The G2 QCD Phase Diagram

Axel Maas

20th of March 2013 Quarks, Gluons, and Hadronic Matter under Extreme Conditions II St. Goar Germany

The G2 QCD Phase Diagram

Axel Maas

20th of March 2013 Quarks, Gluons, and Hadronic Matter under Extreme Conditions II St. Goar Germany

Mini-review: Maas & Wellegehausen

Lattice'12 proceedings, 1211.5301

Conceptual – Quenched G2 QCD

- Conceptual Quenched G2 QCD
 - QCD: Center is assumed to be important

- Conceptual Quenched G2 QCD
 - QCD: Center is assumed to be important
 - What happens with a trivial center?

- Conceptual Quenched G2 QCD
 - QCD: Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]

- Conceptual Quenched G2 QCD
 - QCD: Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD?

- Conceptual Quenched G2 QCD
 - QCD: Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD? Yes

- Conceptual Quenched G2 QCD
 - QCD: Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD? Yes
- Practical G2 QCD

- Conceptual Quenched G2 QCD
 - QCD: Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD? Yes
- Practical G2 QCD
 - Fundamental representation real
 - No sign problem

- Conceptual Quenched G2 QCD
 - QCD: Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD? Yes
- Practical G2 QCD
 - Fundamental representation real
 - No sign problem
 - Full phase diagram accessible
 - Test of methods and models
 - Qualitative insights

• QCD is a gauge theory

QCD is a gauge theory

$$L = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a}$$
$$F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu}$$

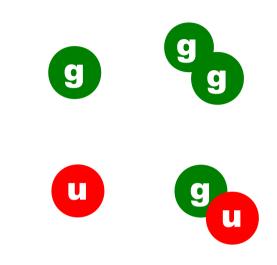
• Gluons A^a_{μ}

• QCD is a gauge theory $L = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a}$ $F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + g f^{a}_{bc} A^{b}_{\mu} A^{c}_{\nu}$

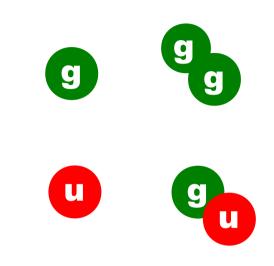


- Gluons A^a_{μ}
- A coupling g
- Numbers *f*^{*abc*} determined by the gauge group

- QCD is a gauge theory $L = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} + \overline{\Psi_{i}} (iD^{ij}_{\mu}\gamma^{\mu} - m) \Psi_{j}$ $F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + gf^{a}_{bc} A^{b}_{\mu} A^{c}_{\nu}$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu}$
- g


- Gluons A^a_{μ}
- Quarks Ψ_i
- A coupling g and mass m
- Numbers f^{abc} determined by the gauge group

 QCD is a gauge theory $L = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \overline{\Psi}_i (i D^{ij}_{\mu} \gamma^{\mu} - m) \Psi_j$ $F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{a}_{bc}A^{b}_{\mu}A^{c}_{\nu}$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - igA^a_{\mu} t^{ij}_{a}$ • Gluons A^a_{μ}


- Quarks Ψ_i
- A coupling g and mass m
- Numbers f^{abc} and t_{a}^{ij} determined by the gauge group

 QCD is a gauge theory $L = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \overline{\Psi}_i (i D^{ij}_{\mu} \gamma^{\mu} - m) \Psi_j$ $F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{a}_{bc}A^{b}_{\mu}A^{c}_{\nu}$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - igA^a_{\mu} t^{ij}_{a}$ • Gluons A^a_{μ}

- Quarks Ψ_i
- A coupling g and mass m
- Numbers f^{abc} and t^{ij} determined by the gauge group
- QCD: SU(3)

 QCD is a gauge theory $L = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \overline{\Psi}_i (i D^{ij}_\mu \gamma^\mu - m) \Psi_j$ $F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{a}_{bc}A^{b}_{\mu}A^{c}_{\nu}$ $D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - igA^{a}_{\mu}t^{ij}_{a}$ • Gluons A^{a}_{μ}

- Quarks Ψ_i
- A coupling g and mass m
- Numbers f^{abc} and t^{ij} determined by the gauge group
- QCD: SU(3)
- Here: G2

G2 is an exceptional Lie group

- G2 is an exceptional Lie group
 - Rank 2 like SU(3)

- G2 is an exceptional Lie group
 - Rank 2 like SU(3)
 - Subgroup of SO(7)
 - Can be written as a product of SU(3) and the 6sphere

- G2 is an exceptional Lie group
 - Rank 2 like SU(3)
 - Subgroup of SO(7)
 - Can be written as a product of SU(3) and the 6sphere
 - Fundamental representation 7-dimensional: 7 quark colors
 - Adjoint representation 14-dimensional: 14 gluons

- G2 is an exceptional Lie group
 - Rank 2 like SU(3)
 - Subgroup of SO(7)
 - Can be written as a product of SU(3) and the 6sphere
 - Fundamental representation 7-dimensional: 7 quark colors
 - Adjoint representation 14-dimensional: 14 gluons
 - All representations are equivalent to real representations

- G2 is an exceptional Lie group
 - Rank 2 like SU(3)
 - Subgroup of SO(7)
 - Can be written as a product of SU(3) and the 6sphere
 - Fundamental representation 7-dimensional: 7 quark colors
 - Adjoint representation 14-dimensional: 14 gluons
 - All representations are equivalent to real representations
- Asymptotically free, infrared strongly interacting

• No Wilson confinement

- No Wilson confinement
 - Asymptotic string tension zero

- No Wilson confinement
 - Asymptotic string tension zero like in QCD

- No Wilson confinement
 - Asymptotic string tension zero like in QCD
 - Energy of a static, free quark finite

- No Wilson confinement
 - Asymptotic string tension zero like in QCD
 - Energy of a static, free quark finite
 - String breaking: Screened by three gluons [Holland et al. NPA 2003, Wellegehausen et al. PRD 11]

- No Wilson confinement
 - Asymptotic string tension zero like in QCD
 - Energy of a static, free quark finite
 - String breaking: Screened by three gluons [Holland et al. NPA 2003, Wellegehausen et al. PRD 11]
- Intermediate distance static quark-antiquark potential similar to SU(3) Yang-Mills theory

[Wellegehausen et al. PRD 11, Liptak et al. PRD 08, Greensite et al. PRD 06]

Same behavior as QCD

- No Wilson confinement
 - Asymptotic string tension zero like in QCD
 - Energy of a static, free quark finite
 - String breaking: Screened by three gluons [Holland et al. NPA 2003, Wellegehausen et al. PRD 11]
- Intermediate distance static quark-antiquark potential similar to SU(3) Yang-Mills theory

[Wellegehausen et al. PRD 11, Liptak et al. PRD 08, Greensite et al. PRD 06]

