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The question we want to address:

e At zero temperature QCD shows two characteristic features:

— Quarks are confined.
— Chiral symmetry is broken: (1)1)) # 0.

e QCD has a phase transition at some critical temperature T, where:

— Quarks become deconfined.
— Chiral symmetry is restored: (1)) = 0.

Is there an underlying mechanism that links the two key features of QCD?



A possible approach

e Confinement and chiral symmetry breaking both should leave a trace in
properties of the Dirac operator D, since D! describes the propagation
of quarks.

e For chiral symmetry breaking the Banks-Casher formula connects the
order parameter (y¢) to IR properties of the Dirac spectrum.

e Concerning confinement it is not even clear where to look in the spectrum,
in the UV or the IR part.

e Maybe through analyzing spectral properties of D one can find a link
between confinement and chiral symmetry breaking.

e The lattice formulation provides a suitable framework (rigorously defined)
which allows for both, analytical and numerical approaches.
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Chiral symmetry breaking and Dirac spectrum

e The Banks Casher formula relates the chiral condensate to the spectral
density of the Dirac operator at the origin.

(V) = —7p(0)

e At the QCD phase transition a gap opens up in the spectrum and the
chiral condensate vanishes.
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Center symmetry and Polyakov loops
e The gauge action is invariant under center transformations ( z € Z3 ):

V$4:t0

Uy(x) — zUy(x)

e The deconfinement transition of pure gauge theory can be described as

spontaneous breaking of the center symmetry.

e The Polyakov loop transforms non-trivially and is an order parameter.
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The Dirac operator on the lattice

e Discretized Dirac operator on the lattice
;A
~ 9 Z [ ) Oavjp,y — Un(® — /l)T 596/1,1/}

e The gauge links
UM(LC) _ 6iaAM(av)
e are the objects we need for the Polyakov loop
L(F) = tr, [JULZ.1)

e The gauge links appear in hopping terms that connect nearest neighbors
on the lattice.



Fermion propagators and loops

e The chiral condensate has an expansion in terms of loops:
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e A change of the temporal boundary conditions
Uz, N;) — zUy(Z,Ny) , 2z =¢% e U(1)

affects only loops that wind non-trivially around compact time.

e Fourier transformation of ¢ allows one to project to the equivalence class
of loops that wind exactly once: Dressed Polyakov Loops



Graphical representation
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Dual chiral condensate = dressed Polykov loop

e Fourier transformation with respect to the boundary condition connects
the order parameters for confinement and for chiral symmetry breaking:
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e The representation as a spectral sum of Dirac eigenvalues allows one to
study the role of IR and UV eigenmodes for the mechanisms of confine-
ment and chiral symmetry breaking.




The Dressed Polyakov Loop is dominated by IR modes
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The Dressed Polyakov Loop is an order parameter
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Results from different lattices fall on a universal curve.
— Good scaling and renormalization properties.



Spectral properties at the phase transition
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The confined and deconfined phases give rise to a different response of the
IR part of the Dirac spectrum to changing boundary conditions.



Generalization of the Banks-Casher formula

e Having identified the connection between spectral properties and the
dressed Polyakov loops, we can now formulate the physical picture in
terms of a generalized Banks-Casher relation.

e Performing lim,, .o limy _, o, we find:
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e How does the spectral density p(0), at the origin have to behave as a
function of ¢ such that:

—<@¢>1 =0 below T,

—<@¢>1 > 0 above T,



Spectral density below T,
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Below T, the spectral density p(0), is independent of the boundary angle ¢.



Spectral gap above T,
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Emerging picture for the generalized Banks-Casher formula

e The spectral density at the origin, p(0),, behaves as (6 denotes the phase
of the Polyakov loop):

p(0), = const below T,

p(0), o< d(p+0) above T,

e The dual chiral condensate is given by:
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e And behaves correctly as:

—<E¢>1 — 0 belowT,

—<E¢>1 > 0 above T,



Summary

e Fourier transforming the chiral condensate with respect to the fermionic
boundary condition we define the Dual Chiral Condensate.

e The dual chiral condensate is an order parameter for center symmetry,
interpreted as Dressed Polyakov Loops.

e The dual condensate can be represented as a spectral sum of Dirac eigen-
values which is dominated by the IR modes.

e At the phase transition the behavior of the low-lying eigenvalues changes:
1. The chiral transition is signalled by a change from a non-zero to a

vanishing density (Banks-Casher).

2. The deconfinement transition is manifest in a different response of
the eigenvalues to a change in the temporal boundary conditions.



Summary (continued)

e Most elegantly the results are expressed as a generalized Banks-Casher
formula for the dual condensate:
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1. In the confined phase we have a non-vanishing spectral density p(0),,
at the origin which is independent of the boundary conditions.

2. Above T, the spectral gap has a non-trivial dependence on the phase
between boundary condition and Polyakov loop and p(0), o d(¢+6).

Chiral symmetry breaking and confinement are, via a duality transformation,
connected to closely related spectral properties of the IR Dirac spectrum.

Link between confinement and chiral symmetry breaking?



