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=⇒ Confinement and χsb in gauge theories are strongly coupled phenomena

which are difficult to study from first principlesa

=⇒ I will use gauge theory/string theory correspondence of Maldacena,

where the strongly coupled dynamics of certain gauge theories is mapped to

essentially classical dynamics of higher dimensional gravitational theories

=⇒ I consider a specific string theory example of gauge gravity

correspondence, rather than a phenomenological model of thereof.

aFor dynamical questions.



Outline of the talk:

• The (cascading) gauge theory: N = 1 supersymmetric

SU(K + P )× SU(K)

+bi-fundamental matter

• Cascading gauge theory plasma:

first-order confinement/deconfinement transition

chiral symmetry breaking instabilities

critical point

• Transport coefficients: shear and bulk viscosities

• Application: cavitation in the vicinity of the phase transition



Klebanov-Strassler model (a cascading gauge theory)

Consider a following quiver gauge theory:

SU(K + P )

A1

A2

B1

B2

SU(K)

The gauge group and the matter content:

{g1, g2} : SU(K + P ) × SU(K)

Ai : (K + P ) × K

Bi : (K + P ) × K



Compute β-functions corresponding to RG running of {g1, g2} gauge

couplings:

β1 ∼ 3(K + P )− 2K(1− γAi − γBj ) = 3P +O(P 3/K2)

β2 ∼ 3K − 2(K + P )(1− γAi − γBj ) = −3P +O(P 3/K2)

From the β-functions:

4π

g21(µ)
+

4π

g22(µ)
= const ,

4π

g21(µ)
− 4π

g22(µ)
∼ P ln

µ

Λ

where Λ is the strong coupling scale of the theory

E
E = µ

g1g1 g2g2

1

g2

1

= 0 , SU(K + P ) 1

g2

2

= 0 , SU(K)

strongly coupled strongly coupled



What is the effective description of the theory past the Landau poles?



What is the effective description of the theory past the Landau poles?

=⇒ Using Seiberg duality for N = 1 SUSY gauge theory,

the extension of the model past the Landau poles results in self-similarity

cascade (Klebanov and Strassler):

K → K(µ) ∼ 2P 2 ln
µ

Λ

UV : K → K + P , IR : K → K − P

=⇒ If K is a multiple of P , the theory in the deep infrared is

N = 1 SU(P ) SYMa; this theory:

confines

spontaneously breaks U(1)R chiral symmetry

=⇒ Can compute: gap in spectrum, gaugino condensate, tension of domain

walls between P vacua...
aYM + massless Weyl fermions in adjoint representation



Klebanov-Strassler model (a supergravity story)

It is possible to derive an effective 5d action from string theory dual to KS

model:
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=⇒ Euclidean gravitational solutions in this 5-dim theory of gravity coupled

to various scalars fields with compactified time-direction describe confined

equilibrium states of the cascading plasma. As usual,

tE ∼ tE +
1

Tplasma

=⇒ Black holes with translationary invariant horizon describes deconfined

equilibrium states of the cascading gauge theory plasma, with:

Tplasma ⇐⇒ THawking

splasma ⇐⇒ sBekenstein−Hawking

Eplasma ⇐⇒ Black hole mass density

Fplasma ⇐⇒ Black hole gravitational action

=⇒ Spectrum of physical excitation in deconfined gauge theory plasma

corresponds to spectrum of black-hole quasinormal modes



=⇒ Comments on confinement/deconfinement transition in N → ∞ gauge

theories:

• In the deconfined phase the free energy density and the entropy density

Fdeconfined ∝ O
(

N2
)

, sdeconfined ∝ O
(

N2
)

• In the confined phase the free energy density

Fconfined ∝ O
(

N0
)

, sconfined ∝ O
(

N0
)

• Since

lim
N→∞

F
N2

∣

∣

∣

∣
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6= 0 , or lim
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F
sT

∣

∣

∣

∣
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6= 0

and

lim
N→∞

F
N2

∣

∣

∣

∣

confined

= 0 ,

the confined phase of plasma is thermodynamically favourable once

F
sT

> 0 , provided s ∼ O
(

N2
)



=⇒ Confinement/deconfinement phase transition in cascading plasma

0.95 1.00 1.05 1.10 1.15 1.20

-0.1

0.1

0.2

0.3

0.4

0.5

0.6

T

Tc

F

sT

TC is the critical temperature

Tc = 0.6141111(3)Λ

The phase transition is of the first-order, between the deconfined

chirally symmetric phase and the confined phase with broken chiral

symmetry



=⇒ Is the deconfined chirally symmetric phase of the cascading plasma

perturbatively stable?

