The Phase Diagram of Two Color QCD

Simon Hands (Swansea University)

- Why two colors?
- Bulk thermodynamics for µ,T≠0:
 - number/energy densities, pressure,
 - trace anomaly, quark number susceptibility
- Superfluidity & deconfinement
 - chiral condensate
 - Phase diagram
 - (if time) Topology, quarkonia

Related talks: Schaefer, von Smekal, Maas, Yamamoto Collaborators: Phil Kenny, Seyong Kim, Jon-Ivar Skullerud, Pietro Giudice, Seamus Cotter

QGHMX St. Goar 20th March 2013

Elbaite 'Bicolor Tourmaline Trio' Na(Li,Al)₃Al₆(BO₃)₃Si₆O₁₈(OH)₄ 60.73, 75.24 and 90.03 carats Mozambique

Why Two Colors? (PDG only recognises 3)

• Chance to explore systematics of lattice simulations at $\mu\!\neq\!0$

Good news: cutoff fixed as μ varies, no quantum corrections to $n_{q=-}\partial f/\partial \mu$

Bad news: UV/IR artifacts are complicated

Chance to explore "deconfinement" in a new physical régime

Elbaite 'Bicolor Tourmaline Trio' Na(Li,Al)₃Al₆(BO₃)₃Si₆O₁₈(OH)₄ 60.73, 75.24 and 90.03 carats Mozambique

Why Two Colors? (PDG only recognises 3)

• Chance to explore systematics of lattice simulations at $\mu\!\neq\!0$

Good news: cutoff fixed as μ varies, no quantum corrections to $n_{q=-}\partial f/\partial \mu$

Bad news: UV/IR artifacts are complicated

Chance to explore "deconfinement" in a new physical régime

• No sign problem stupid!

QC_2D - the large N_c^{-1} limit

QCD with gauge group SU(2) and an even N_f of fundamental quarks has a real positive functional measure even once $\mu \neq 0$. It is the simplest system of dense matter with long-ranged interactions amenable to LGT simulation.

Hadron multiplets contain both $q\bar{q}$ mesons and $qq, \bar{q}\bar{q}$ (anti-)baryons. For $m_{\pi} \ll m_{\rho}$ the μ -dependence can be studied using chiral effective theory.

Key result: for $\mu \ge \mu_0 = \frac{1}{2}m_{\pi}$ a baryon charge density $n_q > 0$ develops, along with a gauge-invariant superfluid condensate $< qq > \neq 0$. For $\mu \ge \mu_0$ the system is a BEC consisting of dilute weakly-interacting 0⁺ qq diquarks.

Quantitatively, for $\mu \gtrsim \mu_o \chi PT$ predicts

$$\frac{\langle \bar{\psi}\psi\rangle}{\langle \bar{\psi}\psi\rangle_0} = \left(\frac{\mu_o}{\mu}\right)^2; \quad n_q = 8N_f f_\pi^2 \mu \left(1 - \frac{\mu_o^4}{\mu^4}\right); \quad \frac{\langle qq\rangle}{\langle \bar{\psi}\psi\rangle_0} = \sqrt{1 - \left(\frac{\mu_o}{\mu}\right)^4}$$

[Kogut, Stephanov, Toublan, Verbaarschot & Zhitnitsky, Nucl.Phys.B582(2000)477] confirmed by QC₂D simulations with staggered fermions

[SJH, I. Montvay, S.E. Morrison, M. Oevers, L. Scorzato J.I. Skullerud, Eur.Phys.J.C17(2000)285, *ibid* C22(2001)451]

<u>Simulation Details</u> ($N_f = 2$ Wilson flavors)

SJH, S. Kim & J.I Skullerud, EPJC48 (2006) 193; PRD81 (2010) 091502(R)

S. Cotter, P. Giudice, SJH & J.I Skullerud, PRD87 034507 (2013)

Boz, Cotter, Fister, Mehta & Skullerud, arXiv:1303.3223

Machines range from u/g lab PCs to IBM BlueGene

		<i>a</i> (fm)	$m_{\pi}a$	m_{π}/m_{arrho}	T(MeV)
coarse	8 ³ x16	0.229(3)	0.78(1)	0.804(10)	55(I)
fine	12 ³ x24	0.178(6)	0.645(8)	0.805(9)	47(2)

also have µ-scans on $12^3 \times 16$, $16^3 \times 20$,..., $4 \Rightarrow T = 56,70$,...,282 MeV

To counter IR fluctuations and maintain HMC ergodocity, we introduce a diquark source term $j\kappa(\psi_2^{tr}C\gamma_5\tau_2\psi_1 - \bar{\psi}_1C\gamma_5\tau_2\bar{\psi}_2^{tr})$

Have results for ja=0.04 everywhere to enable $j \rightarrow 0$ have ja=0.02, 0.03 at selected points

The $j \rightarrow 0$ limit resembles the chiral limit in the vacuum

<u>Computer Effort</u> (sans Sign Problem!)

