
The Phase Diagram of Two Color QCD
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• Why two colors?
•    Bulk thermodynamics for µ,T≠0:

number/energy densities, pressure, 
trace anomaly, quark number susceptibility

• Superfluidity & deconfinement
• chiral condensate
• Phase diagram
• (if time) Topology, quarkonia 
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Why Two Colors?
(PDG only recognises 3)

• Chance to explore systematics of 
lattice simulations at μ≠0

Good news: cutoff fixed as μ varies, 

no quantum corrections to nq=-∂f/∂μ

Bad news: UV/IR artifacts are 
complicated

• Chance to explore 
“deconfinement” in a new 

physical régime
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QC2D - the large Nc-1 limit
QCD with gauge group SU(2) and an even Nf of fundamental 

quarks has a real positive functional measure even once 
μ≠0. It is the simplest system of dense matter with long-

ranged interactions amenable to LGT simulation. 

Hadron multiplets contain both qq mesons and qq, qq 
(anti-)baryons. For mπ ≪mρ the μ-dependence can be 

studied using chiral effective theory.

Key result: for μ≥μo= ½mπ a baryon charge density 
nq>0 develops, along with a gauge-invariant superfluid 
condensate <qq>≠0. For μ≳μo the system is a BEC 

consisting of dilute weakly-interacting 0+ qq diquarks.
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Quantitatively, for µ >∼ µo χPT predicts

〈ψ̄ψ〉
〈ψ̄ψ〉0

=
(

µo

µ

)2

; nq = 8Nff2
πµ

(
1 − µ4

o

µ4

)
;

〈qq〉
〈ψ̄ψ〉0

=

√

1 −
(

µo

µ

)4

[Kogut, Stephanov, Toublan, Verbaarschot & Zhitnitsky, Nucl.Phys.B582(2000)477]

confirmed by QC2D simulations with staggered fermions

0.0 1.0 2.0 3.0 4.0

2µ/m
π

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m=0.10

m=0.05

m=0.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

µ

0.0

1.0

2.0

3.0

4.0

<ψψ>

<ψ
tr
ψ>

(<ψψ>
2
+<ψ

tr
ψ>

2
)
0.5

n
B

[SJH, I. Montvay, S.E. Morrison, M. Oevers, L. Scorzato J.I. Skullerud,

Eur.Phys.J.C17(2000)285, ibid C22(2001)451]

. – p.14/31

Wednesday, 20 March 13



Simulation Details ( Nf =2 Wilson flavors)
SJH, S. Kim & J.I Skullerud, EPJC48 (2006) 193; PRD81 (2010) 091502(R)

To counter IR fluctuations and maintain HMC ergodocity, 
we introduce a diquark source term

dp

dr
= −

(p + ε(p))(M(r) + 4πr3p)

r(r − 2M)
dM

dr
= 4πr2ε(r)

∝ 〈!t − !s〉

〈qq〉

(Tµµ)g = −a
∂β

∂a

∣

∣

∣

∣

LCP

×
3β

Nc
Tr〈!t + !s〉;

(Tµµ)q = −a
∂κ

∂a

∣

∣

∣

∣

LCP

× κ−1(4NfNc − 〈ψ̄ψ〉)

jκ(ψtr
2 Cγ5τ2ψ1 − ψ̄1Cγ5τ2ψ̄

tr
2 )

1

Have results for ja=0.04 everywhere
to enable j→0 have  ja=0.02, 0.03 at selected points 

also have µ-scans on 123x16, 163x20,....,4 ⇒ T = 56,70,...,282 MeV

S. Cotter, P. Giudice, SJH & J.I Skullerud, PRD87 034507 (2013) 

a(fm) mπa mπ/mρ T(MeV)

coarse 83x16 0.229(3) 0.78(1) 0.804(10) 55(1)

fine 123x24 0.178(6) 0.645(8) 0.805(9) 47(2)

Boz, Cotter, Fister, Mehta & Skullerud,  arXiv:1303.3223

Machines range from u/g lab PCs to IBM BlueGene

The j→0 limit resembles the chiral limit in the vacuum 
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Computer Effort  (sans Sign Problem!)
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The number of congrad iterations required for convergence during 
HMC guidance rises with µ ⇔ accumulation of small eigenvalues of M ?
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                   onset                       μo ≈ 360MeV
crossover to “quarkyonic phase”   μQ ≈ 530MeV nq ≈ 4 - 5 fm-3