=⇒ To answer this question:

we look at linearized χsb fluctuations ∝ e−iωt+i~k·~x about chirally

symmetric thermal state. Suppose that these fluctuations have a dispersion

relation

w = w(q2) , w ≡ ω

2πT
, q =

|~k|
2πT

These χsb fluctuations are unstable, provided

Im(w) > 0 for Im(q) = 0

Using the holographic duality, one can precisely map these fluctuations

into quasinormal modes of the 5d black hole solution, describing the

deconfined chirally symmetric equilibrium phase of the cascading plasma
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=⇒ The left plot represents the dispersion relation of the chiral fluctuations

at the threshold of instability, i.e., , with w(q2) = 0. The blue dashed vertical

lines represent the onset of instability: T = TχSB, such that (iw = 0, q2 = 0).

The vertical green dashed line represents the confinement/deconfinement

critical temperature Tc,

TχSB = 0.882503(0)Tc

=⇒ On the right plot: the green dots indicate quasinormal modes with

(w = −i0.01, q2) as a function of T
Λ

— these fluctuations are stable. The red

dots indicate quasinormal modes with (w = i0.01, q2) as a function of T
Λ

—

these fluctuations are genuine tachyons whenever q2 > 0.



Critical end point of the chirally symmetric deconfined phase

=⇒ Consider sound waves in deconfined phase:
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=⇒ There is a minimal temperature of the deconfined phase:

Tend = 0.8749(0)Tc

Vanishing of the speed of sound as above implies that the specific heat cV of

the cascading plasma diverges near the end point with the critical exponent

α = 1

2
:

cV = s/c2s ∝ |1− Tend/T |−1/2



=⇒ At the critical end point the free energy develops a cusp:
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=⇒ We can also compute remaining critical exponents:

(α, β, γ, δ, ν, η) =

(

1

2
,
1

2
,
1

2
, 2,

1

4
, 0

)



=⇒ Why do we care about critical point?



=⇒ Why do we care about critical point?

=⇒ Because we can also compute transport coefficients —

the shear and bulk viscosity; and thus can answer the question whether bulk

viscosity diverges at criticality

(at least for the mean-field critical point under consideration)



Hydrodynamic fluctuations in cascading plasma

Hydrodynamics is a universal framework to describe strongly coupled

systems at energy scales much lower than their characteristic microscopic

scales (masses, temperature, etc). The basic hydrodynamic equation is that

of the conservation of the stress-energy tensor

∇µT
µν = 0 , Tµν = Tµν

ideal +Πµν

Tµν
ideal = E uµuν + P ∆µν , ∆µν = gµν + uµuν

Πµν = −η σµν − ζ (∇αu
α)∆µν

where the shear tensor is

σµν =
(

∆µλ∇λu
ν +∆νλ∇λu

µ
)

− 2

3
(∇αu

α)∆µν

and η and ζ are the shear and bulk viscosities



=⇒ There are 2 type of on-shell fluctuations of the stress-energy tensor,

shear modes and the sound modes. The have the following dispersion

relation:

shear fluctuations

w = −i 2π
η

s
q
2 +O(q4)

sound fluctuations

w = ± cs q− i
4π

3

η

s

(

1 +
3

4

ζ

η

)

+O(q3)

where as before

w ≡ ω

2πT
, q =

|~k|
2πT

=⇒ In holography is it straightforward to directly compute spectrum of

hydrodynamic fluctuations



Cascading plasma transport

=⇒ From the dispersion relation of the hydro fluctuations in deconfined

phase we can read off:

shear viscosity ratio
η

s
=

1

4π

independent of the temperature

bulk viscosity ratio
ζ

η

is temperature dependent.

