Recent ALICE & CMS results – One step closer to the edge Rene Bellwied

UNIVERSITY OF HOUSTON

one of those unforgiving talks that read like a shopping list.....

UNIVERSITY of HOUSTON

One step closer to the edge....

- How much closer ? Global observables
- The bulk shows new PID features
 - Yields, spectra, ultra-central collisions
- The intermediate p_T puzzle continues
 - Baryon/meson ratios
- The high p_T disappointment or excitement?
 - Hadro-chemistry, jet quenching (R_{AA}, shapes, FF)

The R_{AA} and v2 collections

- Heavy quark zoo and its relevance
- pPb the next frontier ?
- The future and summary
- Many thanks to CMS and G. Roland

Detectors – An Experimentalists Pride & Joy !

CMS excels at -Resolution of tracking and calorimetry -Trigger selectivity (high lum.)

High magnetic field over a large range *in rapidity* and full azimuth

ALICE excels at -Resolution of tracking and particle identification -Bulk production coverage (low lum.)

Low magnetic field over a large range *in momentum* and full azimuth

UNIVERSITY of HOUSTON

LHC Heavy-Ion Runs

year	system	energy √s _{NN} TeV	integrated luminosity
2010	Pb – Pb	2.76	~ 10 μb ⁻¹
2011	Pb – Pb	2.76	~ 0.1 nb ⁻¹
2013	p – Pb	5.02	~ 30 nb ⁻¹

UNIVERSITY of HOUSTON

UNIVERSITY of HOUSTON

The bulk – let's do PID !

UNIVERSITY of HOUSTON

700

600

500

400

300

200

100

1.8

0.8

0.6

0.2

0.07 0.1

ITS dE/dx (keV/300 µm)

TRD d*E*/dx + TR (arb. units)

Bulk particle production –

everything as expected until... you look at strangeness

Flavor hierarchy or hadronic annihilation ?

Model: A. Andronic et al., Phys. Lett. B 673:142-145,2009

Alternative explanation: proton annihilation in hadronic sector (issues with centrality dependence and resulting common freeze-out T (too high)) Why could the effect be less at RHIC and SPS ? μ_B

UNIVERSITY of HOUSTON

How thermal is the charm?

Only if charm is in chemical equilibrium at T = 250 MeV Charm is predominantly produced in first collisions (gluon-gluon interactions) But, assuming Tinit ~ 700 MeV and Tch = 250 MeV, there might be finite thermal production. Zhang, Ko, Liu (arXiv:0709.1684)

Experiment: charm $v_2 \& R_{AA}$ hints of equilibration through interactions

UNIVERSITY of HOUSTON

Identified-particle v₂

 v_2 at low p_T (<3 GeV/*c*) follows mass hierarchy overall qualitative agreement with hydro up to p_T 1.5–3 GeV/*c* (π –p); quantitative precision needs improvements – hadronic afterburner

> $n_q(m_T)$ -scaling worse than at RHIC $n_q(p_T)$ -scaling at $p_T > 1.2$ GeV/*c* - violation 10–20%

UNIVERSITY of HOUSTON

Ultra-central collisions measured in CMS 0.2% most central

UNIVERSITY of HOUSTON

Hydro description of higher moments

Calculation by Heinz et al.

Calculation by Luzum et al.

Quantitative description of hydrodynamic flow Hierarchy of coefficients reproduced by hydro Some difference between v_2 and $v_{3.7}$

Intermediate pT

UNIVERSITY of HOUSTON

v_2 , v_3 , v_4 versus p_T

Non-zero value of v_2 at high p_T for 2 and 4-particle cumulant v_3 and v_4 diminish above 10 GeV/*c* –no fluctuations at high p_T ?

UNIVERSITY of HOUSTON

Confirmation / p_{T} extension by CMS

UNIVERSITY of HOUSTON

Baryon-to-meson ratio: p/π

 p/π ratio enhancement in 2-8 GeV/c range in 0–5% central Pb–Pb collisions up to factor ~ 3 higher than in pp. p_T > 10 GeV/c no more medium dependence Standard explanations: recombination or radial flow/quenching interplay ?

UNIVERSITY of HOUSTON

PID in two-particle correlation structures

UNIVERSITY of HOUSTON

High p_T – disappointment or excitement ?