               “deconfinement”              μd ≈ 850MeV nq ≈ 16 - 32 fm-3
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However:

(a) the j→0 extrapolation gives large  
corrections at small μ, so plateau closer to 

non-interacting value
j≠0 promotes diquark pairing

significant correction for interacting quarks

normalised by
free lattice quarks

normalised by free 
continuum quarks

j→0

j→0

(b) the peak above onset at low T is very sensitive
 to IR artifacts (non-sphericity of Fermi surface)

T<<∆k=2π/Ls 
significant correction for free lattice quarks
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(c) UV artifacts are present at larger μ
free lattice quark correction 
more reliable here
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Still see onset at            μo ≈ 360MeV
Transition to “quark matter” at   μQ ≈ 530MeV    EF≈kF

“Deconfinement”  sets in at            μd  ≈ 850MeV    EF < kF 

no longer any firm evidence for a BEC “peak” just above onset

continuum pSB
overestimates ratio at

large μ (UV)

lattice pSB 
ambiguities largest at

small μ (IR)
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Quark matter is strongly self-bound at high density

Robust:

But:

p = ∫µnq dµ
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Conformal Anomaly           Tµµ = ε-3p

dp

dr
= −

(p + ε(p))(M(r) + 4πr3p)

r(r − 2M)
dM

dr
= 4πr2ε(r)

∝ 〈!t − !s〉

〈qq〉

(Tµµ)g = −a
∂β

∂a

∣

∣

∣

∣

LCP

×
3β

Nc
Tr〈!t + !s〉;

(Tµµ)q = −a
∂κ

∂a

∣

∣

∣

∣

LCP

× κ−1(4NfNc − 〈ψ̄ψ〉)
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Quark and gluon contributions: 
 almost cancel for μ<μQ:     conformal?      

differ for μ>μQ

    Tµµ < 0  for   μ ≳ μQ     

(Tμμ)q changes sharply at μd ≈ 850MeV 

⇒ ε<3p in limit μ→∞
consistent with self-bindingTμμ/μ4

j→0

(now with correct sign!)
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Calculation of Energy Density

κ2
1〈ψ̄ψ〉1
κ2

2〈ψ̄ψ〉2
=

m2〈q̄q〉1
m1〈q̄q〉2

{

= 1 chirally symmetric;

< 1 χSB with m2 < m1.

〈ψ̄ψ〉 ∝ m

µ2

〈qq(µ)〉 ∝ ∆(µ)µ2

ε = − 1

V

∂Z

∂T−1

∣

∣

∣

∣

V

= − ξ

N 3
s Nτa3

saτ

〈

∂S

∂ξ

∣

∣

∣

∣

as

〉

ξ ≡ as

aτ

L = − β

Nc

[

1

γg
!s + γg!τ

]

+ψ̄

[

1 + γqκD0[µ] + κ
∑

i

Di

]

ψ

εg

T 4
=

3N 4
τ

ξ2Nc

[

〈!s〉
(

γ−1
g

∂β

∂ξ
+ β

∂γ−1
g

∂ξ

)

+ 〈!τ〉
(

γg
∂β

∂ξ
+ β

∂γg

∂ξ

)

]

3

with

κ2
1〈ψ̄ψ〉1
κ2

2〈ψ̄ψ〉2
=

m2〈q̄q〉1
m1〈q̄q〉2

{

= 1 chirally symmetric;

< 1 χSB with m2 < m1.

〈ψ̄ψ〉 ∝ m

µ2

〈qq(µ)〉 ∝ ∆(µ)µ2

ε = − 1

V

∂Z

∂T−1

∣

∣

∣

∣

V

= − ξ

N 3
s Nτa3

saτ

〈

∂S

∂ξ

∣

∣

∣

∣

as

〉

ξ ≡ as

aτ

L = − β

Nc

[

1

γg
!s + γg!τ

]

+ψ̄

[

1 + γqκD0[µ] + κ
∑

i

Di

]

ψ

εg

T 4
=

3N 4
τ

ξ2Nc

[

〈!s〉
(

γ−1
g

∂β

∂ξ
+ β

∂γ−1
g

∂ξ

)

+ 〈!τ〉
(

γg
∂β

∂ξ
+ β

∂γg

∂ξ

)

]

3

physical
anisotropy

κ2
1〈ψ̄ψ〉1
κ2

2〈ψ̄ψ〉2
=

m2〈q̄q〉1
m1〈q̄q〉2

{

= 1 chirally symmetric;

< 1 χSB with m2 < m1.