=⇒ I will present now results for high temperature ln T
Λ
≫ 1, and in the IR

(close to various transitions)



5 10 15 20 25 30

0.05

0.10

0.15

0.20

0.25

ζ
η

ln T
Λ

Ratio of bulk ζ to shear η viscosities in cascading plasma at high

temperature. The solid red line is an analytic high-T approximation
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Green: confinement/deconfinement, ζ
η = 0.5(9)

Blue: chiral symmetry breaking instability

Tricritical end point (maximum ratio): ζ
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Can cavitation affect the confinement/deconfinement phase transition?

(motivated by K.Rajagopal and N.Tripuraneni, JHEP 1003:018,2010 )

=⇒ Notice that viscous effects in fluid tend to reduce the pressure:

isotropic expansion:

Peff |isotropic = P − ζ (∇αu
α) = P − ζ 3

ȧ

a
< P

where a = a(τ) is the spatial expansion factor;

boost invariant expansion:

Peff
⊥

= P +
2η − 3ζ

3τ
, Peff

ξ = P − 4η + 3ζ

3τ
,

〈Peff 〉 = 2

3
Peff
⊥

+
1

3
Peff
ξ = P − ζ (∇αu

α) = P − ζ

τ

where τ is the proper time in boost invariant expansion



Consider now a system which in thermal equilibrium can exist in one of the

two phases A or B. A first-order phase transition between these two phases

implies the existence of a critical temperature Tc, such that PA > PB for

T > Tc and PA < PB otherwise.

=⇒ If the system flows, the relevant pressure determining the stability of a

phase is the effective one:

Peff
A/B = PA/B − ζA/B (∇αu

α) .

Close to Tc,

PA/B = Pc + sA/B (T − Tc) +O
(

(T − Tc)
2
)

,

where sA/B are entropy densities of the corresponding phases.

=⇒ the critical temperature get shifted:

|δTc|
Tc

∼ |ζA − ζB |
|sA − sB|

|∇αu
α|

Tc
.

|ζA − ζB |
|sA − sB|

,

where the upper bound comes from applicability of first-order hydro:

|∇µu
ν | < T



In cascading plasma:

A — deconfined phase; B confined phase

ζA ≫ ζB , sA ≫ sB (large Nc suppression)

|δTc|
Tc

.
ζA
sA

< 0.04(8)

=⇒ It is reasonable to expect that the results is universal as it reflects the

fact that large-Nc phase transitions are typically strong (as opposite to weak)

first-order, and that the bulk viscosity at the critical point remains finite.

=⇒ Some phenomenological models suggest that QCD bulk viscosity might

diverge at the critical point of the T − µB phase diagram. Since QCD critical

point separates the line of the first-order transitions (at large chemical

potential) from the crossovers (at low chemical potential) both of these

effects tend to increase |δTc|/Tc.



Summary

• I considered a cascading gauge theory, which is in the same universality

class in the IR as N = 1 SU(M) SYM, in the planar limit, and for

(infinitely) large ’t Hooft coupling.

• I argued that this theory undergoes a first order confinement phase

transition (with spontaneous broken chiral symmetry) at Tc

• Below Tc, the metastable chirally symmetric deconfined phase in this

theory becomes perturbatively unstable at

TχSB = 0.882503(0)Tc

• Deconfined phase ’ends’ at the mean-field critical point

(α, β, γ, δ, ν, η) =

(

1

2
,
1

2
,
1

2
, 2,

1

4
, 0

)

at Tend = 0.8749(0)

• Computed transport of the theory in deconfined phase:

η

s
=

1

4π
, max

(

ζ

η

)

= 0.704(1)

• Cavitation is not important



Future directions:

study cascading gauge theory at finite chemical potential

compute nonlocal observables (Wilson, t’ Hooft loop tension)

study dynamical thermalization


