New developments for fugacity expansion in lattice QCD

Hans-Peter Schadler

In cooperation with Christof Gattringer

University of Graz Institute of Physics, Division of Theoretical Physics

St. Goar, Germany 20.03.2013

(Lattice) QCD at finite chemical potential - 1

- Nature: Big bang, neutron stars.
- Experiment: Heavy-ion collisions @ RHIC, LHC.
- Temperature driven phase transition of QCD is well understood (ab initio information from lattice methods).
- At finite baryon chemical potential: Lattice QCD has sign problem.
- The Boltzmann factor becomes negative/complex and we cannot use usual Monte Carlo techniques.

- Different approaches: Reweighting, Taylor expansion, dual variables.
- Here: Fugacity expansion.
- Fugacity expansion has different properties than Taylor expansion (Laurent- v.s. Taylor-series and finite sum for finite V).
- Interesting physics in the expansion coefficients (canonical partition sums).

The grand canonical determinant with real chemical potential μ can be written as the fugacity series (exact for $q_{\text{cut}} = 6 V$)

$$\det[D(\mu)] = \sum_{q=-q_{\text{cut}}}^{q_{\text{cut}}} e^{\mu\beta q} D^{(q)},$$

 $D^{(q)}$: Canonical determinants with net quark number q,

$$D^{(q)} = rac{1}{2\pi}\int_{-\pi}^{\pi} d\phi \ e^{-iq\phi} \det[D(\mu\beta=i\phi)] \ .$$

Fourier integral is done numerically $\Rightarrow q_{cut} \ll 6 V$.

Behavior of the canonical determinants

Observables related to quark number

Moments of $D^{(q)}$:

$$\mathcal{M}^n = \sum_{q=-q_{ ext{cut}}}^{q_{ ext{cut}}} e^{\mueta q} q^n rac{\mathcal{D}^{(q)}}{det[\mathcal{D}(\mu=0)]}$$

Quark number density:

$$rac{n_q}{T^3} = 2 \; rac{eta^3}{V} \; rac{\langle M^0 M^1
angle_0}{\langle (M^0)^2
angle_0} \; ,$$

Quark number susceptibility:

$$\frac{\chi_q}{T^2} = 2 \frac{\beta^3}{V} \left[\frac{\langle (M^1)^2 \rangle_0 + \langle M^0 M^2 \rangle_0}{\langle (M^0)^2 \rangle_0} - 2 \left(\frac{\langle M^0 M^1 \rangle_0}{\langle (M^0)^2 \rangle_0} \right)^2 \right]$$

 $\langle \ldots
angle_0$: expectation value evaluated on configurations with $\mu=0.$

Lattice parameters

- Two flavor degenerate Wilson fermions & Wilson gauge action
- Lattices $N_s^3 \times N_t$: $8^3 \times 4$, $10^3 \times 4$, $12^3 \times 4$, $12^3 \times 6$ ($\beta = N_t = 1/T$)
- Inverse coupling: $5.00 \le \frac{6}{g^2} \le 5.65$
- Lattice spacing: 0.343 fm $\geq a \geq$ 0.260 fm (+ finer currently running)
- Temperature: 96 MeV $\leq T \leq$ 211 MeV
- $\kappa = 0.158, 0.160, 0.162$
- Pion mass: m_π = 950 MeV (+ lighter currently running)
- Configurations generated using the MILC code (http://www.physics.utah.edu/ detar/milc/)

7 of 14

Technical details

Important to have
$$D^{(q)}$$
 at high precision.
 $\downarrow \downarrow$
Calculation of det $[D(\mu\beta = i\phi)]$ for many values of ϕ .
 $\downarrow \downarrow$
Expensive!

Dimensional reduction¹:

Use a domain decomposition of the Dirac operator D(x, y) to obtain

 $\det[D(\mu)] = A_0 \ \mathbf{W} \,,$

with a μ -independent factor A_0 and

$$W = \det[K_0 - e^{\mu\beta}K - e^{-\mu\beta}K^{\dagger}].$$

 K_0, K live on a single time slice, but are dense matrices.