〈ψ̄ψ〉 ∝ m
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〈qq(µ)〉 ∝ ∆(µ)µ2
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(
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∂ξ
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3

anisotropic 
action

κ2
1〈ψ̄ψ〉1
κ2

2〈ψ̄ψ〉2
=

m2〈q̄q〉1
m1〈q̄q〉2

{

= 1 chirally symmetric;

< 1 χSB with m2 < m1.

〈ψ̄ψ〉 ∝ m

µ2

〈qq(µ)〉 ∝ ∆(µ)µ2

ε = − 1

V

∂Z

∂T−1

∣

∣

∣

∣

V

= − ξ

N 3
s Nτa3

saτ
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∂ξ
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∣

∣
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〉
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L = − β

Nc

[
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]

+ψ̄

[

1 + γqκD0[µ] + κ
∑

i

Di

]

ψ

εg

T 4
=

3N 4
τ

ξ2Nc

[

〈!s〉
(

γ−1
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∂ξ
+ β

∂γ−1
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∂ξ

)

+ 〈!τ〉
(

γg
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3

lim
β→∞

∣

∣

γg=1

εg

T 4
=

3N 4
τ

ξ2Nc
[〈!s〉 − 〈!τ〉]

εq

T 4
= −N 4

τ

ξ2
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∑

i

〈ψ̄Diψ〉
∂κ

∂ξ
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γq
∂κ

∂ξ
+ κ

∂γq

∂ξ

)

]

lim
β→∞

∣

∣

γq=1

εq

T 4
= −N 4

τ κ〈ψ̄D0ψ〉

∂β

∂ξ
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∂γg

∂ξ
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∂κ

∂ξ
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∂γq

∂ξ

4

lim
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τ
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[〈!s〉 − 〈!τ〉]

εq
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= −N 4
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〈ψ̄Diψ〉
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∂ξ

)

]

lim
β→∞

∣

∣

γq=1

εq

T 4
= −N 4

τ κ〈ψ̄D0ψ〉

∂β

∂ξ
;
∂γg

∂ξ
;
∂κ

∂ξ
;
∂γq

∂ξ

4

Karsch
coefficients

estimated at ξ=1, μ=T=0 
by simulating with 
γg=1±δγg, γq=1±δγq

 and assuming linear response

Levkova, Manke & Mawhinney, PRD73 (2006) 074504; R. Morrin (TCD thesis)

⇒

⇒

ξg from sideways potential, ξq from pion dispersion
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εq/μ4 now negative for all μ - 
no more peak!

again, consistent with self-binding.
(indeed ε only barely positive for smaller µ)

Results very sensitive to values of 
Karsch coefficients 

(particularly            ) ⇒ 

systematic error O(100%)?  

BUT qualitatively similar to 
bare ε found for Nf = 4
Note aNf=4 ≈ ⅓ aNf=2 

SJH, P. Kenny and J.I. Skullerud, EPJA 47 (2011) 60

quark contribution 
εq/μ4

glue contribution 
εg/μ4

Energy densities
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∣

∣

γg=1

εg

T 4
=

3N 4
τ

ξ2Nc
[〈!s〉 − 〈!τ〉]

εq

T 4
= −N 4

τ

ξ2

[

∑

i

〈ψ̄Diψ〉
∂κ

∂ξ
+ 〈ψ̄D0ψ〉

(

γq
∂κ

∂ξ
+ κ

∂γq

∂ξ

)

]

lim
β→∞

∣

∣

γq=1

εq

T 4
= −N 4

τ κ〈ψ̄D0ψ〉

∂β

∂ξ
;
∂γg

∂ξ
;
∂κ

∂ξ
;
∂γq

∂ξ

4

Wednesday, 20 March 13



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
µ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

χ
n
q

m
free
=0.00

m
free
=0.167

m
free
=0.333

simul

Figure 4: Quark number susceptibility.
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Figure 5: Normalised quark number susceptibility.

