FTH Zürich

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thermal lattice QCD as a spin model

Jens Langelage

ETH Zürich

in collaboration with:

Georg Bergner, Michael Fromm, Stefano Lottini, Mathias Neuman, Owe Philipsen, Wolfgang Unger

Jens Langelage

Phase diagram in the quark mass plane

ETH Zürich

Jens Langelage

Thermal lattice QCD	Deconfinement transition	Cold, dense matter	Outlook
Outline			

- Define effective theory by integrating out spatial degrees of freedom
- Effective theory can be simulated very fast by different algorithms
- No solution to the sign problem, but a huge reduction of its severity
- Disadvantage: Expansion starts from the unphysical strong coupling and infinite quark mass region

(日) (同) (三) (三)

ETH Zürich

Starting point: QCD with Wilson's Action

Partition function

$$Z = \int [dU_0][dU_k] \exp\left[\frac{\beta}{3} \sum_p \operatorname{Re} \operatorname{Tr} U_p\right] \qquad \beta = \frac{6}{g^2}$$

Plaquettes consist of 4 links: $U_{\mu}(x) = \exp\left[iagA_{\mu}(x)\right]$

• Expansion in $\beta \doteq$ Strong coupling expansion

Jens Langelage

< ロ > < 同 > < 回 > < 回

ETH Zürich

Starting point: QCD with Wilson's Action

 Quark part after Grassmann integration (per flavor and omitting spin and color indices):

$$e^{S_q} = \det \left[\delta_{xy} - \kappa \sum_{\pm \nu} (1 + \gamma_{\nu}) U_{\nu}(x) \, \delta_{x,y-\hat{\nu}} \right] \qquad \kappa = \frac{1}{8 + 2am}$$

Expansion in $\kappa \doteq$ Hopping parameter expansion

 \rightarrow Everything is expressed in link variables \in SU(3)

Physical observables are functions of (β, κ). Here we expand around (β = 0, κ = 0), i.e. infinite coupling and quark mass

• • • • • • • • • • • • •

FTH Zürich

- Graphical expansion: Build graphs of plaquette and link variables
- \blacksquare Plaquettes contribute a factor of β
- Quark hops contribute a factor of κ
- Integrate over all link variables

Thermal lattice QCD

Finite temperature:

- Compactified time direction
- Periodic boundary conditions for bosons
- Antiperiodic boundary conditions for fermions
- Order parameter: Polyakov loop

$$\operatorname{Tr} W(\vec{x}_i) = \operatorname{Tr} \prod_{\tau=1}^{N_{\tau}} U_0(\tau, \vec{x}_i) = L(\vec{x}_i) = L_i$$

Finite chemical potential:

Modified temporal hopping parameter

$$\kappa \rightarrow \kappa e^{a\mu}$$
 positive direction
 $\kappa \rightarrow \kappa e^{-a\mu}$ negative direction

3 →

ETH Zürich

Integrating out spatial link variables: Defines effective action

$$Z=\int [dU_0][dU_k]e^{\mathcal{S}_{
m g}+\mathcal{S}_q}\equiv\int [dU_0]e^{\mathcal{S}_{
m eff}}$$

Advantages:

- S_{eff} depends only on Polyakov loops; (3+1)d theory can be reduced to effective 3d theory
- Complex numbers instead of group elements
- Disadvantages:
 - Infinite number of effective interaction terms and couplings
 - Couplings only known to some order from strong coupling and hopping parameter expansion

<ロ> <回> <回> <三> <三> <三>

FTH Zürich

< ロ > < 同 > < 三 > < 三

FTH Zürich

Leading order effective theory

Quark part

- Neglect spatial plaquettes and spatial quark hops
 The spatial integrations can be calculated exactly
 The spatial plaquet has no spatial link dependence at all
- The quark part has no spatial link dependence at all

$$e^{S_q} = \prod_i \det \left[1 + h_1 W_i\right]^2 \left[1 + \overline{h}_1 W_i^{\dagger}\right]^2$$

Effective coupling: h₁(κ, μ) = (2κe^μ)^{N_τ} = h
₁(κ, -μ)
 Further simplification (in case of SU(3)):

$$\det\left[1+h_1W\right] = 1+h_1L+h_1^2L^*+h_1^3$$

Jens Langelage

• • • • • • • •

Leading order effective theory

Gauge part

• Chain of N_{τ} plaquettes in the same representation

Nearest neighbor Polyakov Loop interaction

Jens Langelage Thermal lattice QCD as a spin model ETH Zürich

(日) (同) (三) (三)