- Same behavior as QCD
- Polyakov loop well-defined, but non-zero
 - Measured to be very small [Pepe et al. NPA 2007]

- No Wilson confinement
 - Asymptotic string tension zero like in QCD
 - Energy of a static, free quark finite
 - String breaking: Screened by three gluons [Holland et al. NPA 2003, Wellegehausen et al. PRD 11]
- Intermediate distance static quark-antiquark potential similar to SU(3) Yang-Mills theory

[Wellegehausen et al. PRD 11, Liptak et al. PRD 08, Greensite et al. PRD 06]

- Same behavior as QCD
- Polyakov loop well-defined, but non-zero
 - Measured to be very small [Pepe et al. NPA 2007]
- Asymptotic states still only bound states

Chiral symmetry in G2 [Holland et al. NPA 03, Pepe et al. NPA 07]

 Chiral symmetry is enlarged compared to ordinary QCD

Chiral symmetry in G2 [Holland et al. NPA 03, Pepe et al. NPA 07]

- Chiral symmetry is enlarged compared to ordinary QCD
 - Reason: Real representation
 - Quarks and anti-quarks are related

Chiral symmetry in G2

[Holland et al. NPA 03, Pepe et al. NPA 07]

- Chiral symmetry is enlarged compared to ordinary QCD
 - Reason: Real representation
 - Quarks and anti-quarks are related
 - Enlarged SU(2N) xZ_2 for N flavors

Chiral symmetry in G2

[Holland et al. NPA 03, Pepe et al. NPA 07]

- Chiral symmetry is enlarged compared to ordinary QCD
 - Reason: Real representation
 - Quarks and anti-quarks are related
 - Enlarged SU(2N)xZ₂ for N flavors
 - Pauli-Gürsey symmetry, like 2-color QCD

Chiral symmetry in G2

- Chiral symmetry is enlarged compared to ordinary QCD
 - Reason: Real representation
 - Quarks and anti-quarks are related
 - Enlarged SU(2N) xZ_2 for N flavors
 - Pauli-Gürsey symmetry, like 2-color QCD
 - More appropriate language: 2N Weyl flavors

Chiral symmetry in G2

- Chiral symmetry is enlarged compared to ordinary QCD
 - Reason: Real representation
 - Quarks and anti-quarks are related
 - Enlarged SU(2N) xZ_2 for N flavors
 - Pauli-Gürsey symmetry, like 2-color QCD
 - More appropriate language: 2N Weyl flavors
 - Baryon number is still well-defined
 - (Unbroken) U(1) subgroup of chiral symmetry

Chiral symmetry in G2

- Chiral symmetry is enlarged compared to ordinary QCD
 - Reason: Real representation
 - Quarks and anti-quarks are related
 - Enlarged SU(2N)xZ₂ for N flavors
 - Pauli-Gürsey symmetry, like 2-color QCD
 - More appropriate language: 2N Weyl flavors
 - Baryon number is still well-defined
 - (Unbroken) U(1) subgroup of chiral symmetry
- Non-anomalous chiral symmetry breaking for 1 flavor possible

[Holland et al. NPA 03, Pepe et al. NPA 07]

Mesons (zero baryon number)

- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions

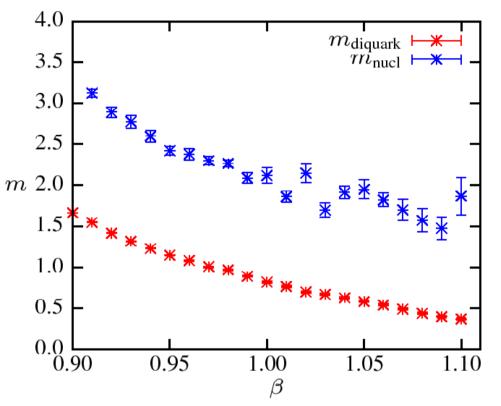
- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions
- Baryons (non-zero baryon number)

- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions
- Baryons (non-zero baryon number)
 - Diquarks
 - Bosonic quark-quark bound states, like SU(2) QCD

- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions
- Baryons (non-zero baryon number)
 - Diquarks
 - Bosonic quark-quark bound states, like SU(2) QCD
 - Fermionic 1 quark-3 gluon states
 - Like adjoint QCD

- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions
- Baryons (non-zero baryon number)
 - Diquarks
 - Bosonic quark-quark bound states, like SU(2) QCD
 - Fermionic 1 quark-3 gluon states
 - Like adjoint QCD
 - Fermionic 3 quark states
 - Like fundamental QCD, different from SU(2) QCD

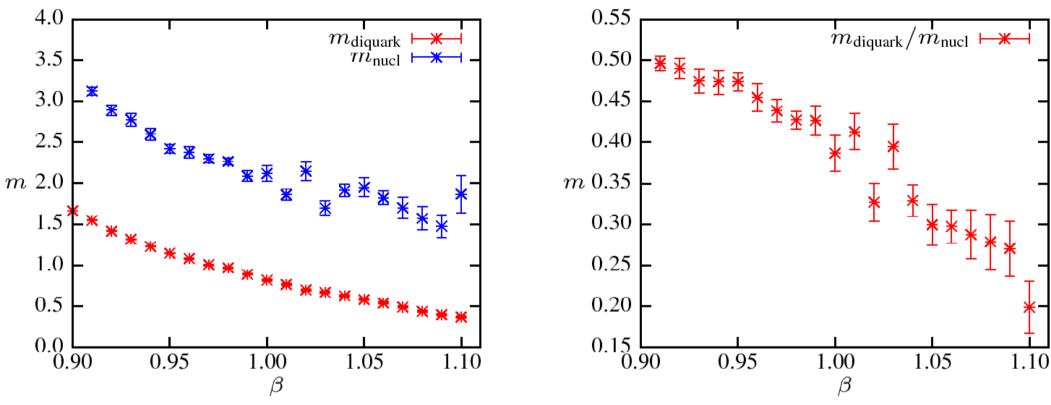
- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions
- Baryons (non-zero baryon number)
 - Diquarks
 - Bosonic quark-quark bound states, like SU(2) QCD
 - Fermionic 1 quark-3 gluon states
 - Like adjoint QCD
 - Fermionic 3 quark states
 - Like fundamental QCD, different from SU(2) QCD
 - Fermionic 5 and 7 quark states


- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions
- Baryons (non-zero baryon number)
 - Diquarks
 - Bosonic quark-quark bound states, like SU(2) QCD
 - Fermionic 1 quark-3 gluon states
 - Like adjoint QCD
 - Fermionic 3 quark states
 - Like fundamental QCD, different from SU(2) QCD
 - Fermionic 5 and 7 quark states
- Glueballs

[Wellegehausen, Maas, Wipf, von Smekal unpublished]

