?
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SU(2) vs. SU(3)

C., Mendes, Oliveira and Silva (2007)
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Results

for the Gluon Propagator
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Gluon Propagator: status in 2000

Gribov noise for the gluon propagator is of the order of

magnitude of the numerical accuracy (Heller et al., 1995; C.,

1997).

There are no finite-size effects at large momenta (study of

the ultraviolet behavior: Williams et al., 1999; Becirevic et

al., 1999).

The gluon propagator is less singular than p2−d(k) in the

infrared limit (C., 1999; Williams et al., 1999 & 2000).

The gluon propagator decreases as the momentum goes to

zero (C., 1997 & 1999; Nakajima and Furui, 1999).

D(0) decreases as the volume increases, but an

extrapolation to infinite volume has never been attempted.
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Infinite-volume limit in 3d (I)

Gluon propagator as a func-
tion of the lattice momentum
p for β = 3.4 and 323 (+),
β = 4.2 and 643 (×), β =

5.0 and 643 (∗) (C., 1999).
About 100 days using a 0.5
Gflops workstation.
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Infinite-volume limit in 3d (II)

Gluon propagator as a func-
tion of the lattice momentum
p for lattice volumes V =

203, 403, 603 and 1403 at
β = 3.0 (C., Mendes and
Taurines, 2003). About 100
days using a 13 Gflops PC
cluster.
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Old results in 3d

The gluon propagator using lattice volumes up to 1403 and β

values 4.2, 5.0, 6.0 −→ physical lattice sides almost as large as

25 fm.
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Plot of the rescaled gluon propagator at zero
momentum as a function of the inverse lat-
tice side for β = 4.2 (×), 5.0 (2), 6.0 (3).
We also show the fit of the data using the
Ansatz d + b/Lc both with d = 0 and d 6= 0.

Can we go to even larger lattice volumes?
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Infinite-volume limit in 3d (III)
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Gluon propagator as a func-
tion of the lattice momen-
tum p including lattices of
up to 3203 in the scaling re-
gion. (C. and Mendes, 2007)
About 5 days on a 4.5Tflops
IBM supercomputer.
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New data: infinite-volume limit in 3d

Gluon propagator at

zero momentum as

a function of the

inverse lattice side

1/L (in fm−1) and

extrapolation to infi-

nite volume. New

data, up to 3203 for

β = 3.0.
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Infinite-volume limit in 4d (I)

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume V =

484 at β = 2.2.
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Infinite-volume limit in 4d (I)
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Gluon propagator at low momenta

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume V =

484 at β = 2.2 (new

data C., Maas and

Mendes, 2008).
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Infinite-volume limit in 4d (III)

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume V =

804 at β = 2.2.
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Infinite-volume limit in 4d (IV)

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume V =

1284 at β = 2.2.
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Infinite-volume limit in 4d (V)

Gluon propagator as

a function of the lat-

tice momentum p for

lattice volume up to

V = 1284 at β = 2.2.
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Infinite-volume limit in 4d

Average absolute value of
the gluon field at zero mo-
mentum |Ab

µ(0)| (for β =

2.2) as a function of the in-
verse lattice side 1/L (in
fm−1) and extrapolation to
infinite volume. Recall that
D(0) ∝ V

P
µ,b |Ab

µ(0)|2.
We also show the fit of the
data using the Ansatz b/Lc

(with c = 1.99 ± 0.02).
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Violation of reflection positivity in 3d

The transverse gluon propagator decreases in
the IR limit for momenta smaller than pdec,
which corresponds to the mass scale λ in a
Gribov-like propagator p2/(p4 + λ4). We can
estimate pdec = 350+100

−50 MeV.