Leading order effective theory: Remarks

$$Z = \int [dW] \prod_{i} \det \left[1 + h_1 W_i \right]^2 \left[1 + \overline{h}_1 W_i^{\dagger} \right]^2 \prod_{\langle ij \rangle} \left[1 + 2\lambda_1 \operatorname{Re} L_i L_j^* \right]$$

- \blacksquare Simulation yields critical h_1^c and $\lambda_1^c \quad \to \quad \beta^c$ and κ^c
- Can be done for each N_{τ} , need h_1^c and λ_1^c only once
- The well-known SU(3) spin model is the first order approximation to this
- Spatial plaquettes and quark hops contribute higher orders to the leading couplings and introduce new interaction terms

Solving the effective theory: Pure gauge theory

• Solve effective partition function for λ_1^c

$$Z = \int [dL] e^{V(L)} \prod_{\langle ij \rangle} \left[1 + \lambda_1 \left(L_i L_j^* + L_i^* L_j \right) \right]$$

• We get $\lambda_1^c = 0.18805(2)$

• Use this value to convert to $\beta_c(N_{\tau})$

$$\lambda_1(\beta, N_{\tau}) = \left(\frac{\beta}{2N_c^2}\right)^{N_{\tau}} \exp\left[N_{\tau}\left(P(\beta)\right)\right]$$

Crucial point: Knowledge of λ₁ as a function of β and N_τ
 Polynomial P(β) known up to O(β¹²)

ETH Zürich

Deconfinement transition

Evolution of $\beta^{c}(N_{\tau})$ for different truncations and SU(2)

Jens Langelage

Deconfinement transition

Evolution of $\beta^{c}(N_{\tau})$ for different truncations and SU(2)

Jens Langelage

< (17) > <

ETH Zürich

Comparison with full simulations *sU*(2)

$N_{ au}$	3d Eff. Th.	4d YM
2	2.1929(13)	2.1768(30)
4	2.3102(08)	2.2991(02)
6	2.4297(05)	2.4265(30)
8	2.4836(03)	2.5104(02)
12	2.5341(02)	2.6355(10)
16	2.5582(02)	2.7310(20)

4d Monte Carlo results taken from [Fingberg et al. (1992), Bogolubsky et al. (2004) and Velytsky (2007)]

・ロト ・回ト ・ヨト・

ETH Zürich

Comparison with full simulations *su*(3)

$N_{ au}$	3d Eff. Th	4d YM
2	5.1839(2)	5.10(5)
4	6.09871(7)	5.6925(2)
6	6.32625(4)	5.8941(5)
8	6.43045(3)	6.001(25)
12	6.52875(2)	6.268(12)
16	6.57588(1)	6.45(5)

4d Monte Carlo results taken from [Fingberg et al. (1992)]

Jens Langelage

ETH Zürich

Fermionic corrections: Examples

• Corrections to the leading coupling: $\mathcal{O}(\kappa^{N_{\tau}+2}u)$

 \longrightarrow Deconfinement transition

• New interaction terms: $\mathcal{O}(\kappa^{2N_{\tau}+2})$

Jens Langelage

Deconfinement transition: $\mu = 0$

• Use the leading order effective theory and $\overline{h}_1 = h_1$

$$Z = \int [dW] \prod_{i} \det \left[1 + h_1 W_i \right]^2 \left[1 + h_1 W_i^{\dagger} \right]^2 \prod_{\langle ij \rangle} \left[1 + 2\lambda_1 \operatorname{Re} L_i L_j^* \right]$$

- With increasing h₁, the transition turns from first order to crossover at a second order endpoint
- Corrections of higher interaction terms negligible

Jens Langelage

• • • • • • • • • • • • • •

ETH Zürich

Deconfinement transition: $\mu = 0$

Comparison with other approaches

Comparison with 4d simulations

• Conversion to quark masses via $\kappa = \frac{1}{2}e^{-aM_q}$

N _f	M_c/T	$\kappa_c(N_{\tau}=4)$	$\kappa_{c}(4)$, Ref. [1]	$\kappa_{c}(4)$, Ref. [2]
1	7.22(5)	0.0822(11)	0.0783(4)	~ 0.08
2	7.91(5)	0.0691(9)	0.0658(3)	-
3	8.32(5)	0.0625(9)	0.0595(3)	-

Table : Location of the critical point for $\mu = 0$ and $N_{\tau} = 4$. Existing literature: [1] Saito et al. (2011), [2] Alexandrou et al. (1998)

Deconfinement transition: $\mu \neq 0$

$$Z = \int [dW] \prod_{i} \left[1 + h_1 L_i \right]^2 \left[1 + \overline{h}_1 L_i^* \right]^2 \prod_{\langle ij \rangle} \left[1 + 2\lambda_1 \operatorname{Re} L_i L_j^* \right]$$

