Universality of Phase Diagrams in QCD and QCD-like Theories

Naoki Yamamoto (YITP, Kyoto University & MCFP, University of Maryland)

"Quarks, Gluons, and Hadronic Matter under Extreme Condition," March 22, 2013

<u>Outline</u>

- 1. Universality of phases in QCD and QCD-like theories
- 2. A theorem on the QCD critical point
- 3. Summary and discussion

Refs.: M. Hanada, NY, (JHEP 2012) Y. Hidaka, NY, (PRL 2012) M. Hanada, Y. Matsuo, NY, (PRD 2012)

A conjectured QCD phase diagram

Phase diagrams of QCD-like theories

Holography vs. Orbifolding

Gauge/gravity duality

Maldacena (1998), ...

Orbifold equivalence

Kachru-Silverstein (1998), ...

Cherman-Hanada-Robles-Llana; Cherman-Tiburzi; Hanada-NY; Hidaka-NY (2012)

Holography vs. Orbifolding

Gauge/gravity duality

Maldacena (1998), ...

Orbifold equivalence

Kachru-Silverstein (1998), ...

Hanada-NY; Hidaka-NY (2012)

Orbifold equivalence

[How to use]

- 1. Identify a discrete global symmetry S of a theory P (parent).
- 2. Eliminate all the d.o.f.s of parent not invariant under S (projection).
- 3. This gives a new theory *D* (daughter).
- A class of observables are identical between *P* and *D* at large *Nc* or MFA.
 Valid as long as *S* is not broken spontaneously.

Refs: Bershadsky-Johansen (1998); Kovtun-Ünsal-Yaffe (2003, 2005, 2006); Generalization w/ fermions at finite μ/T , Hanada-NY (JHEP, 2012).

Orbifold equivalence

[How to use]

1. Identify a discrete global symmetry S of a theory P (parent).

 $J_c = -i\sigma_2 \times \mathbf{1}_{Nc} \in SO(2Nc), \quad \omega = e^{i\pi} \in U(1)_B$

2. Eliminate all the d.o.f.s of parent not invariant under S (projection).

$$A_{\mu}^{SO} = J_c A_{\mu}^{SO} J_c^{-1}, \quad \psi^{SO} = \omega J_c \psi^{SO}$$

3. This gives a new theory *D* (daughter).

D = SU(Nc) QCD.

A class of observables are identical between *P* and *D* at large *Nc* or MFA.
 Valid as long as *S* is not broken spontaneously.

Refs: Bershadsky-Johansen (1998); Kovtun-Ünsal-Yaffe (2003, 2005, 2006); Generalization w/ fermions at finite μ/T , Hanada-NY (JHEP, 2012).

Universality of phase diagrams

sign-free

SO(
$$N_c$$
) or Sp(N_c) YM + μ_B

 $SU(N_c) QCD + \mu_B$

 $SU(N_c) QCD + \mu_l$

sign-free

Hanada-NY (JHEP, 2012)

Universality of phase diagrams

Hanada-NY (JHEP, 2012)

Sign problem and phase quenching in finite-density QCD: models, holography, and lattice

Masanori Hanada^{1,2}, Yoshinori Matsuo¹, and Naoki Yamamoto^{3,4}

CONTENTS

1.	Introduction and summary	-
II.	Phase-quenched QCD	ć
	A. Sign problem and phase quenching	-
	B. Phase diagrams of QCD_I , SO_B , and Sp_B	4
III.	Phase quenching in large- N_c QCD	(
	A. Orbifold equivalence	(
	B. Implications for the phase reweighting	
	C. Relation to the quenched approximation	8
IV.	Phase quenching in effective models of QCD	(
	•	(
	A. Mean-field approximation B. Nambu–Jona-Lasinio model	(1
	A. Mean-field approximation	9
	 A. Mean-field approximation B. Nambu–Jona-Lasinio model Instanton-induced interaction 	<u>(</u> 1(
	A. Mean-field approximation B. Nambu–Jona-Lasinio model	(1(11
	 A. Mean-field approximation B. Nambu–Jona-Lasinio model Instanton-induced interaction C. Linear sigma model 	(1(11 11
	 A. Mean-field approximation B. Nambu–Jona-Lasinio model Instanton-induced interaction C. Linear sigma model D. Polyakov–Nambu–Jona-Lasinio model 	(1(11 11 13

arXiv:1205:1030 (PRD, 2012)

1	V. Equivalences in holographic models of QCD	15
	A. $D3/D7$ model	15
3	B. Sakai-Sugimoto model	16
3		
4	VI. Numerical evidence of the phase quenching	18
	A. Reweighting	18
6	B. Imaginary chemical potential method	18
6	Roberge-Weiss periodicity	18
$\overline{7}$	C. Taylor expansion method	19
8		
	VII. Discussions and outlook	19

$$\langle \bar{q}q \rangle (\mu_B) = \left(\int f(\mu_U) + f(\mu_d) \right)$$

> Consider $\langle \bar{q}q \rangle$ in QCD at finite μ_I or μ_B with $N_f = 2$ (u & d).

