Universality of Phase Diagrams in QCD and QCD-like Theories

Naoki Yamamoto
(YITP, Kyoto University & MCFP, University of Maryland)

“Quarks, Gluons, and Hadronic Matter under Extreme Condition,” March 22, 2013
Outline

1. Universality of phases in QCD and QCD-like theories

2. A theorem on the QCD critical point

3. Summary and discussion

Refs.: M. Hanada, NY, (JHEP 2012)
Y. Hidaka, NY, (PRL 2012)
M. Hanada, Y. Matsuo, NY, (PRD 2012)
A conjectured QCD phase diagram

RHIC/LHC

T

Early universe

Quark-Gluon Plasma

hadron gas

nuclear matter

quark matter

CFL

Neutron star

Neutron Star

Solid crust

Heavy liquid interior

+1 km thick

with other particles
Phase diagrams of QCD-like theories

QCD at $\mu_i \neq 0$
Son-Stephanov (2001)

SO(N_c) gauge theory at $\mu_B \neq 0$

Sp(N_c) gauge theory at $\mu_B \neq 0$
Holography vs. Orbifolding

Gauge/gravity duality
Maldacena (1998), ...

- strongly-coupled gauge theory
- weakly-coupled gravity theory
- AdS/QGP, AdS/QCD, AdS/CMT, ...

Orbifold equivalence
Kachru-Silverstein (1998), ...

- strongly-coupled gauge theory
- strongly-coupled gauge theory
- Cherman-Hanada-Robles-Llana;
 Cherman-Tiburzi;
 Hanada-NY; Hidaka-NY (2012)
Holography vs. Orbifolding

Gauge/gravity duality
- Maldacena (1998), ...
 - **strongly-coupled** QCD-like theory
 - **weakly-coupled** gravity theory
 - AdS/QGP, AdS/QCD, AdS/CMT, ...

Orbifold equivalence
- Kachru-Silverstein (1998), ...
 - QCD at $\mu_B \neq 0$
 - w/ sign problem
 - Example
 - gauge theory
 - w/o sign problem
 - Cherman-Hanada-Robles-Llana; Cherman-Tiburzi; Hanada-NY; Hidaka-NY (2012)
 - Monte Carlo
 - Exact results
Orbifold equivalence

[How to use]

1. Identify a discrete global symmetry S of a theory P (parent).

2. Eliminate all the d.o.f.s of parent not invariant under S (projection).

3. This gives a new theory D (daughter).

4. A class of observables are identical between P and D at large N_c or MFA. Valid as long as S is not broken spontaneously.

Orbifold equivalence

[How to use]

1. Identify a discrete global symmetry S of a theory P (parent).
 \[J_c = -i\sigma_2 \times 1_{N_c} \in \text{SO}(2N_c), \quad \omega = e^{i\pi} \in U(1)_B \]

2. Eliminate all the d.o.f.s of parent not invariant under S (projection).
 \[A_\mu^{SO} = J_c A_\mu^{SO} J_c^{-1}, \quad \psi^{SO} = \omega J_c \psi^{SO} \]

3. This gives a new theory D (daughter).
 \[D = \text{SU}(N_c) \text{ QCD}. \]

4. A class of observables are identical between P and D at large N_c or MFA.
 Valid as long as S is not broken spontaneously.

Universality of phase diagrams

\[\text{sign-free} \]

\[\text{SO}(N_c) \text{ or } \text{Sp}(N_c) \text{ YM } + \mu_B \]

\[\text{SU}(N_c) \text{ QCD } + \mu_B \]

\[\text{SU}(N_c) \text{ QCD } + \mu_I \]

Hanada-NY (JHEP, 2012)
Universal sign-free nature of phase diagrams

- SO(N_c) or Sp(N_c) YM + μ_B
 - outside diquark cond.

- SU(N_c) QCD + μ_B
 - outside pion cond.

- SU(N_c) QCD + μ_I
 - everywhere

Hanada-NY (JHEP, 2012)
Sign problem and phase quenching in finite-density QCD: models, holography, and lattice

Masanori Hanada1,2, Yoshinori Matsuo1, and Naoki Yamamoto3,4

CONTENTS

I. Introduction and summary 1

II. Phase-quenched QCD
 A. Sign problem and phase quenching 3
 B. Phase diagrams of QCD\textsubscript{I}, SO\textsubscript{B}, and Sp\textsubscript{B} 4

III. Phase quenching in large-N_c QCD
 A. Orbifold equivalence 6
 B. Implications for the phase reweighting 7
 C. Relation to the quenched approximation 8

IV. Phase quenching in effective models of QCD 9
 A. Mean-field approximation 9
 B. Nambu–Jona-Lasinio model 10
 Instanton-induced interaction 11
 C. Linear sigma model 11
 D. Polyakov–Nambu–Jona-Lasinio model 13
 E. Polyakov-quark-meson model 13
 F. Chiral random matrix model 13
 G. Strong-coupling lattice QCD 14