Suppression of charged particles

EPJC 72 (2012) 1945

Charged hadron R_{AA} flat from $p_T = 30 - 100 GeV$

UNIVERSITY of HOUSTON

No modified hadro-chemistry in fragmentation region for Kaons !!

UNIVERSITY of HOUSTON

No modified hadro-chemistry in fragmentation region for protons !!

UNIVERSITY of HOUSTON

Disprove significant theory predictions

Baryon/meson differences e.g. Aurenche/Zakharov arXiv:1109.6819 strange/light quark meson differences e.g. Sapeta/Wiedemann arXiv:0707.3494

UNIVERSITY of HOUSTON

D meson R_{AA} and v2

Simultaneous description of R_{AA} and v_2 yields c-quark transport coefficient in medium No indication of colour charge dependence

UNIVERSITY of HOUSTON

Heavy- flavour R_{AA} : D, e, μ

Comparison of heavy-flavour R_{AA} :

 $-p_{T}$ < 8 GeV/*c* all measurements close together

 $-p_{T}$ > 8 GeV/*c* heavy-flavour e systematically above D meson.

Effect of B meson contribution?

ALI-DER-36850

Suppression of inclusive jets

Similar to charged particles, high- p_T jet R_{AA} flat at ≈ 0.5

Parton ID: b-quarks

Anatomy of a jet

UNIVERSITY of HOUSTON

Anatomy of a jet

Ratio of PbPb/pp differential jet shapes

Ratio of PbPb/pp fragmentation functions

UNIVERSITY of HOUSTON

A consistent view of jet quenching

Possible explanation: color coherence (arXiv:1210.7765)

UNIVERSITY of HOUSTON

Heavy quark zoo

UNIVERSITY of HOUSTON

CMS di-muon spectrum

UNIVERSITY of HOUSTON

$J/\psi R_{AA}$ centrality dependence

J/ ψ suppression measurements both in central and forward regions – from N_{part} > 100 suppression independent of centrality – in central collisions, less suppression than at RHIC – at low p_T (< 2 GeV/c) less suppression than at high p_T in central collisions Indication of J/ ψ regeneration at low p_T ?

UNIVERSITY of HOUSTON

$J/\psi R_{AA} p_T$ dependence

Compare to regeneration model *X.Zhao, R.Rapp NPA 859 114*

Different suppression pattern at low/high- p_{T}

At low $p_{\rm T} \sim 50\%$ J/ ψ from recombination Fair agreement for different centralities

Statistical hadronization model also describes the data: *P.Braun-Munzinger et al.*

J/ψ elliptic flow

 J/ψ produced by recombination of thermalized c-quarks should have non-zero elliptic flow

– measurements give a hint for non-zero v_2

- qualitative agreement with transport models, including regeneration - complementary to indications obtained from J/ ψ R_{AA} studies

UNIVERSITY of HOUSTON

Sequential Upsilon suppression

2010 data

Indication of suppression of (Y(2S)+Y(3S)) relative to Y(1S) 2.4σ significance 2011 data

Observation of sequential suppression of Y family Detailed studies

UNIVERSITY of HOUSTON

Building a quarkonium-thermometer

UNIVERSITY of HOUSTON

$J/\psi vs \psi(2S)$

than more tightly bound J/ ψ for p_T > 3GeV

not more than 2σ significance, limited by pp statistics not (yet) confirmed by ALICE

UNIVERSITY of HOUSTON

Proton – Pb collisions

Initial conditions or collectivity ? CGC or Hydro ?

ALICE measurements: Pseudo-rapidity density of charged particles (arXiv:1210.3615) p_T spectra and nuclear modification factors (arXiv:1210.4520) Long range angular correlations on same/away side (arXiv:1212.2001)

Proton – Pb: $dN_{ch}/d\eta$ and p_T distributions

p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 25 20 $dN_{ch}/d\eta_{lab}$ 15 HIJING: 10 ALICE NSD ---- 2.1 no shad. [6] $-2.1 \text{ s}_{a}=0.28 [6]$ Sat. Models: ---- BB2.0 no shad. [4] - IP-Sat [5] $B\overline{B}2.0$ with shad. [4] ----- KLN [3] DPMJET [32] ----- rcBK [7] -2 2 0 η_{lab}