The number of congrad iterations required for convergence during HMC guidance rises with $\mu \Leftrightarrow$ accumulation of small eigenvalues of M?

Equation of State on Fine Lattice (12^3x24 , *ja*=0.04)

Identify:

onset $\mu_o \approx 360 \text{MeV}$ crossover to "quarkyonic phase" $\mu_Q \approx 530 \text{MeV}$ $n_q \approx 4 - 5 \text{ fm}^{-3}$ "deconfinement" $\mu_d \approx 850 \text{MeV}$ $n_q \approx 16 - 32 \text{ fm}^{-3}$

<u>Artifacts</u>

(a) the j→0 extrapolation gives large
corrections at small µ, so plateau closer to
non-interacting value
j≠0 promotes diquark pairing
significant correction for interacting quarks

(c) UV artifacts are present at larger μ free *lattice* quark correction more reliable here

(b) the peak above onset at low T is very sensitive to IR artifacts (non-sphericity of Fermi surface) $T << \Delta k = 2\pi/L_s$ significant correction for free *lattice* quarks

non-interacting value j≠0 promotes diquark pairing significant correction for interacting quarks

(c) UV artifacts are present at larger μ free *lattice* quark correction more reliable here

(b) the peak above onset at low T is very sensitive to IR artifacts (non-sphericity of Fermi surface) $T << \Delta k = 2\pi/L_s$ significant correction for free *lattice* quarks

0.6

 μa

0.4

0.2

0.8

<u>Artifacts</u>

(a) the j→0 extrapolation gives large
corrections at small µ, so plateau closer to non-interacting value
j≠0 promotes diquark pairing
significant correction for interacting quarks

(c) UV artifacts are present at larger μ free *lattice* quark correction more reliable here

(b) the peak above onset at low T is very sensitive to IR artifacts (non-sphericity of Fermi surface) $T << \Delta k = 2\pi/L_s$ significant correction for free *lattice* quarks

2.5

Pressure for $j \rightarrow 0$ on $12^3 \times 24$

Conformal Anomaly

 $T_{\mu\mu} = \varepsilon - 3p$

$$(T_{\mu\mu})_g = -a \frac{\partial \beta}{\partial a} \Big|_{LCP} \times \frac{3\beta}{N_c} \text{Tr} \langle \Box_t + \Box_s \rangle;$$

$$(T_{\mu\mu})_q = -a \frac{\partial \kappa}{\partial a} \Big|_{LCP} \times \kappa^{-1} (4N_f N_c - \langle \bar{\psi}\psi \rangle)$$

Quark and gluon contributions: almost cancel for $\mu < \mu_Q$: conformal? differ for $\mu > \mu_Q$

 $T_{\mu\mu} < 0$ for $\mu \gtrsim \mu_Q$

 $(T_{\mu\mu})_q$ changes sharply at $\mu_d \approx 850 \text{MeV}$ $\Rightarrow \varepsilon < 3p$ in limit $\mu \rightarrow \infty$

consistent with self-binding

Calculation of Energy Density

$$\varepsilon = -\frac{1}{V} \frac{\partial Z}{\partial T^{-1}} \Big|_{V} = -\frac{\xi}{N_{s}^{3} N_{\tau} a_{s}^{3} a_{\tau}} \left\langle \frac{\partial S}{\partial \xi} \Big|_{a_{s}} \right\rangle \quad \text{with} \quad \xi \equiv \frac{a_{s}}{a_{\tau}} \quad \frac{\text{physical}}{\text{anisotropy}}$$