V. Equivalences in holographic models of QCD 15
 A. D3/D7 model 15
 B. Sakai-Sugimoto model 16

VI. Numerical evidence of the phase quenching 18
 A. Reweighting 18
 B. Imaginary chemical potential method 18
 Roberge-Weiss periodicity 18
 C. Taylor expansion method 19

VII. Discussions and outlook 19

Intuitive derivation

- Consider $\langle \bar{q}q \rangle$ in QCD at finite μ_I or μ_B with $N_f = 2$ (u & d).

$$\langle \bar{q}q \rangle(\mu_B) = $$
Consider $\langle \bar{q}q \rangle$ in QCD at finite μ_I or μ_B with $N_f = 2$ (u & d).
Intuitive derivation

Consider $\langle \bar{q}q \rangle$ in QCD at finite μ_I or μ_B with $N_f = 2$ (u & d).

$$\langle \bar{q}q \rangle(\mu_B) = f(\mu_u) + f(\mu_d)$$
Intuitive derivation

- Consider $\langle \bar{q}q \rangle$ in QCD at finite μ_I or μ_B with $N_f = 2$ (u & d).

\[
\langle \bar{q}q \rangle(\mu_B) = f(\mu_u) + f(\mu_d) = f(\mu_u) + f(-\mu_d) = \langle \bar{q}q \rangle(\mu_I)
\]

see also T. D. Cohen (2004)
Intuitive derivation

- Consider $\langle \bar{q}q \rangle$ in QCD at finite μ_I or μ_B with $N_f = 2$ (u & d).

$$\langle \bar{q}q \rangle(\mu_B) = f(\mu_u) + f(\mu_d) = f(\mu_u) + f(-\mu_d) = \langle \bar{q}q \rangle(\mu_I)$$

see also T. D. Cohen (2004)

- For gluonic observables, equivalence holds up to $O(N_c^{-2})$. D. Toublan (2005)

- Not applicable when u & d are mixed \rightarrow MFA outside π condensation

- Orbifold equivalence: more systematic for a larger class of theories.
Lattice results

Pressure

\[
\frac{p}{T^4} \equiv \Omega(T, \mu_q, \mu_q) = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_q}{T} \right)^n
\]

Chiral condensate

\[
\frac{\langle \bar{\psi} \psi \rangle}{T^3} = \frac{N_T}{N_\sigma} \frac{\partial \ln Z}{\partial m/T} = \sum_{n=0}^{\infty} c_n^{\bar{\psi} \psi}(T) \left(\frac{\mu_q}{T} \right)^n
\]

Allton et al. (Bielefeld-Swansea collaboration), 2005, PRD
Where are QCD critical point(s)?

Summarized in
M. Stephanov, hep-lat/0701002

Baym-Hatsuda-Tachibana-NY
(PRL, 2006)
A theorem

- π^\pm are the lightest in QCD at finite μ_l
 Son-Stephanov (2001)
 \[\therefore \] QCD inequalities: π^\pm propagator \geq any meson propagator,
 which follows from $\tau_1 \gamma_5 D \gamma_5 T_1 = D^{\dagger}$ and Cauchy-Schwarz inequality.

- $m_\sigma \geq m_\pi > 0$ for $m_\sigma > 0$ outside π condensation phase.

- QCD critical point ($\xi = \infty$ or $m_\sigma = 0$) is prohibited there.
 \[\rightarrow \] Via the orbifold equivalence, it also holds in QCD at finite μ_B.
 Hidaka-NY (PRL, 2012)

- The only assumption: suppression of disconn. diagrams (OZI rule)
A theorem

QCD critical point in QCD$_B$ can only be inside π condensation of QCD$_I$ where reweighting method breaks down.
Model results \((N_f=2)\)

Random matrix model: Han-Stephanov (2008)

NJL model: Andersen-Kyllingstad-Splittorff (2009)

\[\langle e^{2i\theta} \rangle \]

onset of pion condensation phase

\[e^{2i\theta} = \frac{\det(D + \mu_q \gamma_0 + m)}{\det(D + \mu_q \gamma_0 + m)^*} \]

Similar result in PNJL model: Sakai-Sasaki-Kouno-Yahiro (2010)
Summary & Outlook

- Universality of phase diagrams in QCD and QCD-like theories
- Importance of disconn. diagrams beyond MFA → DS & Functional RG?
- Many more applications of the orbifold equivalence.
- Challenge for theory: physics inside π condensation.
Back up slides
Discussion

- At MFA, chiral transition cannot be 1st outside π condensation.

 → *only beyond-MFA effects* can make it 1st.
Discussion

- At MFA, chiral transition cannot be 1st outside π condensation.
 \rightarrow only beyond-MFA effects can make it 1st.

 competition

 quark mass weakens the chiral transition (1st \rightarrow 2nd \rightarrow crossover)

- At $\mu_B = 0$, chiral transition is crossover; beyond-MFA effects $<$ quark mass.

- QCD critical point is accessible on the lattice (outside π condensation) if beyond-MFA effects are enhanced at $\mu_B \neq 0$ for some reason.
A counter example?