6

Quark Number Susceptibility 
                                        P. Giudice, SJH, & J.I Skullerud POS(LATT2011)193

NL = NcNf

L
∑

!=1

2!(! + 1)

Aconst
0 = β−1diag(θ1, . . . , θNc)

235
92 U +1

0 n →141
56 Ba +92

36 Kr + 31
0n. (1)

Aconst
0 = β−1diag(θ1, . . . , θNc)

χq =
T

Vs

∂2 lnZ
∂µ2

(2)

2

★   consistent with free degenerate quarks for µQ<µ<µd

★    Sensitivity to value of mfree

123×24 j=0.04

Dominant contribution 
from hairpin diagram:
phase space ∝ area of

Fermi surface ∝ µ2
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Order parameters

(renormalised) Polyakov line rises from zero at μ ≈ μd    
⇒    Deconfinement at μd ≈ 850MeV nq ≈16 - 32 fm-3

dp

dr
= −

(p + ε(p))(M(r) + 4πr3p)

r(r − 2M)
dM

dr
= 4πr2ε(r)

∝ 〈!t − !s〉

〈qq〉

1

j➝0 extrapolation
Superfluid condensate       

scales à la BCS ( ie ∝µ2 ) 
for μQ≤μ≤μd
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 χq(µ) does not show same T-dependence
as the Polyakov loop

The increase in χq is not associated with “deconfinement”

Qualitatively different from: 
(a) the thermal QCD phase transition
(b) strong coupling with heavy quarks
(c) analytic/numerical studies on small, cold volumes (the “attoworld”) 

SJH, J. Myers, T.J. Hollowood, JHEP 1007 (2010) 086, 1012 (2010) 057
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1.5 Results for the other temperatures

As it is evident from Fig.s 7, 8 and 9 the chiral symmetry transition happens at a value
which is almost independent on the temperature around µ ≈ 0.45.
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Figure 7:

7

And chiral symmetry?....

interrogate configurations  using “naive’’ fermions with r = 0, ja = 0.04 
and κ = 8.0, 16.0, 40.0

1.3 Results with r = 0

In Fig. 3 it is plotted the chiral condensate as determined using r = 0. Note that these mea-
surements are done keeping the value of j = 0.04, i.e. the one of the original configurations;
I tried also to do the measurements with j = 0.00 but the error bars are bigger and some
instabilities appear.

The chiral condensate, as function of µ, is smoother with respect to the case with r = 1
and also the temperature dependence of the lattice 163 × 8 disappear.
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The degenerate, confined & “chirally symmetric” system 
observed for  μQ<μ<μd resembles the quarkyonic phase 
postulated by McLerran and Pisarski based on large-Nc 
considerations. [L. McLerran and R.D. Pisarski Nucl. Phys. A796 (2007) 83]
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postulated by McLerran and Pisarski based on large-Nc 
considerations. [L. McLerran and R.D. Pisarski Nucl. Phys. A796 (2007) 83]

Conjecture: The change in behaviour of bulk quantities 
(nq, p, χq,Tµµ) observed at µd is a transition from 

short-ranged (binary?) to longer-ranged inter-quark interactions
(ie. from weak to strong self-binding) within the medium. 

Only weakly dependent on T.
Relevant for bulk thermodynamics
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The T-dependent behaviour of the Polyakov loop
is due to degrees of freedom close to the Fermi surface.

Relevant for transport properties.
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Only weakly dependent on T.
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The T-dependent behaviour of the Polyakov loop
is due to degrees of freedom close to the Fermi surface.

Relevant for transport properties.

Caveat: UV artifacts may dominate at large μ
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And Nf =4 ? SJH, P. Kenny, S. Kim & J.I. Skullerud, EPJA47 (2011) 60

Same distinct physical regimes can 
be identified but much closer to 

continuum: a=0.062(2)fm
⇒ µQ≈1.5GeV, µd≈2.5GeV, T=133(4)MeV

Negative εq consistent with
renormalised result at Nf =2

εq

S. Hands et al.: Lattice study of dense matter with two colors and four flavors Page 5 of 7

0.25 0.5 0.75 1 1.25 1.5 1.75 2
P/mS

-5

0

5

10

15

20

Hq/HSB

Nf=4
Nf=2

Fig. 5. εq/εlatt
SB vs. µ/mπ for Nf = 2, 4.

We therefore recover for QC2D with Nf = 4 the same
intriguing result found for Nf = 2 [9]; namely that for low
temperatures T ! µ, µD > µQ, implying that there is a
phase with the thermodynamic properties of degenerate
quark matter, but in which color is confined. The cur-
rent result is if anything stronger than that of [9] because
nq(µ) approaches the free-quark result much more closely
as a result of the smoother gauge fields. Such a phase
is reminiscent of the confined, chirally symmetric quarky-
onic phase originally discussed in the context of large-Nc

gauge theories [16]. Unfortunately our use of Wilson lat-
tice fermions, which have no chiral symmetry away from
the limit κ → κc, precludes a discussion of whether chiral
symmetry is restored for µ > µQ at present.