 $\begin{array}{ll} \text{anisotropic} \\ \text{action} \end{array} \quad \mathcal{L} = -\frac{\beta}{N_c} \left[\frac{1}{\gamma_g} \Box_s + \gamma_g \Box_\tau \right] + \bar{\psi} \left[1 + \gamma_q \kappa D_0[\mu] + \kappa \sum_i D_i \right] \psi \end{array}$

$$\Rightarrow \quad \frac{\varepsilon_g}{T^4} = \frac{3N_\tau^4}{\xi^2 N_c} \left[\langle \Box_s \rangle \left(\gamma_g^{-1} \frac{\partial \beta}{\partial \xi} + \beta \frac{\partial \gamma_g^{-1}}{\partial \xi} \right) + \langle \Box_\tau \rangle \left(\gamma_g \frac{\partial \beta}{\partial \xi} + \beta \frac{\partial \gamma_g}{\partial \xi} \right) \right] \\\Rightarrow \quad \frac{\varepsilon_q}{T^4} = -\frac{N_\tau^4}{\xi^2} \left[\sum_i \langle \bar{\psi} D_i \psi \rangle \frac{\partial \kappa}{\partial \xi} + \langle \bar{\psi} D_0 \psi \rangle \left(\gamma_q \frac{\partial \kappa}{\partial \xi} + \kappa \frac{\partial \gamma_q}{\partial \xi} \right) \right]$$

Karsch $\frac{\partial \beta}{\partial \xi}$; $\frac{\partial \gamma_g}{\partial \xi}$; $\frac{\partial \kappa}{\partial \xi}$; $\frac{\partial \kappa}{\partial \xi}$; $\frac{\partial \gamma_q}{\partial \xi}$ coefficients $\frac{\partial \beta}{\partial \xi}$; $\frac{\partial \gamma_g}{\partial \xi}$; $\frac{\partial \gamma_g}{\partial \xi}$; $\frac{\partial \gamma_g}{\partial \xi}$

estimated at $\xi=1, \mu=T=0$ by simulating with $\gamma_g=1\pm\delta\gamma_g, \gamma_q=1\pm\delta\gamma_q$ and assuming linear response

 ξ_g from sideways potential, ξ_q from pion dispersion

Levkova, Manke & Mawhinney, PRD73 (2006) 074504; R. Morrin (TCD thesis)

Energy densities

 ϵ_q/μ^4 now negative for all μ no more peak! again, consistent with self-binding. (indeed ϵ only barely positive for smaller μ)

Results very sensitive to values of Karsch coefficients (particularly $\frac{\partial \kappa}{\partial \xi}$; $\frac{\partial \gamma_q}{\partial \xi}$) \Rightarrow systematic error O(100%)?

> BUT qualitatively similar to bare ϵ found for $N_f = 4$ Note $a^{N_f=4} \approx \frac{1}{3} a^{N_f=2}$

SJH, P. Kenny and J.I. Skullerud, EPJA 47 (2011) 60

Quark Number Susceptibility

P. Giudice, SJH, & J.I Skullerud POS(LATT2011)193

$$\chi_q = \frac{T}{V_s} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu^2}$$

Dominant contribution from hairpin diagram: phase space \propto area of Fermi surface $\propto \mu^2$

★ consistent with free degenerate quarks for $\mu_Q < \mu < \mu_d$ ★ Sensitivity to value of m_{free}

$\chi_q(\mu)$ does not show same T-dependence as the Polyakov loop

The increase in χ_q is **not** associated with "deconfinement"

So χ_q is **not** a proxy for *L* when $\mu/T >> 1$

Qualitatively different from:

- (a) the thermal QCD phase transition
- (b) strong coupling with heavy quarks Fromm, Langelage, Lottini, Neuman, Philipsen arXiv/1207.3005
- (c) analytic/numerical studies on small, cold volumes (the "attoworld")

SJH, J. Myers, T.J. Hollowood, JHEP 1007 (2010) 086, 1012 (2010) 057

And chiral symmetry?....

interrogate configurations using "naive" fermions with r = 0, ja = 0.04and $\kappa = 8.0, 16.0, 40.0$

Chiral symmetry restored for $\mu a > 0.4$?

