The CBM experiment at FAIR

Claudia Höhne, GSI Darmstadt

CBM @ FAIR

Outline

- Physics case of CBM
 - experimental status (RHIC, SPS)
 - physics topics, observables for CBM
- CBM detector, examples for
 - feasibility studies
 - R&D

Physics case – keywords

Compressed Baryonic Matter @ FAIR – high μ_{B} , moderate T:

searching for the landmarks of the QCD phase diagram

- first order deconfinement phase transition
- chiral phase transition (high baryon densities!)
- QCD critical endpoint

in A+A collisions from 2-45 AGeV starting in 2015 (CBM + HADES)

High density matter at CBM

- high baryon and energy densities created in central Au+Au collisions
- remarkable agreement between different models
- max. net baryon densities from 5 40 AGeV ~ 1 2 fm⁻³ ~ (6 12) ρ_0 (net baryon density ρ = 1 fm⁻³ ~6 ρ_0)
- max. excitation energy densities from 5 40 AGeV ~ (0.8 6) GeV/fm³ ($\epsilon^* = \epsilon - m_N \rho$, ϵ total energy density)

[CBM physics group]

Physics case (II)

What does theory expect? \rightarrow mainly predictions from lattice QCD:

- crossover transition from partonic to hadronic matter at small μ_{B} and high T
- critical endpoint in intermediate range of the phase diagram
- first order deconfinement phase transition at high μ_{B} but moderate T

Claudia Höhne

Physics case (III)

What do we know from experiment? \rightarrow Heavy-ion collisions:

chemical freeze-out curve

Claudia Höhne

- top SPS, RHIC (high T, low μ_{B}): partonic degrees of freedom ?
- RHIC: first steps towards a quantitative characterization of the medium (gluon density, viscosity, energy loss...)
- lower SPS, AGS (intermediate T- μ_B): intriguing observations around 30 AGeV!

WEHS: Quarks and Hadrons

Introduction: elliptic flow v2

- particle emission pattern in plane transverse to the reaction plane
- initial overlap eccentricity is transformed in momentum anisotropy
- driven by pressure from overlap region
- relation to stiffness of medium (EOS)

Claudia Höhne

Fourier expansion of the dN/d
 distribution:

$$\frac{dN}{d\phi} \sim \left[1 + 2v_1 \cdot \cos(\phi) + 2v_2 \cdot \cos(2\phi)\right]$$

WEHS: Quarks and Hadrons in strc

 V_2

RHIC results (selection)

- all particles (even D-mesons!) flow
- scaling if taking the underlying number of quarks into account!
- flow also seen for charm quarks!
- \rightarrow like (all!) quarks flow and combine to hadrons at a later stage (hadronisation)
- data can only be explained assuming a large, early built up pressure in a nearly ideal liquid (low viscosity!)

RHIC results (selection) (II)

 partons should loose energy in a dense and hot medium

 \rightarrow jet suppression!

 \rightarrow results imply huge gluon densities corresponding to an initial temperature of ~2T_{crit} and ε ~ 14-20 GeV/fm⁻³ in the fireball!

Physics case (III)

What do we know from experiment? \rightarrow Heavy-ion collisions:

- chemical freeze-out curve
- top SPS, RHIC (high T, low μ_{B}): partonic degrees of freedom ?
- RHIC: first steps towars a quantitative characterization of the medium (gluon density, viscosity, energy loss...)
- lower SPS, AGS (intermediate $T-\mu_B$): intriguing observations around 30 AGeV!

Claudia Höhne

WEHS: Quarks and Hadrons

[Andronic et al. Nucl. Phys. A 772, 167 (2006).

SPS results (selection)

- energy dedendence of hadron production
- \rightarrow changes in SPS energy regime
- discussions ongoing:
 - hadron gas \rightarrow partonic phase
 - baryon dominated \rightarrow meson dominated matter

SPS results (selection) (II)

- modification of ρ spectral function, importance of baryons!
- in addition: HADES (1-2 GeV/nucleon) importance of resonances!

Physics case (III)

What do we know from experiment? \rightarrow Heavy-ion collisions:

- chemical freeze-out curve
- top SPS, RHIC (high T, low μ_{B}): partonic degrees of freedom ?
- RHIC: first steps towards a quantitative characterization of the medium (gluon density, viscosity, energy loss...)
- lower SPS, AGS (intermediate T- μ_B): intriguing observations around 30 AGeV!

missing (2-40 AGeV, high ρ_{B} !):

- high precision measurements, systematic investigations, correlations
- \rightarrow energy dependence of RHIC, SPS results!!
- rare probes: charm, dileptons
 → in particularly sensitive to medium!
- charaterize medium quantitatively!