- Metropolis algorithm: Mild sign problem
- Worm algorithm: No sign problem

Comparison of the two algorithms: Quark number density for $\frac{\mu}{T} = 1; 2$

Deconfinement transistion: $\mu \neq 0$

Critical $\frac{M}{T}$ for all chemical potentials

<ロ> <四> <四> <日> <日> <日</p>

ETH Zürich

Deconfinement transition: $\mu \neq 0$

3d columbia plot

Cold and dense matter

• $T \simeq 0$ is at finite *a* realized by large $N_{ au}$

$$\lambda_1(eta=5.7, N_{ au}=115) \sim 10^{-27}$$

- $\blacksquare \Rightarrow$ Effective gauge part can be neglected
- Not to be confused with strong coupling limit: λ_1 is small, not β
- Effective theory then reads:

$$Z = \int [dW] \prod_{i} \det \left[1 + h_1 W_i \right]^2 \left[1 + \overline{h}_1 W_i^{\dagger} \right]^2$$

No interactions, single-site problem: Can be solved analytically

Image: A math a math

Cold and dense matter

Interactions

Leading interaction term:

 This graph alone spoils baryon saturation at large densities: Need to resum all winding numbers

Jens Langelage

Cold and dense matter Results:

Transition to nuclear matter:

- Not yet clear, if this happens at T = 0 or T > 0 (as in nature)
- Binding energy exponentially suppressed with pion mass (~ 20GeV in our truncation)

Jens Langelage

- Measure effective couplings nonperturbatively
- Ansatz for full effective action after spatial link integration:

$$e^{S_{\text{eff}}} = \sum_{\{r_i\}} c\left(\{r_i\}\right) \prod_i \chi_{r_i}(W_i)$$
$$= c(\{0\}) \left[1 + \sum_{\{r_i\}} \lambda\left(\{r_i\}\right) \prod_i \chi_{r_i}(W_i)\right]$$

• Using character orthogonality λ_i are obtainable, e.g

$$c(\{0\}) = \int [dW] e^{S_{\text{eff}}} = \int [dW] [dU_i] e^S = Z$$

$$\lambda_1 = \frac{1}{Z} \int [dW] e^{S_{\text{eff}}} \chi_f(W_i) \chi_{\bar{f}}(W_j) = \langle L_i L_j^* \rangle$$

ETH Zürich

Jens Langelage

- Neglect higher order interaction terms
- Goal: Reduce remaining uncertainty for SU(3)

ETH Zürich

Jens Langelage

- Constructed effective theory with much milder sign problem
- In good agreement with full simulations, where comparison is possible (heavy quarks)
- Gauge part seems to be under control especially with nonperturbatively extracted effective couplings
- Fermionic sector more complicated (as always) due to the 4d simulations involved
- Main advantage: Dependence of the couplings on chemical potential is trivial, determination at $\mu = 0$ suffices

<ロ> <回> <回> <三> <三> <三>

Thank you for your attention

Jens Langelage Thermal lattice QCD as a spin model

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ → < ∃</p>

Backup slides

Jens Langelage Thermal lattice QCD as a spin model

ETH Zürich

- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim u^{N_{\tau}}$

イロト イヨト イヨト イ

ETH Zürich

Essence: Starting with leading order graph and attach an increasing number of plaquettes

• Example
$$\sim N_{ au} u^{N_{ au}+4}$$

< 🗗 🕨

-

ETH Zürich

- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim N_{\tau} u^{N_{\tau}+6}$

・ロト ・回 ・ ・ ヨト

ETH Zürich

- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim N_{ au} u^{N_{ au}+8}$

・ロト ・回 ・ ・ ヨト

ETH Zürich

- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim N_{\tau} u^{N_{\tau}+10}$

・ロト ・回 ・ ・ ヨト

ETH Zürich

Essence: Starting with leading order graph and attach an increasing number of plaquettes

• Example $\sim \frac{1}{2}N_{\tau}^2 u^{N_{\tau}+8}$

イロト イヨト イヨト イ

ETH Zürich

Repetitions of these decorations exponentiate

$$\lambda_1(u, N_{\tau}) = u^{N_{\tau}} \exp\left[N_{\tau}\Big(P_{N_{\tau}}(u)\Big)\right]$$

• E.g.
$$SU(2)$$
 up to $\mathcal{O}(u^{12})$ and $N_{\tau} \ge 6$:
 $P(u) = 4u^4 - 4u^6 + \frac{140}{3}u^8 - \frac{37664}{405}u^{10} + \frac{863524}{1215}u^{12}$

ETH Zürich

• $P(u, N_{\tau} < 6)$ also known to this order

Jens Langelage