Clear violation of reflection positivity: this is one
of the manifestations of gluon confinement. In
the scaling region, the data are well described
by a sum of Gribov-like formulas, with a light-
mass scale M1 ≈ 0.74(1)

√
σ = 325(6) MeV

and a second mass scale M2 ≈ 1.69(1)
√

σ =

745(5) MeV .
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Violation of reflection positivity in 4d

Clear violation of re-

flection positivity for

lattice volume V =

1284 at β = 2.2.
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Lower bound for D(0)

We can obtain a lower bound for the gluon propagator at zero

momentum D(0) by considering the quantity

M(0) =
1

d(N2
c − 1)

∑

b,µ

〈|Ab
µ(0)|〉 .

Consider the Cauchy-Bunyakovski-Schwarz inequality

|~x · ~y|2 ≤ ‖~x‖2‖~y‖2, a vector ~y with all components equal to 1 and

a vector ~x with components xi, we find

(
1

m

m∑

i=1

xi

)2

≤
1

m

m∑

i=1

x2
i ,

where m is the number of components of the vectors ~x and ~y.
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Lower bound for D(0) (II)

We can now apply this inequality first to the vector with m = d(N2
c − 1) components

〈|Ab
µ(0)|〉, where

Ab
µ(0) =

1

V

X

x

Ab
µ(x)

is the gluon field at zero momentum. This yields

M(0)2 ≤ 1

d(N2
c − 1)

X

b,µ

〈|Ab
µ(0)|〉2 .

Then, we can apply the same inequality to the Monte Carlo estimate of the average value

〈|Ab
µ(0)|〉 =

1

n

X

c

|Ab
µ,c(0)| ,

where n is the number of configurations. In this case we obtain

〈|Ab
µ(0)|〉2 ≤ 〈|Ab

µ(0)|2〉 .
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Lower bound for D(0) (III)

Thus, by recalling that

D(0) =
V

d(N2
c − 1)

∑

b,µ

〈|Ab
µ(0)|2〉 ,

we find [
V 1/2M(0)

]2

≤ D(0) .

From our fits we obtain that M(0) goes to zero exactly as 1/V 1/2!

This gives D(0) ≥ 0.5(1) (GeV−2) in 3d and D(0) ≥ 2.5(3) (GeV−2) in
4d.
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Lower bound for D(0) (IV)

Fit of M(0) using the Ansatz
B/Lc, with B = 1.0(1) (GeV−2),
c = 1.48(3) and χ/d.o.f. = 1.00 in
3d.

Fit of M(0) using the Ansatz
B/Lc, with B = 1.7(1) (GeV−2),
c = 1.99(2) and χ/d.o.f. = 0.91 in
4d.
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Upper bound for D(0)

We can now consider the inequality

〈
X

µ,b

|Ab
µ(0)|2 〉 ≤ 〈

 X

µ,b

|Ab
µ(0)|

ff2

〉 .

This implies

D(0) ≤ V d(N2
c − 1) 〈M(0)2〉 .

Thus

V 〈M(0)〉
2
≤ D(0) ≤ V d(N2

c − 1) 〈M(0)
2
〉 .

In summary, if M(0) goes to zero as V −α we find that

D(0) → 0, 0 < D(0) < +∞ or D(0) → +∞

respectively if α is larger than, equal to or smaller than 1/2.
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Upper and lower bounds forD(0)

Two-dimensional case: Bl/Lc (for
a〈M(0)〉) and the Ansatz Bu/Le (for
a2〈M(0)2 〉), with Bl = 1.48(6),
c = 1.367(8) and χ/d.o.f. = 1.00

and Bu = 2.3(2), e = 2.72(1) and
χ/d.o.f. = 1.02.

Upper and lower bounds extrapolate to zero, implying D(0) = 0.
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Upper and lower bounds forD(0) (II)

Similarly for 3d: Bu = 1.0(3), e =

2.95(5) and χ/d.o.f. = 0.95.
Similarly for 4d: Bu = 3.1(5), e =

3.99(4) and χ/d.o.f. = 0.96.
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Upper and lower bounds plusD(0)/V

2d case
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Upper and lower bounds plusD(0)/V (II)

3d case 4d case
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Gluon Propagator at Infinite Volume

Gluon propagator in Landau gauge IR finite in 3d and
4d, as a consequence of “self-averaging” of a
magnetization-like quantity [i.e. M(0), without the
absolute value].

