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Holography vs. Orbifolding

Gauge/gravity duality Orbifold equivalence
Maldacena (1998), ... Kachru-Silverstein (1998), ...

strongly-coupled strongly-coupled

gauge theory gauge theory

weakly-coupled strongly-coupled
gravity theory gauge theory
AdS/QGP, Cherman-Hanada-Robles-Llana;
AdS/QCD, Cherman-Tiburzi;

AdS/CMT, ... Hanada-NY; Hidaka-NY (2012)



Holography vs. Orbifolding

Gauge/gravity duality Orbifold equivalence
Maldacena (1998), ... Kachru-Silverstein (1998), ...

strongly-coupled QCD at us#0

QCD-like theory w/ sign problem

Example

weakly-coupled gauge theory -Monte Carlo
gravity theory w/o sign problem /. Exact results
AdS/QGP, Cherman-Hanada-Robles-Llana;
AdS/QCD, Cherman-Tiburzi;

AdS/CMT, ... Hanada-NY; Hidaka-NY (2012)



Orbifold equivalence

[How to use]

1. Identify a discrete global symmetry S of a theory P (parent).

2. Eliminate all the d.o.f.s of parent not invariant under S (projection).

3. This gives a new theory D (daughter).

4. Aclass of observables are identical between P and D at large Nc or MFA.

Valid as long as S is not broken spontaneously.

Refs: Bershadsky-Johansen (1998); Kovtun-Unsal-Yaffe (2003, 2005, 2006);
Generalization w/ fermions at finite u/T, Hanada-NY (JHEP, 2012).



Orbifold equivalence

[How to use]
1. Identify a discrete global symmetry S of a theory P (parent).
J.=-i0, %1, €ESO(2Nc), w=¢€e™ € U(1),
2. Eliminate all the d.o.f.s of parent not invariant under S (projection).
Auso - JCAHSOJC-l’ WSO = wd, YS°
3. This gives a new theory D (daughter).
D = SU(Nc) QCD.
4. Aclass of observables are identical between P and D at large Nc or MFA.

Valid as long as S is not broken spontaneously.

Refs: Bershadsky-Johansen (1998); Kovtun-Unsal-Yaffe (2003, 2005, 2006);
Generalization w/ fermions at finite u/T, Hanada-NY (JHEP, 2012).



Universality of phase diagrams

sign-free

SO(Nc) or Sp(Nc) YM + us

SU(Nc) QCD + s

SU(Nc) QCD + i

sign-free

Hanada-NY (JHEP, 2012)




Universality of phase diagrams

sign-free

SO(Nc) or Sp(Nc) YM + us

outside diquark cond.

everywhere
SUN)QCD + s |+ -------- »| SU(Nc) QCD + i
outside pion cond. sign-free

Hanada-NY (JHEP, 2012)
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models, holography, and lattice
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Intuitive derivation

Consider {qqg in QCD at finite u or us with Nf = 2 (u & d).

(qo (ue) = = f(u) + f(ua) = (L) + f(-pa) = <qa? ()

see also T. D. Cohen (2004)

For gluonic observables, equivalence holds up to O(N.?). D. Toublan (2005)

Not applicable when u & d are mixed — MFA outside 7 condensation

Orbifold equivalence: more systematic for a larger class of theories.



L attice results
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Where are QCD critical point(s)?
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A theorem

m* are the lightest in QCD at finite i Son-Stephanov (2001)
"." QCD inequalities: m* propagator = any meson propagator,

which follows from 1,y-Dy.1,=DT and Cauchy-Schwarz inequality.
mo=mr > 0 for mqg>0 outside 7 condensation phase.

QCD critical point (¢==< or ms=0) is prohibited there.

— Via the orbifold equivalence, it also holds in QCD at finite ps.

Hidaka-NY (PRL, 2012)

The only assumption: suppression of disconn. diagrams (OZl rule)



A theorem

QCD critical point in QCDs can only be inside 1 condensation of QCDi
where reweighting method breaks down.

m condensation in QCDi

™ @ QCD critical point

nuclear
matter

My /2 | )7,




Model results (Nf=2)

Random matrix model: Han-Stephanov (2008) NJL model: Andersen-Kyllingstad-Splittorff (2009)
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» Similar result in PNJL model: Sakai-Sasaki-Kouno-Yahiro (2010)
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Summary & Outlook

Universality of phase diagrams in QCD and QCD-like theories
Importance of disconn. diagrams beyond MFA — DS & Functional RG?
Many more applications of the orbifold equivalence.