Nucleons

 Fermionic baryon with three constituent quarks


[Wellegehausen, Maas, Wipf, von Smekal unpublished]

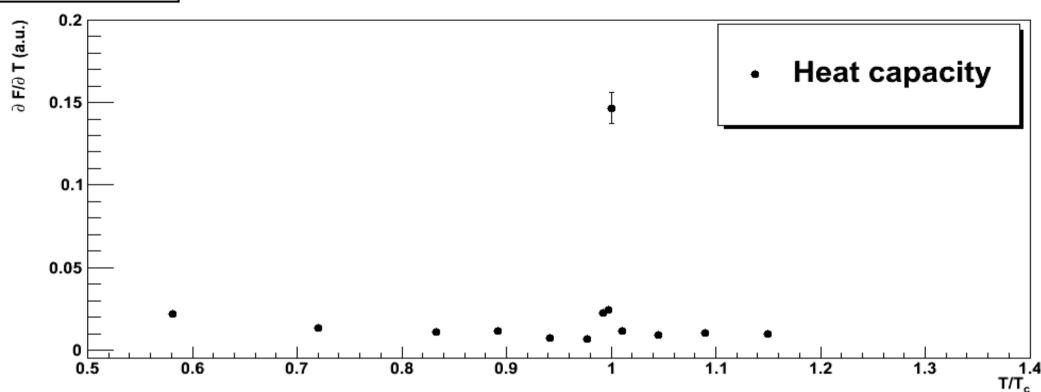
Nucleons

 Fermionic baryon with three constituent quarks

[Wellegehausen, Maas, Wipf, von Smekal unpublished]

Nucleons

- Fermionic baryon with three constituent quarks
- Chiral limit different to QCD

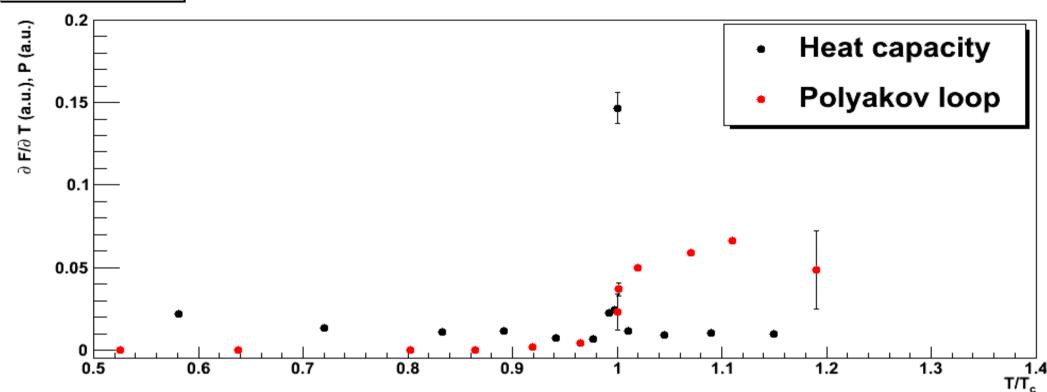

- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions
- Baryons (non-zero baryon number)
 - Diquarks
 - Bosonic quark-quark bound states, like SU(2) QCD
 - Fermionic 1 quark-3 gluon states
 - Like adjoint QCD
 - Fermionic 3 quark states
 - Like fundamental QCD, different from SU(2) QCD
 - Fermionic 5 and 7 quark states
- Glueballs

- Mesons (zero baryon number)
 - Bosonic quark-anti-quark bound states
 - E.g. pions not Goldstones
- Baryons (non-zero baryon number)
 - Diquarks Goldstones
 - Bosonic quark-quark bound states, like SU(2) QCD
 - Fermionic 1 quark-3 gluon states
 - Like adjoint QCD
 - Fermionic 3 quark states
 - Like fundamental QCD, different from SU(2) QCD
 - Fermionic 5 and 7 quark states
- Glueballs

[Danzer, Gattringer, Maas, JHEP09]

Phase transition

[Danzer, Gattringer, Maas, JHEP09]

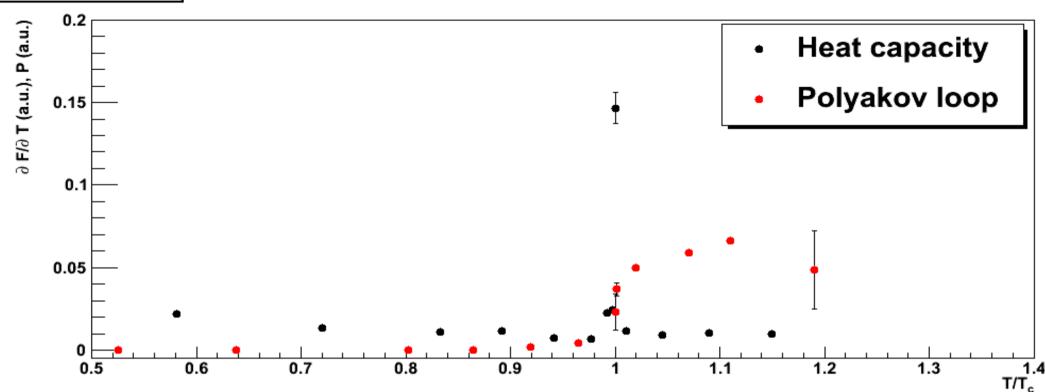

• First order transition [Pepe et al. NPA07, Greensite et la. PRD07, Cossu et al. JHEP07]

• Observed in free energy

- Complicated by a bulk transition
 - Requires fine lattice [Cossu et al. JHEP 07]

Phase transition

[Danzer, Gattringer, Maas, JHEP09]


Polyakov loop transition

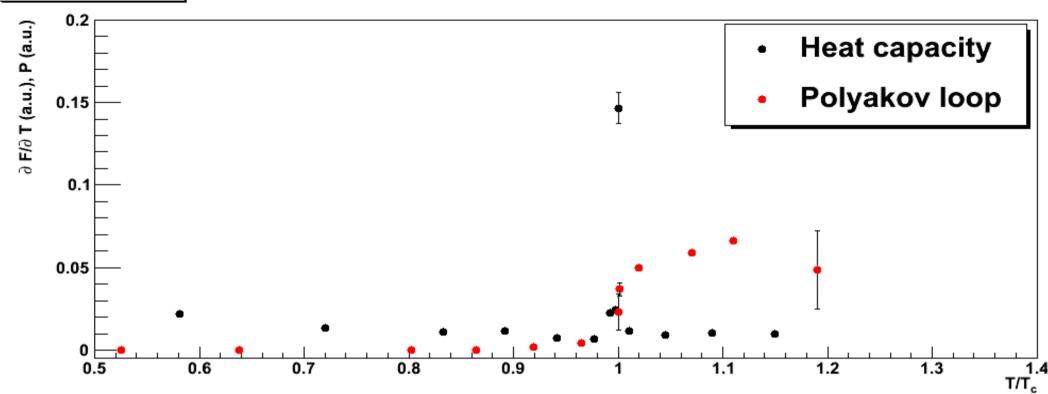
[Pepe et al. NPA07, Greensite et la. PRD07, Cossu et al. JHEP07]