Claudia Höhne

WEHS: Quarks and Hadrons

[Andronic et al. Nucl. Phys. A 772, 167 (2006).

Experimental scan of QCD phase diagram

Within the next years we'll get a **complete scan of the QCD phase diagram** with 2nd generation experiments

- low energy RHIC: bulk observables $\sqrt{s} \sim 10 \text{ GeV} 200 \text{ GeV}$
- CBM: bulk observables **and** rare probes (charm, dileptons) beam energy 10 – 45 GeV/nucleon
- HADES: bulk observables, dileptons beam energy 2 10 GeV/nucleon

Claudia Höhne

WEHS: Quarks and Hadrons

[Andronic et al. Nucl. Phys. A 772, 167 (2006).

CBM: Physics topics and Observables

The equation-of-state at high ρ_B

- collective flow of hadrons
- particle production at threshold energies (open charm)

Deconfinement phase transition at high ρ_{B}

- excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
- charmonium suppression, sequential for J/ ψ and ψ' ?

QCD critical endpoint

• excitation function of event-by-event fluctuations (K/ π ,...)

Onset of chiral symmetry restoration at high ρ_{B}

• in-medium modifications of hadrons $(\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-), D)$

predictions? clear signatures?

- → prepare to measure "everything"
- \rightarrow systematic studies! (pp, pA, AA, energy)

Claudia Höl aim: probe & characterize the medium! - importance of rare probes!!

The CBM Physics Book

Broad Interest by Theory More than 50 theoreticians participating Comprehensive survey of CBM physics

<u>Content</u>

Bulk Properties of Strongly Interacting Matter In-Medium Excitations Collision Dynamics Observables and Predictions The CBM Experiment

Will appear in Break Submission September 2008

Claudia Höhne

WEHS: Quarks and Hadrons in strong QCD, St. Goar, March 2008

S. Spiriture

COMPANY OF THE OWNER.

in Physics

Lecture Notes

CBM: Physics topics and Observables

The equation-of-state at high ρ_{B}

- collective flow of hadrons
- particle production at threshold energies (open charm)

Deconfinement phase transition at high ρ_{B}

- excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c).
- channenium suppression, sequential for J/ψ and ψ¹?

QCD critical endpoint

• excitation function of event-by-event fluctuations (K/ π ,...)

Onset of chiral symmetry restoration at high ρ_{B}

• in-medium modifications of hadrons $(\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-), D)$

Elliptic flow at FAIR

AMPT calculations: C.M. Ko at CPOD 2007

Approximate constituent quark number scaling !

Measure flow for all particles over CBM energy range Claudia I

Collective flow

- \rightarrow stiffness of medium (EOS), pressure
- collapse of elliptic flow of protons at lower energies signal for first order phase transition?! [e.g. Stoecker, NPA 750 (2005) 121, E. Shuryak, hep-ph/0504048]
- full energy dependence needed!

elliptic flow v₂:

initial overlap eccentricity \rightarrow particle azimuthal distributions

Charm production at threshold

CBM will measure charm production at threshold

 \rightarrow after primordial production, the survival, momentum and distribution amongst different hadrons of charm depends on the interactions with the dense and hot medium!

 \rightarrow direct probe of the medium!

• charmonium in hot and dense matter? 10²

relation to deconfinement?

• relation to open charm?

[W. Cassing et al., Nucl. Phys. A 691 (2001) 753]

Claudia Höhne

Probing the QGP with charmonium

Measure excitation functions of J/ ψ and ψ ' in p+p, p+A and A+A collisions !

Claudia Höhne WEHS: Quarks

In medium modification of D

L. Grandchamp, R. Rapp and G. E. Brown, J.Phys. G30 (2004) S1355

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:0708.1488

Mass modifications of D mesons and charmed hyperons affect the ratios ψ'/ψ and charmonium to open charm

Claudia Höhne

CBM: Physics topics and Observables

The equation-of-state at high ρ_B

- collective flow of hadrons
- particle production at threshold energies (open charm)

Deconfinement phase transition at high ρ_{B}

- excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
- charmonium suppression, sequential for J/ ψ and ψ' ?

QCD critical endpoint

excitation function of event-by-event fluctuations (K/π,...)

