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Phase diagram in the quark mass plane
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Outline

Define effective theory by integrating out spatial degrees of
freedom

Effective theory can be simulated very fast by different
algorithms

No solution to the sign problem, but a huge reduction of its
severity

Disadvantage: Expansion starts from the unphysical strong
coupling and infinite quark mass region
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Starting point: QCD with Wilson’s Action

Partition function

Z =

∫
[dU0][dUk ] exp

[
β

3

∑
p

ReTrUp

]
β =

6

g2

Plaquettes consist of 4 links: Uµ(x) = exp
[
iagAµ(x)

]

Uν(x + µ̂)

Uµ(x)

U†µ(x + ν̂)

U†ν(x)

Expansion in β =̂ Strong coupling expansion
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Starting point: QCD with Wilson’s Action

Quark part after Grassmann integration (per flavor and
omitting spin and color indices):

eSq = det

[
δxy − κ

∑
±ν

(1 + γν)Uν(x) δx ,y−ν̂

]
κ =

1

8 + 2am

Expansion in κ =̂ Hopping parameter expansion

ψx ψx+ν̂

Uν(x)

→ Everything is expressed in link variables ∈ SU(3)
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Series expansion

Physical observables are functions of (β, κ). Here we expand
around (β = 0, κ = 0), i.e. infinite coupling and quark mass

Graphical expansion: Build graphs of plaquette and link
variables

Plaquettes contribute a factor of β

Quark hops contribute a factor of κ

Integrate over all link variables
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Thermal lattice QCD

Finite temperature:

Compactified time direction
Periodic boundary conditions for bosons
Antiperiodic boundary conditions for fermions
Order parameter: Polyakov loop

TrW (~xi ) = Tr

Nτ∏
τ=1

U0(τ, ~xi ) = L(~xi ) = Li

Finite chemical potential:

Modified temporal hopping parameter

κ → κeaµ positive direction

κ → κe−aµ negative direction
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The effective action

Integrating out spatial link variables: Defines effective action

Z =

∫
[dU0][dUk ]eSg+Sq ≡

∫
[dU0]eSeff

Advantages:

Seff depends only on Polyakov loops; (3+1)d theory can be
reduced to effective 3d theory
Complex numbers instead of group elements

Disadvantages:

Infinite number of effective interaction terms and couplings
Couplings only known to some order from strong coupling and
hopping parameter expansion
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Leading order effective theory
Quark part

Neglect spatial plaquettes and spatial quark hops
→ The spatial integrations can be calculated exactly

The quark part has no spatial link dependence at all

eSq =
∏
i

det
[
1 + h1 Wi

]2[
1 + h1 W

†
i

]2

Effective coupling: h1(κ, µ) = (2κeµ)Nτ = h1(κ,−µ)

Further simplification (in case of SU(3)):

det
[
1 + h1W

]
= 1 + h1 L + h2

1 L
∗ + h3

1
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Thermal lattice QCD as a spin model



Thermal lattice QCD Effective action Deconfinement transition Cold, dense matter Outlook

Leading order effective theory
Gauge part

Chain of Nτ plaquettes in the same representation

r r r r

r

r

Nearest neighbor Polyakov Loop interaction
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Leading order effective theory: Remarks

Z =

∫
[dW ]

∏
i

det
[
1 + h1 Wi

]2[
1 + h1 W

†
i

]2 ∏
<ij>

[
1 + 2λ1Re LiL

∗
j

]
Simulation yields critical hc1 and λc1 → βc and κc

Can be done for each Nτ , need hc1 and λc1 only once

The well-known SU(3) spin model is the first order
approximation to this

Spatial plaquettes and quark hops contribute higher orders to
the leading couplings and introduce new interaction terms
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Solving the effective theory: Pure gauge theory

Solve effective partition function for λc1

Z =

∫
[dL]eV (L)

∏
<ij>

[
1 + λ1

(
LiL
∗
j + L∗i Lj

)]
We get λc1 = 0.18805(2)

Use this value to convert to βc(Nτ )

λ1(β,Nτ ) =

(
β

2N2
c

)Nτ

exp

[
Nτ
(
P(β)

)]
Crucial point: Knowledge of λ1 as a function of β and Nτ

Polynomial P(β) known up to O(β12)
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Deconfinement transition
Evolution of βc(Nτ ) for different truncations and SU(2)
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Deconfinement transition
Evolution of βc(Nτ ) for different truncations and SU(2)
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Comparison with full simulations
SU(2)

Nτ 3d Eff. Th. 4d YM

2 2.1929(13) 2.1768(30)
4 2.3102(08) 2.2991(02)
6 2.4297(05) 2.4265(30)
8 2.4836(03) 2.5104(02)

12 2.5341(02) 2.6355(10)
16 2.5582(02) 2.7310(20)

4d Monte Carlo results taken from [Fingberg et al. (1992),
Bogolubsky et al. (2004) and Velytsky (2007)]
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Comparison with full simulations
SU(3)

Nτ 3d Eff. Th 4d YM

2 5.1839(2) 5.10(5)
4 6.09871(7) 5.6925(2)
6 6.32625(4) 5.8941(5)
8 6.43045(3) 6.001(25)

12 6.52875(2) 6.268(12)
16 6.57588(1) 6.45(5)

4d Monte Carlo results taken from [Fingberg et al. (1992)]
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Fermionic corrections: Examples

Corrections to the leading coupling: O(κNτ+2u)

−→ Deconfinement transition

New interaction terms: O(κ2Nτ+2)