Coincident with free energy

Phase transition

[Danzer, Gattringer, Maas, JHEP09]

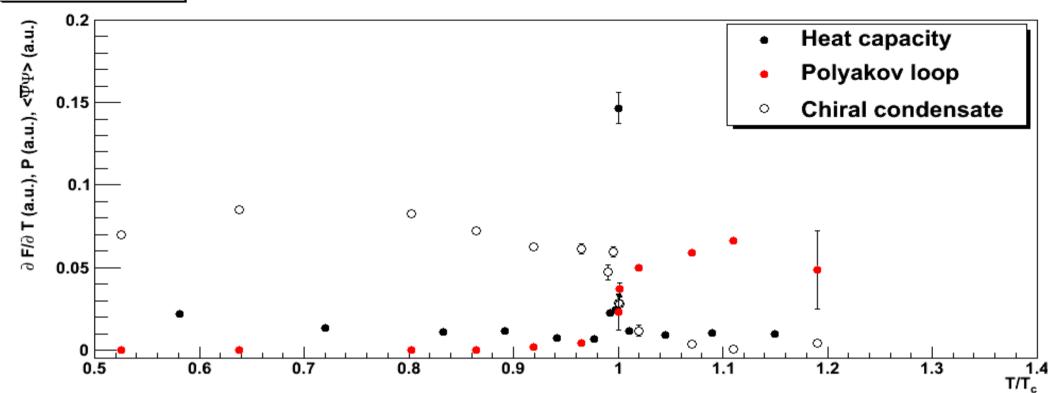
• Polyakov loop transition


[Pepe et al. NPA07, Greensite et la. PRD07, Cossu et al. JHEP07]

• Coincident with free energy

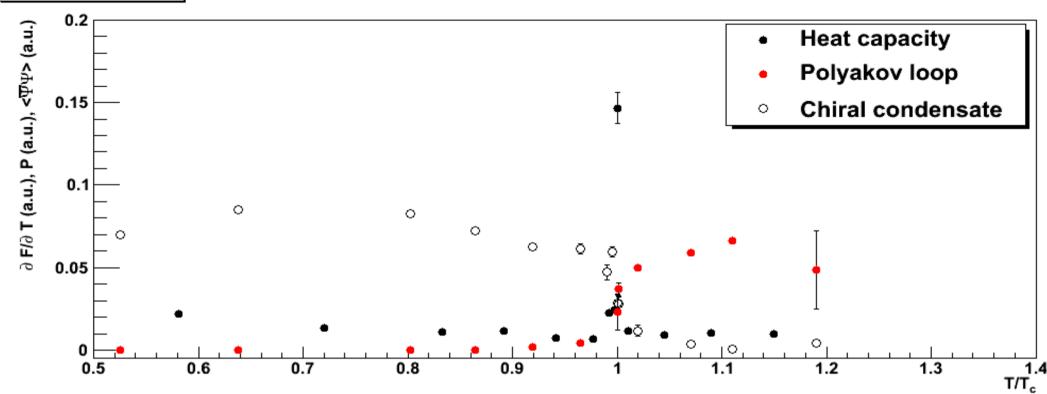
No deconfinement – like in QCD

Phase transition


[Danzer, Gattringer, Maas, JHEP09]

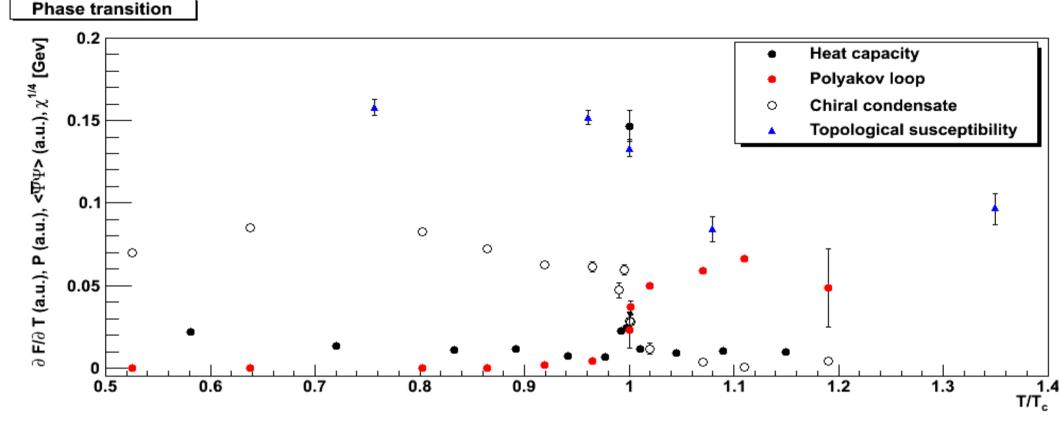
• Chiral symmetry 'broken' in quenched G2 QCD

Phase transition


[Danzer, Gattringer, Maas, JHEP09]

- Chiral symmetry 'broken' in quenched G2 QCD
- 'Restoration' at the phase transition

Phase transition


[Danzer, Gattringer, Maas, JHEP09]

- Chiral symmetry 'broken' in quenched G2 QCD
- 'Restoration' at the phase transition
 - Like in QCD
 - Unlike adjoint QCD [Bilgici, Ilgenfritz, Gattringer, Maas JHEP 09]

Topological susceptibility

[Ilgenfritz & Maas PRD'12]

- Topological structure similar
 - Topology reflects phase transition
 - Fewer topological lumps the higher the temperature

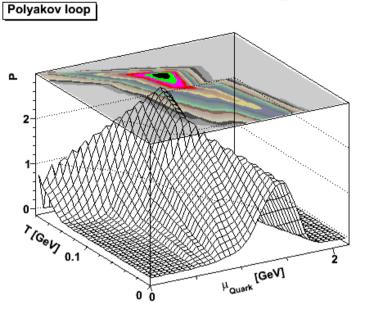
[Maas, von Smekal, Wellegehausen, Wipf '12]

 Quenched G2 QCD has the same phase structure as quenched QCD

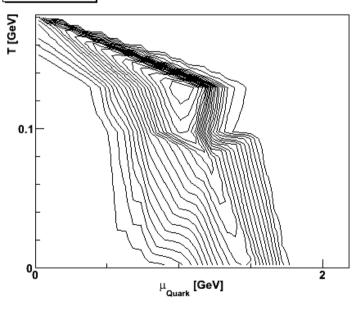
- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible

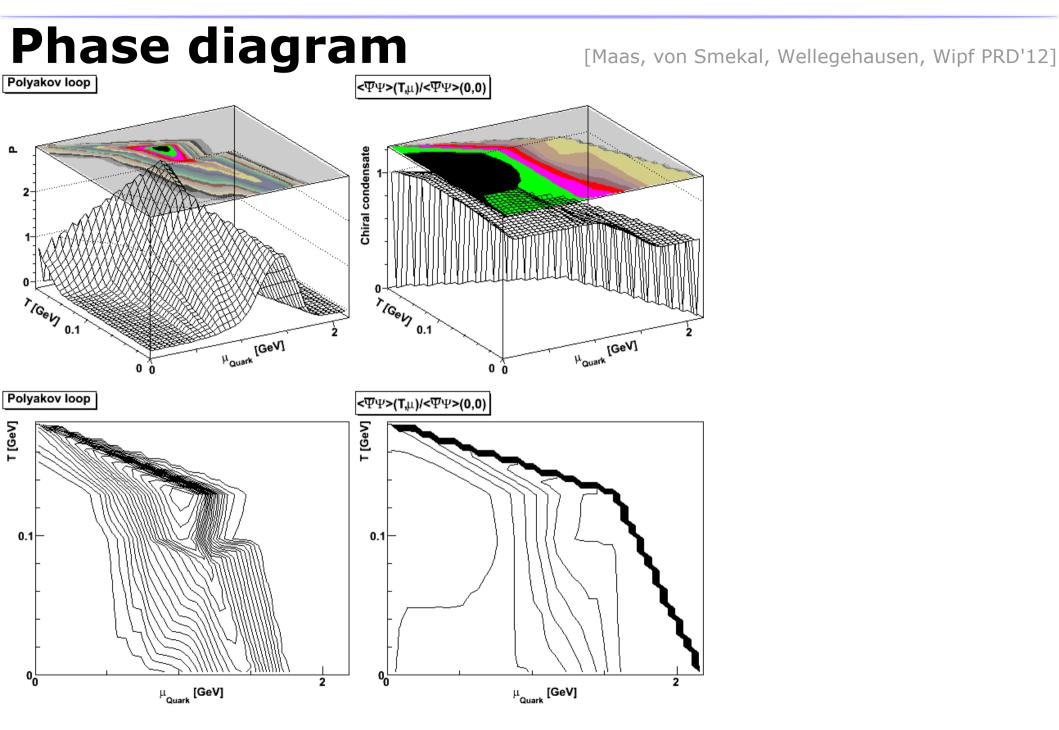
- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons

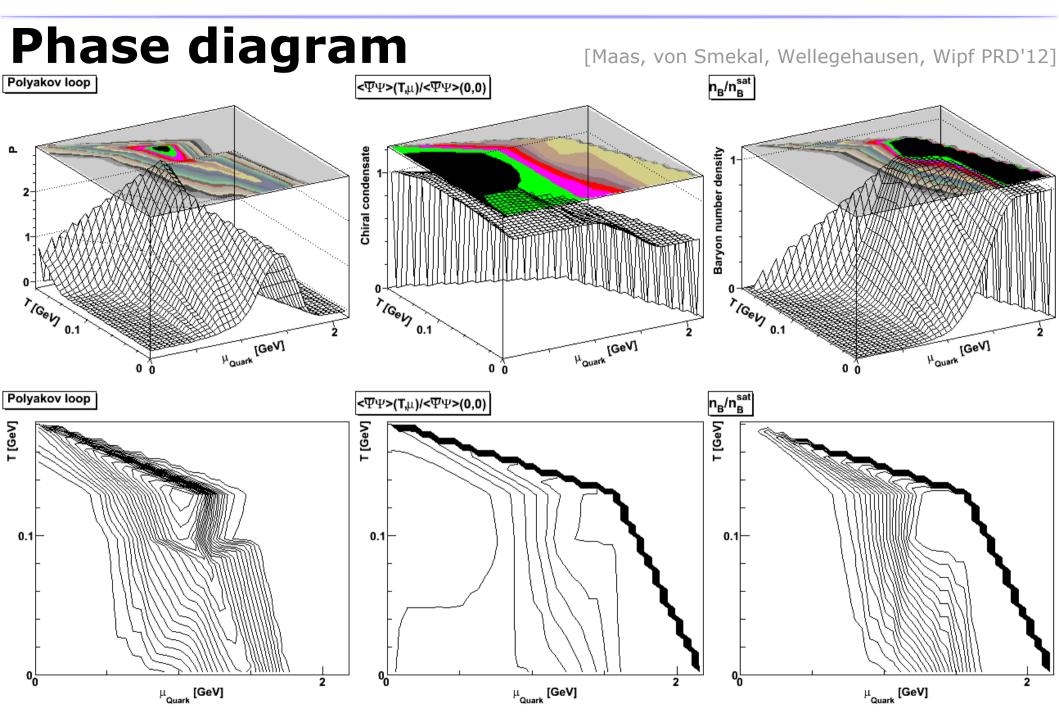
- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
 - Fermi effects at finite density correctly included

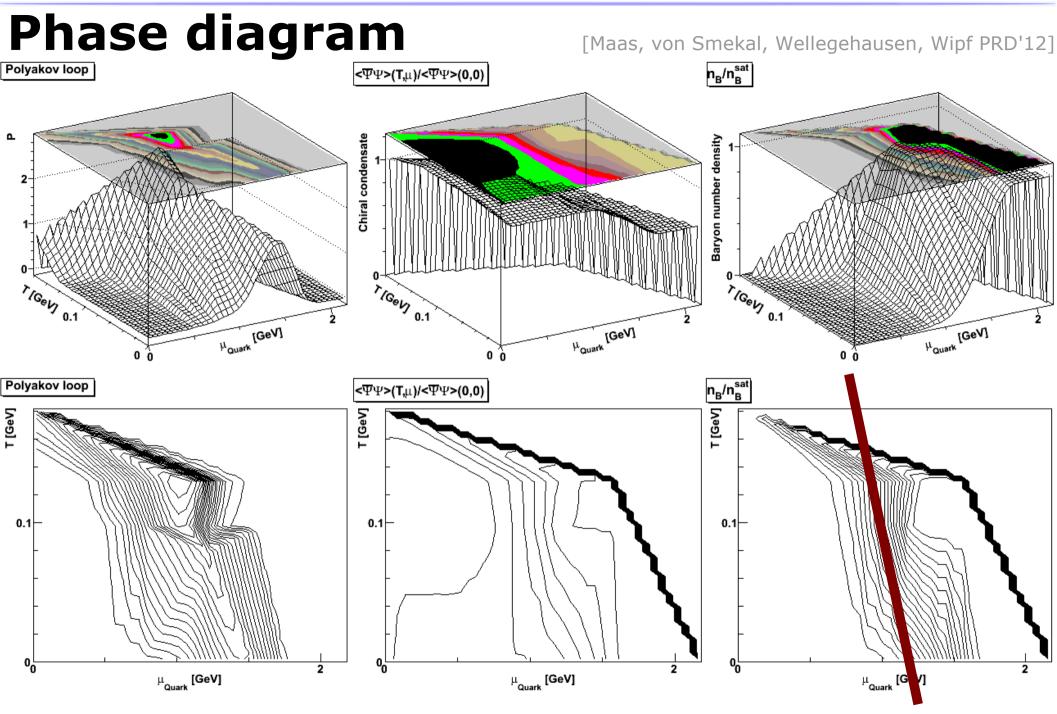

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
 - Fermi effects at finite density correctly included
 - Important for compact stellar objects