So far we have found a close similarity between Nf = 2
and Nf = 4. This does not carry over to the quark energy
density εq, defined here by

εq = κ

Nf
∑

i=1

〈

ψ̄i
x(γ0 − 1)eµU0xψi

x+0̂
−

ψ̄i
x(γ0 + 1)e−µU†

0x−0̂
ψi

x−0̂

〉

. (11)

Figure 5 plots εq/εlatt
SB versus µ for Nf = 2, 4. Note that a

vacuum contribution ε0
q evaluated at µ = 0 must be sub-

tracted from both interacting and free data; for Nf = 4
this correction ε0

qa
4 = 0.3724(10). Even after this additive

correction there is still a multiplicative renormalisation re-
quired by a µ-independent factor known as a Karsch coef-
ficient [17]. Non-perturbative values for Karsch coefficients
are still to be determined for QC2D, but the shapes of the
curves are in principle correct up to discretisation errors.
Figure 5 shows a big difference at low values of µ between
Nf = 2, where εq/εlatt

SB has a peak considerably larger than
that predicted by χPT [8,9], and Nf = 4, where the ra-
tio actually starts negative and rises monotonically with
µ. A negative value of εq is not forbidden a priori, but
the requirement for positivity of the total energy density
certainly constrains the contribution εg from the gluons

(see below). For µ ! µD ε
Nf=2
q /εlatt

SB ≈ 2 becomes ap-

proximately constant; ε
Nf =4
q /εlatt

SB approaches this value
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Fig. 6. The unrenormalised quark contribution to the trace
anomaly κ−1 Tr(11 − 〈ψ̄ψ〉) vs. µ/mπ for Nf = 2, 4.

from below, and for µ/mπ ! 1.5 the two models appear
to coincide up to the unknown Karsch correction.

A related quantity is the quark contribution to the
trace of the stress-energy tensor (Tµµ)q, given by

(Tµµ)q = a
∂κ

∂a
×

1

κ
(4NfNc − 〈ψ̄ψ〉). (12)

With data from only one lattice spacing, we are cur-
rently unable to estimate the beta-function; fig. 6 plots
raw values of κ−1 Tr(11 − 〈ψ̄ψ〉) for Nf = 2, 4, normalised
to two quark flavors for ease of comparison, and includ-
ing the necessary vacuum subtraction. Qualitatively they
have very different behavior for µ < µD, and suggest
that (Tµµ)

Nf =2
q and (Tµµ)

Nf =4
q differ even in sign in this

regime. Note that χPT predicts Tµµ > 0 for µo < µ <√
3µo [8]. Since Tµµ = ε − 3p for isotropic matter, the

negative sign of (Tµµ)
Nf =4
q is consistent with the negative

value of εq for small µ reported in the previous paragraph.
Once µ ! µD, both models exhibit a strong upward trend,
suggesting that quarks dominate Tµµ in the deconfined
phase.

Finally we present results for local gluonic observables.
In a non-Lorentz invariant system such as one with µ )= 0
it is helpful to define

"s =
1

3Nc

∑

i<j

〈tr Uijx〉; "t =
1

3Nc

∑

x

∑

i

〈tr U0ix〉.

(13)
We then consider in fig. 7 the difference, proportional to
the gluon energy density

εg = 3Zβ("t − "s), (14)

where Z is another as yet undetermined Karsch coefficient
(assumed unity in the figure), and in fig. 8 the average
plaquette related to the gluon component of the stress-
energy tensor via

(Tµµ)g = −a
∂β

∂a
× 3β("s + "t). (15)
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Recent simulations on 163xNτ=4,...,20 have sketched out the 
picture at higher T, intermediate μ

Boz, Cotter, Fister, Mehta & Skullerud,  arXiv:1303.3223

For Peer Review

2 Tamer Boz et al.: Phase transitions in 2-colour matter

nature of the putative deconfinement transition at high
density, by computing the static quark potential in the
low-temperature region.

In contrast to quantities which may not be directly
comparable between theories, the effects of the medium
on low order Green functions in QC2D may provide a re-
liable guideline to full QCD. Quark and gluon correlation
functions are of great interest, as the theory can be fully
expressed in terms of these. Propagators play a predomi-
nant role, in particular in continuum descriptions, and in
some cases their behaviour suffices to shed light on the
critical physics of the phase diagram, e.g. the deconfine-
ment transition [16–19]. In this paper, we will study how
the gluon propagator responds to both temperature and
quark chemical potential.

