Baryons in a covariant Faddeev approach

Diana Nicmorus

In collaboration with R. Alkofer, G. Eichmann, A. Krassnigg, M. Schwinzerl

Institut für Kernphysik Technische Universität Darmstadt

> March 2008 St. Goar, Germany

Outline

- Baryonic structure: experimental advances and theoretical efforts. (Motivation)
- Back to fundaments: Poincaré covariant Faddeev equations.
 Ingredients: Quark propagator ... DSEs.
 Diquarks ...BSEs.

Nucleon quark-core: solve a quark-diquark system.

- Calculated by now: M_N , nucleon FF, elmag. radii...
- Outlook (M_{Δ} , $N \to \Delta \gamma$, $\Sigma \to \Lambda \gamma$, π corrections).

Experimental advances

- Baryons are composite objects.
- Electromagnetic interaction: present precise tests of the structure.
- Nucleon electromagnetic form factors, polarizabilities, strangeness content (e^-p scattering).
- Electro- and photoproduction: the proton and its lightest resonance $\Delta(1232)$.

JLab-CEBAF, MIT-BATES, Mainz-MAMI, Brookhaven-LEGS.

Theoretical efforts

 $EMR(\%) = \frac{E2}{M1} = -2.5 \pm 0.5$ (MAMI) $CMR(\%) = \frac{C2}{M1} = -4.81 \pm 0.27$ (LEGS)

Models

Constituent quark models, pion cloud models....

 Covariance, link to effective theories, unified description of light and heavy baryons.

Do we understand the nucleon?

- Models offer a good description of data.Satisfied???
- NO!!!
 A QCD based solution is desired.
- A correct theoretical <u>understanding</u> of the hadron observables begins with the calculation of the Poincaré covariant hadron amplitudes.

The baryon-quark vertex is not trivial!

QCD emergent phenomena: confinement, DCSB ...

Nonperturbative tools

- The nonperturbative solution of the DSEs enable a study of hadrons as composites of dressed-quarks and dressed-gluons.
 C.D. Roberts, M.S. Bhagwat, A. Höll, S.V. Wright, arxiv:0802.0217 (2007).
- BSEs applied to the meson sector.
 Masses, electromagnetic FF, leptonic decay constants...
 (see Andreas Krassnigg's talk).
- Faddeev equations the complicated 3-body problem! Important steps were made for the nucleon.
 - R. Alkofer, A. Höll, M. Kloker, A. Krassnigg, C.D. Roberts, nucl-th/0412046 (2004).
 - M. Oettel, R. Alkofer, L. v. Smekal, nucl-th/0006082 (2000).

Faddeev equations

The foundation of FEs:

observe that the same attractive interaction which describes $1_c^{q\bar{q}}$ mesons also generates $\bar{3}_c^{qq}$ 'diquark' correlations.

Diquarks do not survive as asymptotic states! But qq correlations will always couple as color antitriplet states in a color singlet baryon! $\bar{3}_c^{qq} \times 3_c^q$

- Exploit this feature → view the baryons as composite objects of confined quarks and nonpointlike diquarks.
- The nucleon is bound by an iterative exchange of roles between any of the quarks in the diquark and the dormant quark.
- Numerically: solve a quark-diquark BSE.

How to do it

- A three-quark bound state appears as a pole in the quark 6-point Green-function.

 → homogenous integral equations for the baryon amplitudes.
- Solve iteratively if ingredients are known: quark propagator, three-quark interaction kernel.

$$-\Phi = -K \phi$$

Complicated, but not impossible! Still very complicated!!! So:

 Faddeev approximation: retain only 2-particle interaction kernels.

$$= \underbrace{K_1 \circ \cdots \circ K_2 \circ \cdots \circ K_2 \circ \cdots \circ K_3 \circ \cdots \circ$$

Faddeev equations

Solve numerically a quark-diquark BSE.

- Ingredients: quark propagator, 2-particle interaction kernel.
- Treat the qq correlations in analogy to the $\bar{q}q$ correlations.

Quark propagator

• The dressed quark propagator is the solution of the DSE.

- General form: $S(p) = i \not p \sigma_v(p^2) \sigma_s(p^2) = -\frac{1}{i \not p A(p^2) + B(p^2)}$
- The quark-mass functions reflects the quark dressing by gluons. $M(p^2) = \frac{B(p^2)}{A(p^2)}$
- Correct UV behaviour \rightarrow perturbative quark propagator.
- Solving of the quark DSE implies the knowledge of the dressed quark-gluon vertex and dressed-gluon propagator An infinite tower of DSEs should be solved.
 For practical calculations truncations are needed!

Rainbow-ladder truncation

- A simple, nonperturbative truncation of DSEs. To ensure the implementation of chiral symmetry and its breaking, the kernels of DSE and BSE are related through the Axial-Vector WTI. Any truncation should preserve AV WTI!
- Solve the quark DSE using the rainbow truncation: quark-gluon vertex ansatz $i\Gamma_{\mu} = i\gamma_{\mu} \times \Gamma(k^2)$
- Consistent solution of qq BSE using the ladder truncation: one dressed-gluon exchange ansatz.

Rainbow - ladder truncation

• Assumption for the dressed quark-gluon vertex and dressed-gluon propagator: the gluon dressing $D(k^2)$ and the quark-gluon vertex dressing $\Gamma(k^2)$ are absorbed in an effective running coupling

 $\alpha_{eff}(k^2) \sim D(k^2) \ \Gamma(k^2)$

• Ansatz for the effective coupling ^(a) constrained by the correct UV behaviour $\rightarrow \frac{\pi \gamma_m}{ln \frac{k^2}{\Lambda_{QCD}^2}}$

and strong enough in IR to generate DCSB.