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
 - Fermi effects at finite density correctly included
 - Important for compact stellar objects
- 'Simplest' QCD with all these properties

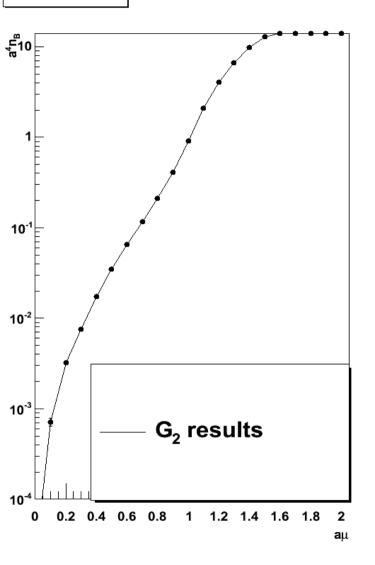

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
 - Fermi effects at finite density correctly included
 - Important for compact stellar objects
- 'Simplest' QCD with all these properties
- **Unquenched** 1 flavor calculation


- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
 - Fermi effects at finite density correctly included
 - Important for compact stellar objects
- 'Simplest' QCD with all these properties
- **Unquenched** 1 flavor calculation
 - Preliminary: Not very different for 2 flavors


Phase diagram



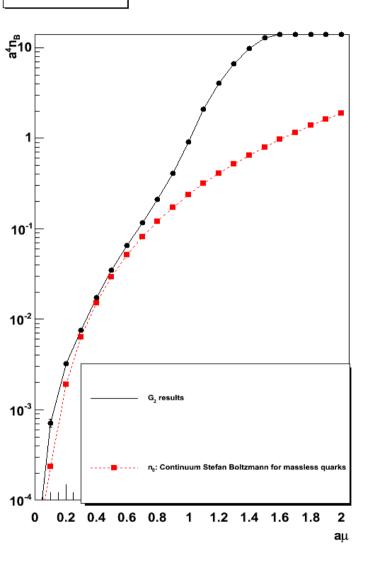
Start of lattice artifacts


Equation of state

[Maas, von Smekal, Wellegehausen, Wipf unpublished]

Equation of state

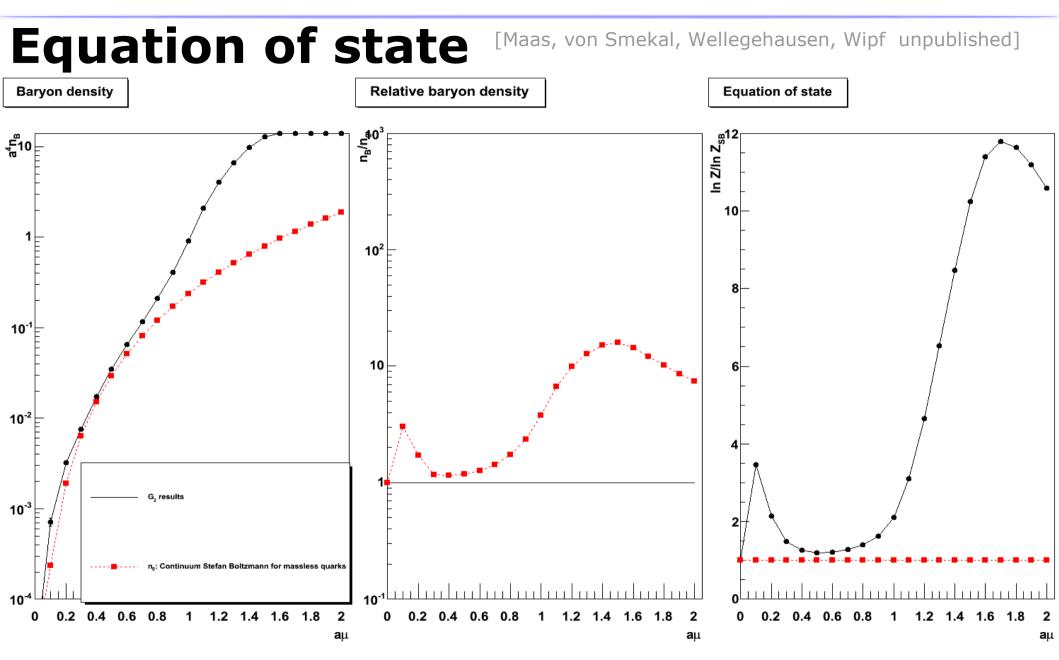
[Maas, von Smekal, Wellegehausen, Wipf unpublished]