Challenge for theory: physics inside 7 condensation.

?

disconn. diagrams

severe sign problem
( X reweighting)

nuclear
matter
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Discussion

» At MFA, chiral transition cannot be 1st outside m condensation.

— only beyond-MFA effects can make it 1st.



Discussion

At MFA, chiral transition cannot be 1st outside m condensation.

— only beyond-MFA effects can make it 1st.

ﬁ competition

quark mass weakens the chiral transition (1st — 2nd — crossover)
At us = 0, chiral transition is crossover; beyond-MFA effects < quark mass.

QCD critical point is accessible on the lattice (outside 1 condensation) if
beyond-MFA effects are enhanced at us # O for some reason.



A counter example?
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axial anomaly (disconnected diagrams)

» One can make the critical point on the T-axis (outside the pion condensation)
by fine tuning mqg ~ anomaly.

» Ignoring disconn. diagrams: anomaly < mq



QCD at finite iIsospin density

Son-Stephanov ('01);

chiral? de Forcrand et al. (‘07)

—— — (dysu) = 0

BEC region BCS region
(") #0 (dysu) # 0

M H;

Finite w=2u. chemical potentials y & -y for u & d quarks
— Dirac eigenvalues for u & d are complex conjugate.

— Positive fermion determinant (no sign problem)



SO & Sp gauge theories at ys>0

chiral?

——— (@aCy500) =0

BEC region BCS region
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M Hp

SO(2Nc): real — positive fermion determinant (no sign problem)

(similarly for pseudo-real Sp(2Nc) with even Nf)



From SO(2Nc) to SU(Nc) at finite w

Start with SO(2Nc) gauge theory at us>0.

1. Discrete symmetry: J.= —ios ® 1x. € SO(2N,)
J; = —109 ® 1Nf/2 - SU(Q)iSO

2. Projection:  AC = J.AS°J 7t %0 = g0t

3. Daughter theory: U(Nc) = SU(Nc) gauge theory at ui>0.

U\C U
APTroi — (A,u.) 0 LPO) — ) T
" 0 Al ) Y

4. Orbifold equivalence: (¢))>° = (¥))°Y etc.

[Caution]

« Z4 €SU(2)iso unbroken from SO(2Nc) to QCD at u>0 everywhere.



Perturbative proof

Bershadsky-Johansen ('98)

, 1 ,
+ Insert P(A°) = o (450 + /A7)

for each propagator.
« Take the same ‘t Hooft coupling.
« Difference comes from color factors.
« Condition: tr(J') =0, when J! # £1an,

Np
Z (_) ] tI‘(J_nl Jn4 Jn:;) _tr(J—RQ J—n4 Jn(—}) ] tI,(J—ng J—TLS J—n{j) ) tI‘(Jnl Jng Jng)
1
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Generally, 27Vr . 2Np=(N=1) . 9NL — o for any planar diagrams.



What are (aren’t) equivalent?

Not all the quantities are equivalent in the orbifold equivalence.
Projection symmetry must be unbroken.
Observables must keep the projection symmetry (neutral).

Symmetry breaking patterns, quantum numbers of the condensates
can be different, but their magnitudes are the same.

Example: BCS gap (inside the BEC-BCS crossover)

0
‘t Hooft limit (large Nc, g?Nc fixed)

6
L eX]D ( 78 92 Nc)




QCD inequality

» Correlation function:

Cr(x,y) = UUF(T)AIFT (Y))w.a
= —(tr[Sa(z,y)LSa(y, 2)T])a Sa(z,y)

[ =~y
= (z|D7y)

= (tr[Sa (2, y)Tis STy (2, )isT)) a
< /(S84 ] ay/ ([T 8775 D (T 85750 1) 4

= (tr[Sa(x,y) ST (2,9)]) 4,

Inequality saturated when I = iys.

> Cauchy-Schwarz inequality: tr(ABT) < Vitr AATVtr BBt