Dressed quark propagator

 $S^{-1}(p,\mu^2) \sim S_0^{-1}(p,\Lambda^2) - \int_q^{\Lambda} d^4q \; \alpha_{eff}(k^2) D_{\mu\nu}^{free} \gamma_{\mu} S(q,\mu^2) i \gamma_{\nu}$

(a) P. Maris, P.C. Tandy Phys. Rev. C 60, 055214 (1999).

M(p) in rainbow approximation

Quark mass function fixed by lattice calculations. P.O. Bowman *et al.* Phys. Rev. D 66, 014505 (2002).

G. Eichman, A. Krassnigg, M. Schwinzerl, R.Alkofer, arxiv:0712.2666

Diquark ingredients

 The two-quark scattering matrix is approximated as a sum over all possible diquark pseudoparticle terms.
 The scalar and the axial-vector correlations are dominant for the ground state octet and decuplet.

 $T_{qq}(p_1, p_2, P) \sim \chi(p_1) D(P) \bar{\chi}(p_2) + \chi^{\mu}(p_1) D^{\mu\nu}(P) \bar{\chi}^{\nu}(p_2)$

The definition of diquarks: two-quark separable correlations.

$$T = \sum x = \overline{x}$$

 Diquark amplitudes on the mass-shell are the solutions of the qq homogenous integral BSE.

$$\chi = -K$$

Diquark ingredients

 Solve using rainbow-ladder truncation: one gluon exchange + vector-like quark-gluon vertex.

The off-shell behaviour of the diquark BSA is parametrized following requirements imposed by the UV behaviour of BSA.

The diquark propagator in ladder approximation.

$$-1 = \Lambda^2 + \overline{\chi}$$

$$D^{-1} = \bar{\chi} \left(K^{-1} - G_0 \right) \chi$$

The on-shell behavior is calculated, the off-shell behaviour is parametrized consistently with the off-shell BSA parametrizations.

The nucleon BSE

 $\Phi(p,P)^{a} = \sum_{b,c} \int \frac{d^{4}k}{(2\pi)^{2}} \chi^{b}(k_{r},k_{d}) S^{T}(q) \,\bar{\chi}^{aT}(p_{r},p_{d}) S(k_{q}) D^{bc}(k_{d}) \Phi(k,P)$

All the ingredients are specified!
 Decomposition of Faddeev amplitudes in Dirac space
 - in explicit calculations use full diquark amplitudes.

Nucleon mass

G. Eichman, A. Krassnigg, M. Schwinzerl, R.Alkofer, arxiv:0712.2666

Lattice data; chiral extrapolation methods.

Electromagnetic interaction

- Ward-Takahashi identity: more than impulse approx. is needed.
 M. Oettel, M.A. Pichowsky, L.v. Smekal, nucl-th/9909082 (2000).
- The electromagnetic transition from Ax. diquark to Sc. diquark satisfies gauge invariance alone.

• General current: $\langle J^{\mu} \rangle = \int \bar{\Phi} \{ D S \Gamma^{\mu}_{q} S + D \Gamma^{\mu}_{diq} D S + D S K^{\mu} S D \} \Phi$

Results

Electromagnetic radii of nucleon

Magnetic moments of nucleon.

$$\begin{array}{|c|c|c|c|c|c|} \mu_p & \mu_n & [n.m] \\ \hline exp & 2.79 & -1.91 \\ calc. & 2.52 & -1.55 \\ \end{array}$$

G. Eichman, A. Krassnigg, M. Schwinzerl, R.Alkofer, arxiv:0712.2666

Summary

- Main message: develop QCD based understanding of the nucleon structure.
- The Poincaré covariant DSE-BSE approach provides a suitable framework to study hadrons as relativistic bound states of quarks and gluons AND to explore QCD emergent phenomena.
- Too many assumptions, truncations, approximations?
 Yes! BUT!
 Baryons are complicated objects the quark-diquark picture describes well nucleon quark-core.
- Rainbow-ladder truncation: consistent solutions of DSE and BSE. Calculation of nucleon static properties.

Progress: from ansätze for quark-quark-diquark vertex and quark propagator to exact solutions of DSE and BSE. No baryon observables as input!

Outlook or Why $N \to \Delta \gamma$?

- Experimentally recent high precise data exists! Theoretically - highly non trivial! The long disputed electromagnetic ratios
 - $\frac{E2}{M1}$, $\frac{C2}{M1}$ are positive and about few %

The naive quark model fails describing these ratios. Improved relativistic versions, one-gluon and one pion-exchange models... do not properly describe the whole body of data (helicity amplitudes, FF). Chiral effective theories: good description, limited range of applicability.

A crucial test for the Faddeev approach.

Outlook or Why $N \to \Delta \gamma$?

• First step:

study the Δ (1232) resonance, a spin $-\frac{3}{2}$ particle, fully flavour symmetric; only the axial-vector correlations will contribute!

By now: using specific ansätze for the quark propagator and the diquark correlations the obtained mass is $M_{\Delta} = 1.004 \div 1.007 \text{ GeV}$

M. Oettel, R. Alkofer, L. von Smekal, Eur. Phys. J. A8: 553-566 (2000)

• Compare to the diagonal $\Sigma \to \Lambda \gamma$ and thus underline the importance of the axial-vector correlations.

Thank you Danke Gracias Grazie Merci **Spasibo** Obrigada Arigato