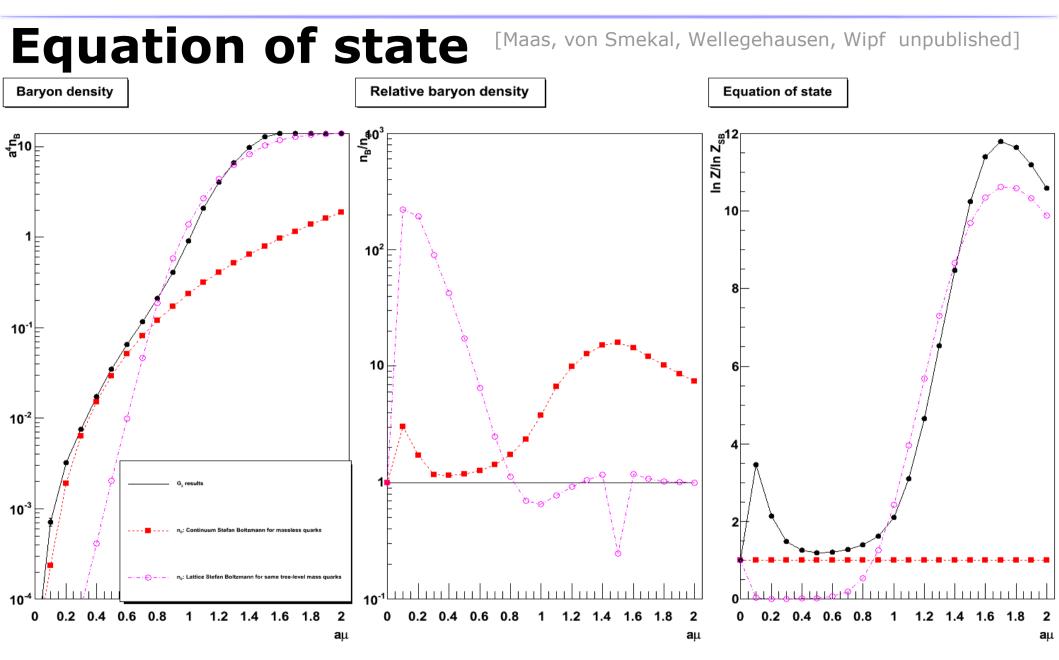

Baryon density

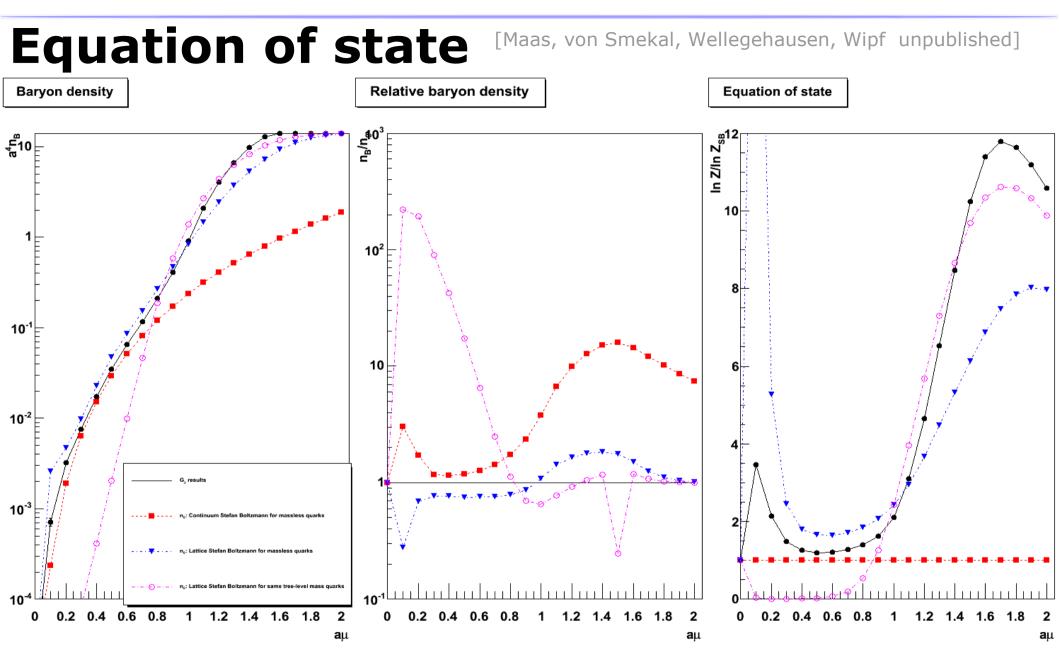
Equation of state

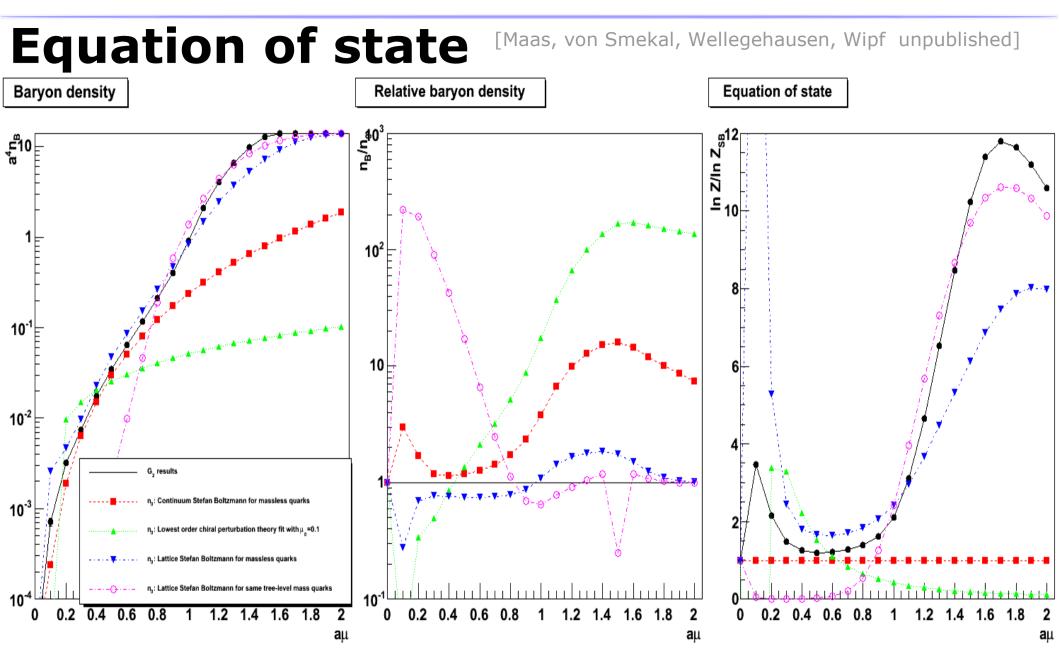
[Maas, von Smekal, Wellegehausen, Wipf unpublished]

Baryon density

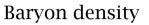


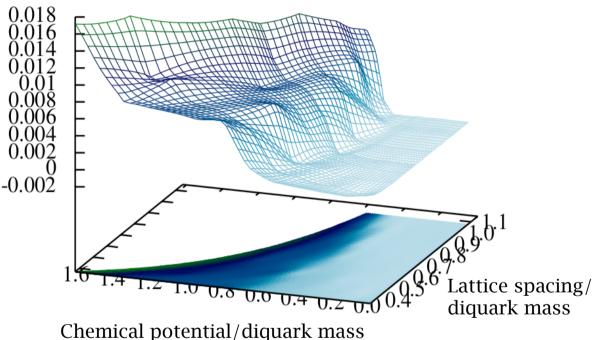

Equation of state [Maas, von Smekal, Wellegehausen, Wipf unpublished] Baryon density Relative baryon density n_B/n -**€**10 10² 10 10 10-2 10⁻³ 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1