In Sec. 2 we set out the details of our lattice simula-
tions, including the action, parameters and lattice volumes
used. Then, in Sec. 3 we study the superfluid to normal
and deconfinement transition by performing a tempera-
ture scan at 3 different values of the chemical potential.
The response of the static quark potential to µ is investi-
gated in Sec. 4, while in Sec. 5 results for the gluon propa-
gator are reported. Preliminary results for the gluon prop-
agator have been reported in [20,21], and for the static
quark potential in [22].

2 Simulation details

We use a standard Wilson gauge action with two flavours
of unimproved Wilson fermion, with the addition of a di-
quark source term to lift the low-lying eigenmodes and
allow a controlled study of diquark condensation effects.
Further details about the action and the simulation method
can be found in [5–7]. The results obtained will depend on
the diquark source j; in the end the j → 0 limit must be
taken to obtain ‘physical’ results.2

We use the same parameters as in [6,7], namely β =
1.9,κ = 0.168, corresponding to a lattice spacing a =
0.178(6)fm and a pion mass amπ = 0.645(8). The lightest
baryon, the scalar diquark, is degenerate with the pion in
the vacuum, and at zero temperature we therefore expect
an onset transition to a superfluid phase at m = mπ/2.
This has been corroborated in previous simulations [5–7].

In addition to the ensembles used and described in [7],
we have generated gauge configurations on 163 × Nτ lat-
tices with Nτ =4–20, in order to study in detail the ther-
mal transitions at aµ = 0.35, 0.4, 0.5 and 0.6. The details
of these ensembles are given in table 1. For most tem-
peratures, two diquark sources ja = 0.02 and 0.04 have
been used, enabling us to perform a linear extrapolation
to the j = 0 limit. In the region of the superfluid to normal
transition, where a linear extrapolation is known to be in-
valid, two additional j-values have been added to allow
for a controlled extrapolation.

2 In cases where model studies could be carried out with
j != 0 one might also compare directly results for nonzero j;
however, most other studies will not contain any explicit di-
quark source term, so the j → 0 limit is crucial.
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Fig. 1. Diquark condensate 〈qq〉 as a function of temperature
T for chemical potential µa = 0.35, 0.4, 0.5, 0.6 (top to bot-
tom). The circles are data extrapolated to j = 0 using a linear
Ansatz for ja ≤ 0.04; the shaded circles denote the results of
a linear extrapolation using j = 0.02, 0.03 only.

3 Phase transitions

3.1 Superfluid to normal transition

Figure 1 shows the order parameter for superfluidity, the
diquark condensate

〈qq〉 = 〈ψ2trCγ5τ2ψ
1 − ψ̄1Cγ5τ2ψ̄

2tr〉 , (1)

as a function of the temperature T , for µa = 0.35, 0.4, 0.5
and 0.6. Also shown are the results of a linear extrapola-
tion to j = 0. We can clearly observe a transition from a
superfluid phase, characterised by 〈qq〉 &= 0, at low tem-
perature, to a normal phase with 〈qq〉 = 0 at high temper-
ature, with a transition in the region 0.08 ! Ta ! 0.12 for
all three values of µ. In order to pinpoint the transition,
we have performed simulations with 4 different j-values
in the transition region, and used 3 different functional
forms for the j → 0 extrapolation,

linear: 〈qq〉 = A + Bj , (2)

power law: 〈qq〉 = Bjα , (3)

constant + power: 〈qq〉 = A + Bjα . (4)

The results of these extrapolations are summarised in ta-
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Fig. 2. The renormalised Polyakov loop 〈L〉 as a function of
temperature T for µa = 0.35, 0.4, 0.5 and 0.6, in addition to
the µ = j = 0 results from [7]. The open symbols are results
for ja = 0.04; the shaded symbols are for ja = 0.02.

gesting that Ts(µ) rises very rapidly from zero at µ = µo

before suddenly flattening off.

3.2 Deconfinement transition

Figure 2 shows the traditional order parameter for decon-
finement, the Polyakov loop 〈L〉, as a function of tempera-
ture for different values of µ. The Polyakov loop has been
renormalised using the same method as described in [7,
23], by imposing the condition that L(aT = 1

4
, µ=0) = 1.