May think of D(0) as a response function
(susceptibility) of this observable (“magnetization”). In
this case it is natural to expect D(0) ∼ const in the
infinite-volume limit.

2d case is different, the magnetization is “over
self-averaging”, the susceptibility is zero.
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Results

for the Ghost Propagator

QHsQCD St. Goar March 2008



Upper and Lower Bounds for G(p)

Consider eigenvectors ψi(a, x) and associated eigenvalues λi of the FP matrix
M(a, x; b, y). The ψ’s form a complete orthonormal set

(N2

c −1)VX

i=1

ψi(a, x) ψi(b, y)∗ = δabδxy and
X

a,x

ψi(a, x) ψj(a, x)∗ = δij .

If we now write

M−1(a, x; b, y) =
X

i,λi 6=0

1

λi

ψi(a, x) ψi(b, y)∗ ,

we get for G(p) the expression

G(p) =
1

N2
c − 1

X

i,λi 6=0

1

λi

X

a

〈 | eψi(a, p)|2 〉 ,

where
eψi(a, p) =

1√
V

X

x

ψi(a, x) e−2πik·x .
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Upper and Lower Bounds for G(p) (II)

From the above expression we immediately get for G(p) the lower bound

1

N2
c − 1

1

λmin

X

a

〈 | eψmin(a, p)|2 〉 ≤ G(p)

and the upper bound

G(p) ≤ 1

N2
c − 1

1

λmin

X

i,λi 6=0

X

a

〈 | eψi(a, p) |2〉 .

Now by adding and subtracting the contribution from the null eigenvalue and using the
completeness relation, the upper bound may be rewritten as

G(p) ≤ 1

λmin

2
4 1 − 1

N2
c − 1

X

j,λj=0

X

a

〈 | eψj(a, p) |2〉

3
5 .
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Upper and Lower Bounds for G(p) (III)

In Landau gauge the eigenvectors corresponding to null λ are constant
modes. Thus for any nonzero p we have

1

N2
c − 1

1

λmin

∑

a

〈 |ψ̃min(a, p)|2 〉 ≤ G(p) ≤
1

λmin
.

Now, assuming λmin ∼ N−α and the power-law behavior p−2−2κ for
the IR ghost propagator, we expect to have

2 + 2κ ≤ α

and a necessary condition for IR enhancement of G(p) is

α > 2 .
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Upper bound for G(pmin)

For 2d: 2κ = 0.251(9), α = 2.20(4). For 4d: 2κ = 0.043(8), α = 1.53(2).
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Ghost Propagator at Infinite Volume

From present fits we have α > 2 in 2d

[implying IR enhancement of G(p)], but α < 2

in 4d.

On the other hand the expected relation

2 + 2κ ≤ α is not satisfied, although the upper

bound is.

In 4d the upper bound seems to saturate, so

main contribution comes from λmin.
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Conclusions (our work)

We are able to find simple properties of gluon and
ghost propagators that constrain (by upper and lower
bounds) their IR behavior.

For the gluon case we define a magnetization-like
quantity, while for the ghost case we relate the
propagator to λmin of the FP matrix.

We propose the study of these quantities as a function
of the lattice volume, to gain better control of the
infinite-volume limit of IR propagators.
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From Latticeland to the Continuum
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Conclusions (this workshop)

There are two solutions in the continuum (from functional

methods): the conformal solution and the decoupling

solution.

In 3d and in 4d the lattice gives results in agreement with

the decoupling one. −→ Theoretical imputs from Sorella

and collaborators.

In 2d the lattice results agree with the conformal solution.

−→ The 2d case should be easy to understand.

Gribov copies + discretization (Maas, Von Smekal) could

give us the conformal solution also in 3d and in 4d. −→ How

do we explain two different continuum limits?
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