aμ

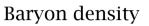

Can be calculated from baryon density

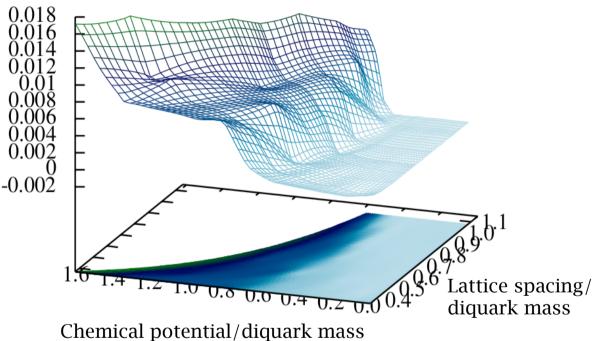
aμ



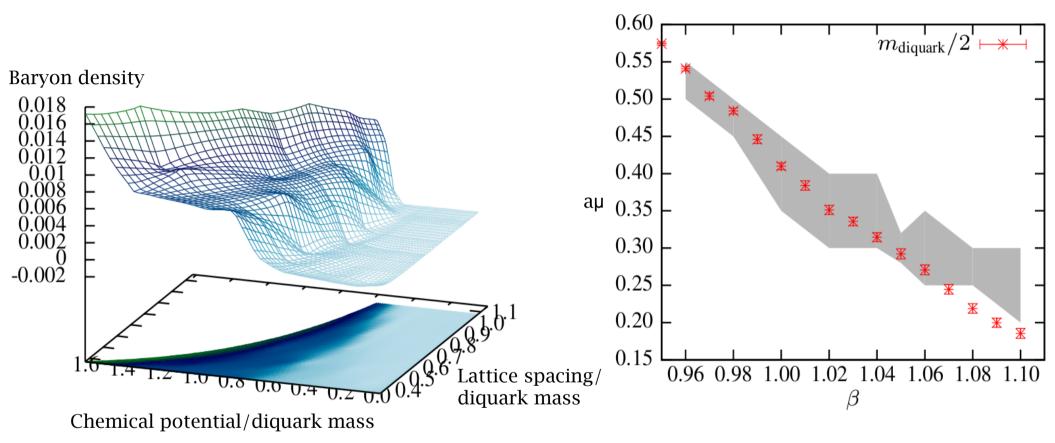


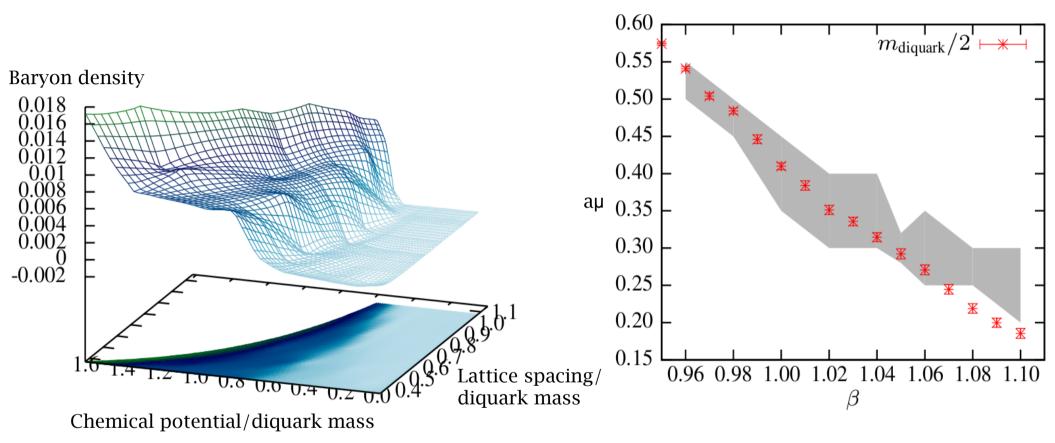
• Lattice artifacts still hard to control


[Maas, von Smekal, Wellegehausen, Wipf unpublished]



Lattice artifacts still hard to control


[Maas, von Smekal, Wellegehausen, Wipf unpublished]


- Lattice artifacts still hard to control
- Silver-blaze feature exists

- Lattice artifacts still hard to control
- Silver-blaze feature exists

- Lattice artifacts still hard to control
- Silver-blaze feature exists
- Plateau at small density: Intermediate phase?

• How to tackle the sign problem in QCD?

- How to tackle the sign problem in QCD?
 - G2 QCD is not QCD

- How to tackle the sign problem in QCD?
 - G2 QCD is not QCD
 - Breaking G2 QCD to QCD, if possible, reintroduces sign problem

- How to tackle the sign problem in QCD?
 - G2 QCD is not QCD
 - Breaking G2 QCD to QCD, if possible, reintroduces sign problem
- Test methods explicitly
 - Analytic continuation, imaginary chemical potential, Taylor expansion, Lee-Yang zeros,...

- How to tackle the sign problem in QCD?
 - G2 QCD is not QCD
 - Breaking G2 QCD to QCD, if possible, reintroduces sign problem
- Test methods explicitly
 - Analytic continuation, imaginary chemical potential, Taylor expansion, Lee-Yang zeros,...
- Go off the lattice and combine

- How to tackle the sign problem in QCD?
 - G2 QCD is not QCD
 - Breaking G2 QCD to QCD, if possible, reintroduces sign problem
- Test methods explicitly
 - Analytic continuation, imaginary chemical potential, Taylor expansion, Lee-Yang zeros,...
- Go off the lattice and combine
 - Derive effective theories

- How to tackle the sign problem in QCD?
 - G2 QCD is not QCD
 - Breaking G2 QCD to QCD, if possible, reintroduces sign problem
- Test methods explicitly
 - Analytic continuation, imaginary chemical potential, Taylor expansion, Lee-Yang zeros,...
- Go off the lattice and combine
 - Derive effective theories
 - Tests for truncation/approximations in continuum methods
 - E.g. functional methods

- Conceptual insights
 - Center is not relevant for:
 - Phase transition
 - Coincidence of chiral and 'deconfinement' phase transition
 - Topological properties

- Conceptual insights
 - Center is not relevant for:
 - Phase transition
 - Coincidence of chiral and 'deconfinement' phase transition
 - Topological properties
 - Quenched G2 QCD is almost the same as quenched QCD, up to the static potential

- Conceptual insights
 - Center is not relevant for:
 - Phase transition
 - Coincidence of chiral and 'deconfinement' phase transition
 - Topological properties
 - Quenched G2 QCD is almost the same as quenched QCD, up to the static potential
- Practical insights: Phase diagram

- Conceptual insights
 - Center is not relevant for:
 - Phase transition
 - Coincidence of chiral and 'deconfinement' phase transition
 - Topological properties
 - Quenched G2 QCD is almost the same as quenched QCD, up to the static potential
- Practical insights: Phase diagram
 - Rough shape of the phase diagram of a gauge theory is similar to the expected one