Conjecture: The change in behaviour of bulk quantities $(n_q, p, \chi_q, T_{\mu\mu})$ observed at μ_d is a transition from short-ranged (binary?) to longer-ranged inter-quark interactions (ie. from weak to strong self-binding) within the medium. Only weakly dependent on *T*. Relevant for bulk thermodynamics

Conjecture: The change in behaviour of bulk quantities $(n_q, p, \chi_q, T_{\mu\mu})$ observed at μ_d is a transition from short-ranged (binary?) to longer-ranged inter-quark interactions (ie. from weak to strong self-binding) within the medium. Only weakly dependent on *T*. Relevant for bulk thermodynamics

The *T*-dependent behaviour of the Polyakov loop is due to degrees of freedom close to the Fermi surface. Relevant for transport properties.

Conjecture: The change in behaviour of bulk quantities $(n_q, p, \chi_q, T_{\mu\mu})$ observed at μ_d is a transition from short-ranged (binary?) to longer-ranged inter-quark interactions (ie. from weak to strong self-binding) within the medium. Only weakly dependent on *T*. Relevant for bulk thermodynamics

The *T*-dependent behaviour of the Polyakov loop is due to degrees of freedom close to the Fermi surface. Relevant for transport properties.

Caveat: UV artifacts may dominate at large μ

And $N_f = 4$? SJH, P. Kenny, S. Kim & J.I. Skullerud, EPJA47 (2011) 60

Recent simulations on $16^3 \times N_T = 4,...,20$ have sketched out the picture at higher T, intermediate μ

Boz, Cotter, Fister, Mehta & Skullerud, arXiv: 1303.3223

Identify: superfluid →normal transition via point of inflection of <qq(T)>

> deconfining crossover via linear regime of <L(T)>

<u>Crude map of the T-µ plane...</u>

Topological Susceptibility

We have investigated instanton distributions and sizes using cooling

Cf. suppression in superfluid phase for $N_f\!\!=\!\!8$ B.Alles, M. D'Elia & M.P. Lombardo, NPB752(2006)124

For $\mu_0 < \mu < \mu_d$ the mean instanton size ρ_I decreases

One-loop Debye screening:

Schäfer & Shuryak RMP 70(1998)323

$$n_I(\mu) \propto \exp\left[-N_f \rho_I^2 \mu^2\right]$$

$$\propto \exp\left[-\frac{\mathrm{const}}{\mu^2}\right]$$

In QCD₂₊₁: Enhancement of U(1)_A breaking \Rightarrow first-order region of Columbia plot grows with μ ?

For $\mu_0 < \mu < \mu_d$ the mean instanton size ρ_I decreases

One-loop Debye screening:

Schäfer & Shuryak RMP 70(1998)323

$$n_I(\mu) \propto \exp\left[-N_f \rho_I^2 \mu^2\right]$$

$$\propto \exp\left[-\frac{\mathrm{const}}{\mu^2}\right]$$

In QCD₂₊₁: Enhancement of U(1)_A breaking \Rightarrow first-order region of Columbia plot grows with μ ?

Quarkonia

Study propagation of heavy QQ (QQ) states through baryonic medium using tree-level, tadpole-improved NRQCD

Mass of singlet s-wave state shows interesting µ-dependence. Also see weak effect in hyperfine splitting

Interpret as $QQ \rightarrow Qq + qQ$ (tetraquark?) as $n_q \checkmark$?

p-wave states not well-fitted by a simple pole

 $\mu = 0.75 \ (m = 3.0)$

 $\mu = 1.00 \ (m = 3.0)$

Here we plot the propagator ratio C_{QQ}(t;µ)/C_{QQ}(t;0) for spin-singlet s-and p-wave states

Qualitative difference between quarkyonic and deconfined regimes

QC2D offers an accessible theoretical laboratory for dense baryonic matter (Cf. recent studies of G2 Maas, v. Smekal, Wellegehausen & Wipf PRD86 (2012) 111901 & QCD with isospin chemical potential in canonical approach Detmold, Orginos & Shi PRD86 (2012) 054507)

> Despite artifacts a robust picture is emerging. For low T (at least) 3 distinct regions: Vacuum for $\mu < \mu_0$ Confined "Quarkyonic" superfluid for $\mu_Q < \mu < \mu_d$ Deconfined and strongly-bound phase for $\mu > \mu_d$

For larger T "deconfinement" may mean different things for bulk and Fermi surface phenomena

Not discussed today: hadron spectrum (w/ Peter Sitch, JIS) QC₂D in the attoworld (w/ Joyce Myers,Tim Hollowood) static quark potential, gluon propagator (Boz et al)