¹J. Danzer, C. Gattringer, Phys. Rev. D 78, 114506 (2008).

Quark number density & susceptibility

Quark number density (l.h.s) and susceptibility (r.h.s) as a function of $\frac{6}{g^2}$ (proportional to temperature).

10 of 14

Extrapolation to finite μ

Quark number density (l.h.s) and susceptibility (r.h.s) as a function of $\frac{6}{a^2}$ and $\mu\beta$.

Canonical determinants $D^{(q)}$ at $\mu = 0$

Hadron resonance gas \rightarrow Skellam distribution †

$$rac{\langle | {m D^{(q)}} |^2
angle}{\langle | {m D^{(0)}} |^2
angle} pprox rac{I_q(Z)}{I_0(Z)} \, .$$

 $I_q \cdots$ modified Bessel function $Z \cdots 2\sqrt{q\overline{q}}$

Fit in Z to our $12^3 \times 6$, $\frac{6}{a^2} = 5.00$ data.

(preliminary results)

[†]P. Braun-Munzinger, et.al., Phys. Rev. C 84, 064911 (2011).

D^(q) from FRG see: K. Morita, et.al., 1301.2873 [hep-ph].

D^(q) from ChPT[†]

[†] K. Splittorff, J. Verbaarshot, 1-loop ChPT, private communication. (Valid for $m_{\pi}L \gg 1$, $m_{\pi}/m_N \ll 1$)

Summary:

- Fugacity expansion: Laurent series in $e^{\mu\beta}$.
- Finite lattice \Rightarrow finite series.
- Used to continue from $\mu = 0$ to small chemical potential.
- Calculation numerically challenging \Rightarrow dimensional reduction.
- Observables related to $n_q \Rightarrow$ moments of $D^{(q)}$.

Outlook:

- Larger lattices and calculation at smaller pion masses.
- Calculation for other fermions (Clover improved Wilson, staggered).
- Comparison with other approaches in toy models.

Backup slides

Volume dependence of the $D^{(q)}$ - 1

Volume dependence of the $D^{(q)}$ - 2

Expansion quality & lattice volume

Quark number density (l.h.s) and susceptibility (r.h.s) as a function of μ .

Numerical values of the quark number susceptibility @ $\mu = 0$

T[MeV]	β	χ_q (this work)	χ_q^2	χq^3
144	5.00	0.14(4)	0.25(8)	0.1360(44)
153	5.10	0.24(5)	0.14(9)	0.2312(52)
157	5.15	0.32(5)	0.41(8)	0.3190(58)
164	5.20	0.45(5)	0.52(7)	0.5340(62)
173	5.25	1.00(7)	0.90(8)	0.9170(66)
189	5.30	4.07(7)	3.41(8)	1.3514(36)
211	5.35	5.93(3)	5.85(4)	1.5240(30)

 ²J. Danzer, C. Gattringer, Phys. Rev. D 86, 014502 (2012).
 ³C. R. Allton et al., Phys. Rev. D 71, 054508 (2005).

Average grand canonical determinant $|\langle \det[D(\mu N_t = i\varphi)] \rangle|$ MILC $8^3 \times 4$, $\kappa = 0.158$

Canonical determinant $\langle D^{(q)}/D^{(0)}\rangle$, $8^3 \times 4$, $\kappa = 0.158$

1e+184 Fugacity expansion, $\beta = 5.35$ 1e+182 1e+1801e+178 $|\langle \det[D(\mu N_t)] \rangle|$ 1e+176 1e+174 1e+172 1e+170 1e+168 1e+166 $0.80 \\ \mu N_t$ 0.20 0.00 0.40 0.60 1.00 1.20 1.40

 $|\langle \det[D(\mu N_t)]\rangle|$ MILC $8^3 \times 4$, $\kappa = 0.158$

 $\arg(\langle D(\mu N_t) \rangle)$ MILC $8^3 \times 4$, $\kappa = 0.158$

23 of 14