Most models within 20% of data

Saturation models rise too steeply pQCD based models do well

Spectrum slightly softer than in pp

UNIVERSITY of HOUSTON

Proton – Pb: R_{AA} distributions

Comparison: p-Pb vs PbPb

1.8 ALICE, charged particles 1.8 charged particles 1.6 • p-Pb $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}, \text{ NSD}, |\eta_{_{cme}}| < 0.3$ 1.6 Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}, 0.5\% \text{ central}, |\eta| < 0.8$ 1.4 Pb-Pb $\sqrt{s_{_{NN}}}$ = 2.76 TeV, 70-80% central, $\mid\eta\mid<0.8$ 1.4 ^{1.2} B^{bb}, ^{dad} B R_{pPb} , R_{PbPb} 1.2 0.8 0.6 0.6 0.4 • ALICE, p-Pb $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$, NSD, $|\eta_{_{cme}}| < 0.3$ 0.4 ★ STAR, d-Au √s_{NN} = 0.2 TeV, |η| < 0.5 0.2 0.2 \oplus PHENIX, d-Au $\sqrt{s_{_{NN}}}$ = 0.2 TeV, $|\eta| < 0.18$ 20 16 18 20 2 18 2 n 2 16 12 14 10 p_T (GeV/c) p_T (GeV/c)

Comparison: LHC p-Pb vs RHIC d-Au

UNIVERSITY of HOUSTON

Proton – Pb: long range di-hadron correlations

UNIVERSITY of HOUSTON

Getting to the heart of it

Subtracting high multiplicity events from low multiplicity events reveals the structure

UNIVERSITY of HOUSTON

Integrated ridge yields

Data:

Integrated yields vary over large range <u>But near and away side agree</u> <u>for each pT and multiplicity class</u> Theory: Dusling, Venugopolan (arXiv:1211.3701) <u>CGC predicts double ridge and</u> <u>shows good agreement for yields</u>

Theory alternative: hydrodynamics (Bozek et al., arXiv:1211.0845) Good agreement with v_2 and v_3

UNIVERSITY of HOUSTON

The future and summary

UNIVERSITY of HOUSTON

Future LHC program (preliminary)

ALICE heavy-ion program approved for ~ 1 nb⁻¹:

- 2013–14 Long Shutdown 1 (LS1)
- 2015 Pb–Pb at $\sqrt{s_{NN}} = 5.1 \text{ TeV}$
- 2016–17 (maybe combined in one year) Pb–Pb at $\sqrt{s_{NN}}$ = 5.5 TeV
- 2018 Long Shutdown 2 (LS2)
- 2019 probably light nuclei (Ar–Ar) high-luminosity run
- 2020 p–Pb comparison run at full energy
- 2021 Pb–Pb run to complete initial ALICE programme
- 2022 Long Shutdown 3 (LS3)

Detector upgrades planned for LS2 (central barrel upgrade: ITS/TPC to improve low momentum coverage and luminosity upgrade)

Luminosity upgrade to 50 kHz in PbPb, 2 MHz in pp

Summary

- ALICE/CMS have obtained a wealth of physics results from the first two LHC heavy-ion runs and the most recent pPb run:
 - bulk, soft probes:
 - thermal photons signal the highest initial temperature ever recorded
 - Strangeness seems to hadronize earlier than light particles
 - V2 and higher harmonics in line with hydro expectations
 - Intermediate / high-p_T probes:
 - Baryon enhancement still remains at intermediate pT
 - RAA and v2 show surprisingly little flavor dependence
 - v2 out to high pT, higher harmonics die out at high pt
 - Jets quench, but shapes and FF almost unaffected by medium
 - heavy-flavour physics:
 - suppression and flow of D mesons, leptons,
 - J/ ψ and Y suppression and recombination. Towards a thermometer.
- **pA program**: first results that can be interpreted with CGC or hydro !!
- Long term future
 - before LS2 (2018): p–Pb and Pb–Pb, higher energy and complete approved
 - during LS2: major detector upgrade of central barrel in ALICE
 - after LS2: major luminosity upgrade and continued physics program

UNIVERSITY of HOUSTON