$$\langle \bar{q}q \rangle(\mu_B) = \left(\int f(\mu_u) + f(\mu_d) = f(\mu_u) + f(-\mu_d) = \langle \bar{q}q \rangle(\mu_l) \right)$$

see also T. D. Cohen (2004)

$$\langle \bar{q}q \rangle(\mu_B) = \left(\int f(\mu_u) + f(\mu_d) = f(\mu_u) + f(-\mu_d) = \langle \bar{q}q \rangle(\mu) \right)$$

see also T. D. Cohen (2004)

- > For gluonic observables, equivalence holds up to $O(N_c^{-2})$. D. Toublan (2005)
- > Not applicable when u & d are mixed \rightarrow MFA outside π condensation
- Orbifold equivalence: more systematic for a larger class of theories.

Lattice results

Pressure

Chiral condensate

Allton et al. (Bielefeld-Swansea collaboration), 2005, PRD

Where are QCD critical point(s)?

COE

CSC

μ

Summarized in M. Stephanov, hep-lat/0701002

Baym-Hatsuda-Tachibana-NY (PRL, 2006)

<u>A theorem</u>

- → π[±] are the lightest in QCD at finite µ
 Son-Stephanov (2001)
 ∴ QCD inequalities: π[±] propagator ≥ any meson propagator,
 which follows from $\tau_1 \gamma_5 D \gamma_5 \tau_1 = D^{\dagger}$ and Cauchy-Schwarz inequality.
- > $m_{\sigma} \ge m_{\pi} > 0$ for $m_q > 0$ outside π condensation phase.
- ► QCD critical point (ξ =∞ or m_σ =0) is prohibited there.

→ Via the orbifold equivalence, it also holds in QCD at finite μ_B . Hidaka-NY (PRL, 2012)

The only assumption: suppression of disconn. diagrams (OZI rule)

A theorem

QCD critical point in QCD_B can only be inside π condensation of QCD_I where reweighting method breaks down.

Model results (Nf=2)

Similar result in PNJL model: Sakai-Sasaki-Kouno-Yahiro (2010)

Summary & Outlook

- Universality of phase diagrams in QCD and QCD-like theories
- > Importance of disconn. diagrams beyond MFA \rightarrow DS & Functional RG?
- Many more applications of the orbifold equivalence.
- > Challenge for theory: physics inside π condensation.

Discussion

- > At MFA, chiral transition cannot be 1st outside π condensation.
 - \rightarrow only beyond-MFA effects can make it 1st.

Discussion

> At MFA, chiral transition cannot be 1st outside π condensation.

 \rightarrow only beyond-MFA effects can make it 1st.

quark mass weakens the chiral transition (1st \rightarrow 2nd \rightarrow crossover)

- At $\mu_B = 0$, chiral transition is crossover; beyond-MFA effects < quark mass.
- > QCD critical point is accessible on the lattice (outside π condensation) if beyond-MFA effects are enhanced at μ *B*≠ 0 for some reason.

A counter example?

- > One can make the critical point on the *T*-axis (outside the pion condensation) by fine tuning $m_q \sim$ anomaly.
- > Ignoring disconn. diagrams: anomaly $< m_q$

QCD at finite isospin density

Finite $\mu = 2\mu$: chemical potentials $\mu \& -\mu$ for u & d quarks

- \rightarrow Dirac eigenvalues for u & d are complex conjugate.
- \rightarrow Positive fermion determinant (no sign problem)

SO & Sp gauge theories at μ_B>0

SO(2*Nc*): real \rightarrow positive fermion determinant (no sign problem) (similarly for pseudo-real Sp(2*Nc*) with even *Nf*)

From SO(2Nc) to SU(Nc) at finite µ

Start with SO(2*Nc*) gauge theory at μ *B*>0.

- 1. Discrete symmetry: $J_c = -i\sigma_2 \otimes \mathbf{1}_{N_c} \in \mathrm{SO}(2N_c)$ $J_i = -i\sigma_2 \otimes \mathbf{1}_{N_f/2} \in \mathrm{SU}(2)_{\mathrm{iso}}$
- 2. Projection: $A^{SO}_{\mu} = J_c A^{SO}_{\mu} J^{-1}_c, \quad \psi^{SO} = J_c \psi^{SO} J^{-1}_i$
- 3. Daughter theory: $U(Nc) \approx SU(Nc)$ gauge theory at $\mu > 0$.

$$A^{\text{proj}}_{\mu} = \begin{pmatrix} (A^{\text{U}}_{\mu})^C & 0\\ 0 & A^{\text{U}}_{\mu} \end{pmatrix}, \quad \psi^{\text{proj}} = \begin{pmatrix} \psi^{\text{U}}_{+}\\ \psi^{\text{U}}_{-} \end{pmatrix}$$

4. Orbifold equivalence: $\langle \bar{\psi}\psi \rangle^{SO} = \langle \bar{\psi}\psi \rangle^{SU}$ etc.

[Caution]

• $Z_4 \in SU(2)$ iso unbroken from SO(2Nc) to QCD at $\mu > 0$ everywhere.