Onset of chiral symmetry restoration at high ρ_{B}

• in-medium modifications of hadrons ($\rho,\omega,\phi \rightarrow e^+e^-(\mu^+\mu^-)$, D)

Claudia Höhne

ρ – meson

- hadronic properties are expected to be effected by the high density matter
- ρ -meson couples to the medium, direct radiation from the early phase
- vacuum lifetime τ_0 = 1.3 fm/c \rightarrow dileptons = penetrating probe
- connection to chiral symmetry restoration?

p-meson spectral function (II)

"SPS"

"FAIR"

• illustrate sensitivity to modifications caused by the baryonic component of the medium:

 $\rho\text{-meson}$ spectral function weighted by a factor 1/M to resemble the dilepton rate, Bose-factor will further amplify the low-mass part

• region with m < 0.4 GeV/c² of special interest!

CBM: Physics topics and Observables

The equation-of-state at high ρ_B

- collective flow of hadrons
- particle production at threshold energies (open charm)

Deconfinement phase transition at high ρ_{B}

- excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
- charmonium suppression, sequential for J/ ψ and ψ' ?

QCD critical endpoint

• excitation function of event-by-event fluctuations (K/ π ,...)

Onset of chiral symmetry restoration at high ρ_{B}

• in-medium modifications of hadrons $(\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-), D)$

predictions? clear signatures?

- → prepare to measure "everything"
- \rightarrow systematic studies! (pp, pA, AA, energy)

Claudia Höl aim: probe & characterize the medium! - importance of rare probes!!

The CBM experiment

• tracking, momentum determination, vertex reconstruction: radiation hard silicon pixel/strip detectors (STS) in a magnetic dipole field

• photons, π^0 , η : ECAL

- hadron ID: TOF (& RICH)
 PSD for event characterization
 - high speed DAQ and trigger \rightarrow rare probes!
- electron ID: RICH & TRD • **muon ID**: absorber + detector layer sandwich $\rightarrow \pi$ suppression $\geq 10^4$ \rightarrow move out absorbers for hadron runs ECAI TOF TRD RICH absorber detectors magnet STS + MVD

Interaction rates

- FAIR will provide high intensity beams up to 10⁹ ions/s
- high availability of beam due to parallel operation of FAIR
- 1% interaction target \rightarrow 10 MHz interaction rate
- \rightarrow rare probes!

(rates for D limited because of readout speed of silicon pixel detectors)

particle,	N	decay	BR	R/s	Т	3	Y/s	Y/10 w
mass (MeV)		mode		(MHz)		(%)		
ρ (770)	4.6	e+e-	$4.7 \cdot 10^{-5}$	0.025	n	5.4	0.29	$1.8 \cdot 10^{6}$
ρ (770)	4.0	$\mu^+\mu^-$	$4.6 \cdot 10^{-5}$	0.25	у	2.7	1.4	$8.6 \cdot 10^{6}$
D^0 (1864)	$7.5 \cdot 10^{-6}$	$K^{-}\pi^{+}$	0.058	0.1	У	3.25	$8.5 \cdot 10^{-4}$	$5.1 \cdot 10^{3}$
$D_{-}^{0}(1864)$	$7.5 \cdot 10^{-6}$	$K^-\pi^+\pi^+\pi^-$	0.075	0.1	X	0.37	$2.1 \cdot 10^{-4}$	$1.3 \cdot 10^{3}$
$D^{0}(1864)$	$2.3 \cdot 10^{-5}$	$K^+\pi^-$	0.038	0.1	y	3.25	$2.6 \cdot 10^{-3}$	$1.6 \cdot 10^4$
J/ψ (3097)	$3.8 \cdot 10^{-6}$	e ⁺ e ⁻	0.06	1-10	y	14	0.032 - 0.32	$1.9 \cdot 10^{5-6}$
ψ' (3686)	$5.1 \cdot 10^{-8}$	e+e-	7.3 · 10 ⁻³	1-10	y	15	$5.6 \cdot 10^{-(5-4)}$	$3.4 \cdot 10^{2-3}$
J/ψ (3097)	$3.8 \cdot 10^{-6}$	$\mu^{+}\mu^{-}$	0.06	10	y	16	0.36	$2.2 \cdot 10^{6}$
ψ' (3686)	$5.1 \cdot 10^{-8}$	$\mu^+\mu^-$	7.3 · 10	10	y	19	$7.1 \cdot 10^{-4}$	$4.3 \cdot 10^{3}$
BR = branchir	ng ratio	ϵ = efficiency						
T = trigger?		Y/10w = yield in 10 weeks			Goar, March 2008 28			

STS tracking – heart of CBM

Challenge: high track density ≈ 600 charged particles in $\pm 25^{\circ}$

Task

- track reconstruction:
 - 0.1 GeV/c \leq 10-12 GeV/c

 $\Delta p/p \sim 1\%$ (p=1 GeV/c)

- primary and secondary vertex reconstruction (resolution \leq 50 $\mu m)$
- V₀ track pattern recognition

add detectors for particle identification behind the STS

 \rightarrow challenge for di-leptons!