This determines the renormalisation constant ZL in the
relation between the bare Polyakov loop L0 and the renor-
malised Polyakov loop LR,

LR(T, µ) = ZNτ
L L0(

1

aNτ
, µ) . (5)

At all µ, we see a transition from a low-temperature
confined region to a high-temperature deconfined region.
In contrast to the diquark condensate, we see a clear, sys-
tematic shift in the transition region towards lower tem-
peratures as the chemical potential increases.

For all four µ-values, the Polyakov loop shows a nearly
linear rise as a function of temperature in a broad region,
suggesting that the transition is a smooth crossover rather
than a true phase transition. For this reason, it is diffi-
cult if not impossible with our present data to identify an
inflection point which we could use as a definition of a
pseudocritical deconfinement temperature. We choose in-
stead to define the crossover region as the region where
the Polyakov loop at ja = 0.04 rises approximately lin-
early with T . From Fig. 2 we see that the value of 〈L〉
increases as j is reduced, and at µa = 0.6 at least, the
crossover region will most likely move to smaller T in the
j → 0 limit. However, we do not have sufficient statistics
for ja = 0.02 at low T to make any quantitative statement
about this.

µa Tda Td (MeV)
0.0 0.193(20) 217(23)
0.35 0.101–0.179 113–200
0.40 0.087–0.157 97–176
0.50 0.057–0.103 64–115
0.60 0.050–0.097 56–109

Table 4. Estimates for the deconfinement crossover tempera-
ture Td from the Polyakov loop at ja = 0.04. The µ = 0 result
is taken from [7].

In the low-temperature region, an accurate determina-
tion of the renormalised Polyakov loop becomes increas-
ingly difficult because of the exponential growth of the
renormalisation factor ZNτ

L . Extending the data in fig. 2
to Ta < 0.05 (Nτ > 20) is beyond our present capabilities.

Our summary of transition temperatures taken from
the ja = 0.04 data is given in table 4.

4 Static quark potential

The potential between two static quarks (or a quark–
antiquark pair), and in particular its asymptotic behaviour
at large separations, has traditionally been taken as the
tell-tale indicator, or even definition, of confinement of
quarks [24]. A linearly rising potential has been observed
in numerous lattice simulations, and has also formed the
basis of successful phenomenological descriptions of bound
states of heavy quarks. In QCD with dynamical quarks,
the string will break at a finite distance, but at interme-
diate distances a linear rise can still be observed.

At high temperature, the potential is expected to ex-
hibit Debye screening, and this has been observed in nu-
merous calculations of the quark–antiquark free energy
using Polyakov loop correlators. However, it is not yet
clear how this quantity relates to the (complex) potential
that appears in effective theories of heavy quarkonia at
high temperature [25–28]. Very recently, the static quark
potential has also been determined from Wilson loops at
high temperature [29]; this does not show any screening
for T ! Tc.

There has also been some recent progress in determin-
ing the potential between heavy (finite mass) quarks at
zero [30] and non-zero [31] temperature. Some properties
of bound states of heavy quarks in QC2D at nonzero tem-
perature and density were reported in [32]; a potential
model description should reproduce these results. Here we
compute the static quark potential from Wilson loops for
our lowest temperature, the 123 × 24 lattices.

In fig. 3 we show the static quark potential computed
from the Wilson loop at Nτ = 24, for µa = 0.3, 0.5, 0.7, 0.9
and 1.1. We find that as we enter the superfluid region, the
potential becomes slightly flatter, but that this is reversed
as µ is increased further, leading to a strongly enhanced
string tension at µa = 0.9, which according to our analysis
of the Polyakov loop should be in the deconfined region.
This agrees with the pattern that was already observed in
[5].
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point of inflection of <qq(T)>

deconfining crossover via 
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Crude map of the T-µ plane...
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Topological Susceptibility SJH, P. Kenny,  PLB701 (2011) 373 

Topological susceptibility shows no structure for Nf=2  
(maybe lattice too coarse?)

but appears enhanced in quarkyonic region for Nf=4

Cf. suppression in superfluid phase for Nf=8 
B. Alles, M. D’Elia & M.P. Lombardo, NPB752(2006)124

We have investigated instanton distributions and sizes using cooling
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Figure 1: (left) Energy of the 1S0 state vs. quark chemical potential µ for heavy quark mass
Ma = 3.0, 4.0 and 5.0 with j = 0.02 on 123 × 24 lattice; (right) Temperature dependence of
the 1S0 state energy vs. µ for Ma = 5.0 with j = 0.04.