Perturbative proof

Bershadsky-Johansen ('98)

- $\int J^{n_3} \quad \text{Insert} \quad \mathcal{P}(A^{\text{SO}}_{\mu}) = \frac{1}{2} \left(A^{\text{SO}}_{\mu} + J_c A^{\text{SO}}_{\mu} J_c^{-1} \right)$ for each propagator.
 - Take the same 't Hooft coupling.
 - Difference comes from color factors.
 - Condition: $tr(J_c^n) = 0$, when $J_c^n \neq \pm \mathbf{1}_{2N_c}$

 $\sum_{n_i=0,1} \left(\frac{1}{2}\right)^{N_P} \cdot \operatorname{tr}(J^{-n_1}J^{n_4}J^{n_5}) \cdot \operatorname{tr}(J^{-n_2}J^{-n_4}J^{n_6}) \cdot \operatorname{tr}(J^{-n_3}J^{-n_5}J^{-n_6}) \cdot \operatorname{tr}(J^{n_1}J^{n_2}J^{n_3})$ $= 2^{-6} \cdot 2^{6-3} \cdot 2^4 = 2$

Generally, $2^{-N_P} \cdot 2^{N_P - (N_L - 1)} \cdot 2^{N_L} = 2$ for any planar diagrams.

What are (aren't) equivalent?

Not all the quantities are equivalent in the orbifold equivalence.

- Projection symmetry must be unbroken.
- Observables must keep the projection symmetry (neutral).
- Symmetry breaking patterns, quantum numbers of the condensates can be different, but their magnitudes are the same.
- Example: BCS gap (inside the BEC-BCS crossover)

$$\begin{split} \Delta_{\mu_B}^{\rm SU} &\sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{6N_c}{N_c+1}}\right) &\longrightarrow 0 \\ \Delta_{\mu_I}^{\rm SU} &\sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{6N_c}{N_c^2-1}}\right) & \text{`t Hooft limit (large Nc, g^2Nc fixed)} \\ \Delta_{\mu_B}^{\rm SO} &\sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{12}{2N_c-1}}\right) &\longrightarrow \sim \mu \exp\left(-\pi^2\sqrt{\frac{6}{g^2N_c}}\right) \\ \Delta_{\mu_B}^{\rm Sp} &\sim \mu \exp\left(-\frac{\pi^2}{g}\sqrt{\frac{12}{2N_c+1}}\right) &\longrightarrow \sim \mu \exp\left(-\pi^2\sqrt{\frac{6}{g^2N_c}}\right) \end{split}$$

QCD inequality

Correlation function:

$$C_{\Gamma}(x,y) \equiv \langle M_{\Gamma}(x)M_{\Gamma}^{\dagger}(y)\rangle_{\psi,A} \qquad \bar{\Gamma} \equiv \gamma_{0}\Gamma^{\dagger}\gamma_{0}$$
$$= -\langle \operatorname{tr}[S_{A}(x,y)\Gamma S_{A}(y,x)\bar{\Gamma}]\rangle_{A} \qquad S_{A}(x,y) \equiv \langle x|\mathcal{D}^{-1}|y\rangle_{A}$$
$$= \langle \operatorname{tr}[S_{A}(x,y)\Gamma i\gamma_{5}S_{A}^{\dagger}(x,y)i\gamma_{5}\bar{\Gamma}]\rangle_{A}$$
$$\leq \sqrt{\langle \operatorname{tr}[S_{A}S_{A}^{\dagger}]\rangle_{A}}\sqrt{\langle \operatorname{tr}[\Gamma\gamma_{5}S_{A}^{\dagger}\gamma_{5}\bar{\Gamma}(\Gamma\gamma_{5}S_{A}^{\dagger}\gamma_{5}\bar{\Gamma})^{\dagger}]\rangle_{A}}$$
$$= \langle \operatorname{tr}[S_{A}(x,y)S_{A}^{\dagger}(x,y)]\rangle_{A},$$

Inequality saturated when $\Gamma = i\gamma_5$.

➤ Cauchy-Schwarz inequality: $tr(AB^{\dagger}) \leq \sqrt{tr AA^{\dagger}} \sqrt{tr BB^{\dagger}}$