−→ Cold, dense matter
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Deconfinement transition: µ = 0

Use the leading order effective theory and h1 = h1

Z =

∫
[dW ]

∏
i

det
[
1 + h1 Wi

]2[
1 + h1 W

†
i

]2 ∏
<ij>

[
1 + 2λ1Re LiL

∗
j

]

With increasing h1,
the transition turns
from first order to
crossover at a second
order endpoint

Corrections of higher
interaction terms
negligible  0.1855
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Linear fit

Critical point
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Deconfinement transition: µ = 0
Comparison with other approaches

Comparison with 4d simulations

Conversion to quark masses via κ = 1
2e
−aMq

Nf Mc/T κc(Nτ = 4) κc(4), Ref. [1] κc(4), Ref. [2]

1 7.22(5) 0.0822(11) 0.0783(4) ∼ 0.08
2 7.91(5) 0.0691( 9) 0.0658(3) –
3 8.32(5) 0.0625( 9) 0.0595(3) –

Table : Location of the critical point for µ = 0 and Nτ = 4. Existing
literature: [1] Saito et al. (2011), [2] Alexandrou et al. (1998)
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Deconfinement transition: µ 6= 0

Z =

∫
[dW ]

∏
i

[
1 + h1 Li

]2[
1 + h1 L

∗
i

]2 ∏
<ij>

[
1 + 2λ1Re LiL

∗
j

]
Metropolis algorithm: Mild sign problem
Worm algorithm: No sign problem

Comparison of the two
algorithms: Quark
number density for
µ
T = 1; 2
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Deconfinement transistion: µ 6= 0
Critical M

T
for all chemical potentials
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Deconfinement transition: µ 6= 0
3d columbia plot
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Cold and dense matter

T ' 0 is at finite a realized by large Nτ

λ1(β = 5.7,Nτ = 115) ∼ 10−27

⇒ Effective gauge part can be neglected

Not to be confused with strong coupling limit:
λ1 is small, not β

Effective theory then reads:

Z =

∫
[dW ]

∏
i

det
[
1 + h1 Wi

]2[
1 + h1 W

†
i

]2

No interactions, single-site problem: Can be solved analytically
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Cold and dense matter
Interactions

Leading interaction term:

This graph alone spoils baryon saturation at large densities:
Need to resum all winding numbers
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Cold and dense matter
Results:

Transition to nuclear matter:

 0
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T =    5 MeV

T = 2.5 MeV

Not yet clear, if this happens at T = 0 or T > 0 (as in nature)
Binding energy exponentially suppressed with pion mass (∼
20GeV in our truncation)
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Thermal lattice QCD as a spin model



Thermal lattice QCD Effective action Deconfinement transition Cold, dense matter Outlook

Recent developments:

Measure effective couplings nonperturbatively

Ansatz for full effective action after spatial link integration:

eSeff =
∑
{ri}

c
({

ri
})∏

i

χri (Wi )

= c({0})

1 +
∑
{ri}

λ
({

ri
})∏

i

χri (Wi )


Using character orthogonality λi are obtainable, e.g

c({0}) =

∫
[dW ]eSeff =

∫
[dW ][dUi ]e

S = Z

λ1 =
1

Z

∫
[dW ]eSeffχf (Wi )χf̄ (Wj) = 〈LiL∗j 〉
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Recent developments:

Neglect higher order interaction terms
Goal: Reduce remaining uncertainty for SU(3)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0  2  4  6  8  10  12  14  16

β
c

Nτ

βc(Nτ) for various truncations in u

4d MC

u
10

nonpert

Jens Langelage ETH Zürich
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Conclusions

Constructed effective theory with much milder sign problem

In good agreement with full simulations, where comparison is
possible (heavy quarks)

Gauge part seems to be under control especially with
nonperturbatively extracted effective couplings

Fermionic sector more complicated (as always) due to the 4d
simulations involved

Main advantage: Dependence of the couplings on chemical
potential is trivial, determination at µ = 0 suffices
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Thank you for your attention
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Backup slides
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Gauge corrections
Corrections to the leading coupling λ1

Essence: Starting with leading order graph and attach an
increasing number of plaquettes

Example ∼ uNτ
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Gauge corrections
Corrections to the leading coupling λ1

Essence: Starting with leading order graph and attach an
increasing number of plaquettes

Example ∼ Nτu
Nτ+4
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Gauge corrections
Corrections to the leading coupling λ1

Essence: Starting with leading order graph and attach an
increasing number of plaquettes

Example ∼ Nτu
Nτ+6
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Gauge corrections
Corrections to the leading coupling λ1

Essence: Starting with leading order graph and attach an
increasing number of plaquettes

Example ∼ Nτu
Nτ+8
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Gauge corrections
Corrections to the leading coupling λ1

Essence: Starting with leading order graph and attach an
increasing number of plaquettes

Example ∼ Nτu
Nτ+10
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Gauge corrections
Corrections to the leading coupling λ1

Essence: Starting with leading order graph and attach an
increasing number of plaquettes

Example ∼ 1
2N

2
τ u

Nτ+8
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Gauge corrections
Corrections to the leading coupling λ1

Repetitions of these decorations exponentiate

λ1(u,Nτ ) = uNτ exp

[
Nτ
(
PNτ (u)

)]
E.g. SU(2) up to O(u12) and Nτ ≥ 6:

P(u) = 4u4 − 4u6 +
140

3
u8 − 37664

405
u10 +

863524

1215
u12

P(u,Nτ < 6) also known to this order
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Thermal lattice QCD as a spin model