In non-relativistic QCD, Mn = 2(ZMM − E0) + ∆En for the state n, where ZM is

the heavy quark mass renormalization, E0 is a state-independent additive renormalisation,

and ∆En is the fitted energy of the state [14]. Usually, the experimental value for one of the

heavy quarkonium masses is chosen to fix E0 which is independent of n. This cannot be done

in QC2D due to the lack of experimental spectrum data. However, since introducing µ #= 0,

T > 0 does not induce any new UV divergences, the change of the S-wave state energy from

that at µ = 0 or T = 0, which must reflect underlying physics, can be measured.

Fig. 1 shows the T - and µ-dependences of the 1S0 state energy ∆E. The absolute

values have unquantified contributions E0(M), which in principle could be subtracted by

matching ∆E(µ = 0), and as such contain little useful information. As argued above,

however, the variation with µ is physical. For all three heavy quark masses, Fig. 1 suggests

three distinct regimes as µ is varied: initially the 1S0 state energy decreases from that at

µ = 0, but once µ reaches the region µ1($ 0.5) ≤ µa ≤ µ2($ 0.85), the 1S0 state energy stays

roughly constant. For µ > µ2, the 1S0 state energy starts increasing again. The variation

with µ becomes more marked as the heavy quark mass M is decreased; this may possibly

be associated with the increasing size of the quarkonium state. The existence of three

distinct µ-regions in which the S-wave quarkonium state energies show markedly different

behaviour and the agreement of µ1,2 with the values µQ and µD found in [2] strengthens the

argument for the existence of three different regimes described in Sec. 1 as the BEC phase,

7
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Figure 2: The splitting between the 3S1 state energy and 1S0 state energy for three different
M on 123 × 24

the BCS/quarkyonic phase and the deconfined phase.

The three temperatures shown in Fig. 1 all lie below the estimated deconfining tran-

sition temperature Tca ∼ 1
6 at µ = 0. Interestingly, at µa = 0.6, within the BCS/quarkyonic

phase, ∆Ea = 0.4157(6), 0.4226(2), 0.4235(2) as Ta rises from 1
24 to 1

12 . This positive shift

is similar to that observed in the thermal mass of heavy quarkonium with increasing tem-

perature in hot QCD with µ = 0 [18, 8].

The overall qualitative behavior of the 3S1 state energy is quite similar to that of the

1S0 state energy. The 3S1 state energy also shows the same three chemical potential regimes

as the 1S0 state energy: the 3S1 state energy decreases until µ reaches µ1 and then stays

roughly constant until µ reaches µ2 and then increases for µ ≥ µ2. Thus, instead of the

absolute 3S1 state energy, the hyperfine splitting ∆E3S1
−∆E1S0

is shown as a function of µ

in Fig. 2. Only a weak µ-dependence in the splitting for three explored Ms is observed, at

most roughly 10% of the magnitude of the effect seen in Fig. 1. This may not be surprising

since even in NRQCD at T = µ = 0, the hyperfine splitting is strongly affected by light quark

8

Quarkonia
Study propagation of heavy QQ (QQ) states through baryonic 

medium using tree-level, tadpole-improved NRQCD
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Mass of singlet s-wave state shows interesting 
µ-dependence. Also see weak effect in hyperfine splitting

Interpret as QQ → Qq  +  qQ (tetraquark?) as nq ➚ ?

SJH, S. Kim, J.I. Skullerud  PLB711 (2012) 199
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Summary
★ QC2D offers an accessible theoretical laboratory 

for dense baryonic matter 
(Cf. recent studies of G2 Maas, v. Smekal, Wellegehausen & Wipf  PRD86 (2012) 111901

& QCD with isospin chemical potential in canonical approach
Detmold, Orginos & Shi PRD86 (2012) 054507)

★ Despite artifacts a robust picture is emerging. 
  For low T (at least) 3 distinct regions:

 Vacuum for μ < μo

       Confined “Quarkyonic” superfluid for μQ < μ < μd

               Deconfined and strongly-bound phase for μ > μd 

★ For larger T “deconfinement” may mean different things  
for bulk and Fermi surface phenomena

★ Not discussed today: 
hadron spectrum (w/ Peter Sitch, JIS)

QC2D in the attoworld (w/ Joyce Myers, Tim Hollowood)
static quark potential, gluon propagator (Boz et al)
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