Claudia Höhne

Track reconstruction

• up to ~10⁹ tracks/s in the silicon tracker (10 MHz, ~100 tracks/event)

- \rightarrow fast track reconstruction!
- optimize code
- port to cell processor
- parallel processing

- \rightarrow today: factor 120000 speedup of tracking code achieved!
- long term aim: make use of multicore architectures of new generation graphics cards etc. (port C++ routines to dedicated hardware!)

Claudia Höhne

D-meson Simulations

- CbmRoot simulation framework, GEANT3 implemented through VMC
- full event reconstruction: track reconstruction, particle-ID (RICH, TRD, TOF), 2ndary vertex finder
- feasibility studies: central Au+Au collisions at 25 AGeV beam energy (UrQMD)

- several channels studied: D⁰, D[±], D_s, Λ_{c}

Micro Vertex Detecor (MVD) Development

Artistic view of the MVD

Silicon Tracking Station (STS) R&D

Challenges of the di-electron measurement

- clean electron identification (π suppression $\ge 10^4$)
- large background from physical sources
 - γ -conversions in target and STS, π^0 Dalitz decays
 - \rightarrow use excellent tracking and two hit resolution (\leq 100 μ m) in first pixel detectors in order to reject this background:
 - \rightarrow optimize detector setup (STS, B-field), use 1‰ interaction target

RICH

high ring densities and interaction rates \rightarrow MAPMTs + fast self triggered read out electronics

TRD

high rates! \rightarrow reduce gas gap

Claudia Höhne

WEHS: Quarks and Hadrons in strong

Challenges of the di-muon measurement

• major background from π ,K decays into $\mu\nu$, punch through of hadrons and track mismatches

- \rightarrow use TOF information to reject punch through K,p
- \rightarrow compact layout to minimize K, π decays
- \rightarrow use excellent tracking to reject π ,K decays in the STS by kink detection

35

 \rightarrow absorber-detector sandwich for continous tracking

• low momentum μ!

Low mass vector mesons

25 AGeV

central AuAu

invariant mass spectra

- electrons: pt > 0.2 GeV/c background dominated by physical sources (75%), 1‰ int. target
- muons: intrinsic p>1.5 GeV cut (125 cm Fe absorber), background dominated by misidentified muons, 1% int. target

J/ψ and ψ'

25 AGeV central AuAu

invariant mass spectra

- electrons: p < 13 GeV/c, pt > 1.2 GeV, 1‰ interaction target (25 μ m Au)
- muons: 225 cm Fe absorber, pt > 1 GeV/c, 1% int. target

Annual yields at RHIC II and LHC

Summary – physics of CBM

CBM@FAIR – high μ_{B} , moderate T:

- searching for the landmarks of the QCD phase diagram
 - first order deconfinement phase transition
 - chiral phase transition
 - QCD critical endpoint
- \rightarrow systematic measurements, rare probes

CBM collaboration

<u>China:</u>

CCNU Wuhan USTC Hefei

Croatia:

University of Split RBI, Zagreb

Cyprus:

Nikosia Univ.

Czech Republic:

CAS, Rez Techn. Univ. Prague

France:

IPHC Strasbourg

Germany:

Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim

Univ. Münster FZ Rossendorf GSI Darmstadt

Hungaria:

KFKI Budapest Eötvös Univ. Budapest

India:

Aligarh Muslim Univ., Aligarh IOP Bhubaneswar Panjab Univ., Chandigarh Univ. Rajasthan, Jaipur Univ. Jammu, Jammu IIT Kharagpur SAHA Kolkata Univ Calcutta, Kolkata VECC Kolkata Univ. Kashmir, Srinagar Banaras Hindu Univ., Varanasi

Korea:

Korea Univ. Seoul Pusan National Univ.

Norway:

Univ. Bergen

Poland:

Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Nucl. Phys. Inst. Krakow

Portugal:

LIP Coimbra

Romania: NIPNE Bucharest

Russia:

IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst. Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U.

Ukraine:

Shevchenko Univ., Kiev

51 institutions, > 400 members