- Columbia plot:

- One can make the critical point on the T-axis (outside the pion condensation) by fine tuning $m_q \sim \text{anomaly}$.

- Ignoring disconn. diagrams: \(\text{anomaly} < m_q \)
Finite $\mu_I=2\mu$: chemical potentials μ & -μ for u & d quarks
→ Dirac eigenvalues for u & d are complex conjugate.
→ Positive fermion determinant (no sign problem)
SO & Sp gauge theories at $\mu_B > 0$

SO(2N_c): real \rightarrow positive fermion determinant (no sign problem)
(similarly for pseudo-real Sp(2N_c) with even N_f)
From $\text{SO}(2N_c)$ to $\text{SU}(N_c)$ at finite μ_I

Start with $\text{SO}(2N_c)$ gauge theory at $\mu_B > 0$.

1. Discrete symmetry:
 \[J_c = -i\sigma_2 \otimes 1_{N_c} \in \text{SO}(2N_c) \]
 \[J_i = -i\sigma_2 \otimes 1_{N_f/2} \in \text{SU}(2)_{\text{iso}} \]

2. Projection:
 \[A^{\text{SO}}_{\mu} = J_c A^{\text{SO}}_{\mu} J_c^{-1}, \quad \psi^{\text{SO}} = J_c \psi^{\text{SO}} J_i^{-1} \]

3. Daughter theory: $U(N_c) \approx \text{SU}(N_c)$ gauge theory at $\mu_I > 0$.
 \[A^{\text{proj}}_{\mu} = \begin{pmatrix} (A^U_{\mu})^C & 0 \\ 0 & A^U_{\mu} \end{pmatrix}, \quad \psi^{\text{proj}} = \begin{pmatrix} \psi^U_+ \\ \psi^- \end{pmatrix} \]

4. Orbifold equivalence: $\langle \bar{\psi}\psi \rangle^{\text{SO}} = \langle \bar{\psi}\psi \rangle^{\text{SU}}$ etc.

[Caution]
- $Z_4 \in \text{SU}(2)_{\text{iso}}$ unbroken from $\text{SO}(2N_c)$ to QCD at $\mu_I > 0$ everywhere.
Perturbative proof

Bershadsky-Johansen ('98)

- Insert $P(A^\text{SO}_\mu) = \frac{1}{2} (A^\text{SO}_\mu + J_c A^\text{SO}_\mu J_c^{-1})$ for each propagator.
- Take the same 't Hooft coupling.
- Difference comes from color factors.
- Condition: $\text{tr}(J^n_c) = 0$, when $J^n_c \neq \pm 1_{2N_c}$

$$\sum_{n_i=0,1} \left(\frac{1}{2} \right)^{N_P} \cdot \text{tr}(J^{-n_1} J^{n_4} J^{n_5}) \cdot \text{tr}(J^{-n_2} J^{-n_4} J^{n_6}) \cdot \text{tr}(J^{-n_3} J^{-n_5} J^{-n_6}) \cdot \text{tr}(J^{n_1} J^{n_2} J^{n_3}) = 2^{-6} \cdot 2^{6-3} \cdot 2^4 = 2$$

Generally, $2^{-N_P} \cdot 2^{N_P-(N_L-1)} \cdot 2^{N_L} = 2$ for any planar diagrams.
What are (aren’t) equivalent?

Not all the quantities are equivalent in the orbifold equivalence.

- Projection symmetry must be unbroken.
- Observables must keep the projection symmetry (neutral).
- Symmetry breaking patterns, quantum numbers of the condensates can be different, but their magnitudes are the same.
- Example: BCS gap (inside the BEC-BCS crossover)

\[
\begin{align*}
\Delta_{\mu_B}^{SU} &\sim \mu \exp \left(-\frac{\pi^2}{g} \sqrt{\frac{6N_c}{N_c + 1}} \right) \quad \to \quad 0 \\
\Delta_{\mu_I}^{SU} &\sim \mu \exp \left(-\frac{\pi^2}{g} \sqrt{\frac{6N_c}{N_c^2 - 1}} \right) \\
\Delta_{\mu_B}^{SO} &\sim \mu \exp \left(-\frac{\pi^2}{g} \sqrt{\frac{12}{2N_c - 1}} \right) \\
\Delta_{\mu_B}^{Sp} &\sim \mu \exp \left(-\frac{\pi^2}{g} \sqrt{\frac{12}{2N_c + 1}} \right)
\end{align*}
\]

‘t Hooft limit (large N_c, g^2N_c fixed)
QCD inequality

- Correlation function:

\[C_{\Gamma}(x, y) \equiv \langle M_{\Gamma}(x) M_{\Gamma}^\dagger(y) \rangle_{\psi, A} \]

\[= -\langle \text{tr}[S_A(x, y) \Gamma S_A(y, x) \bar{\Gamma}] \rangle_A \]

\[= \langle \text{tr}[S_A(x, y) \Gamma \gamma_5 S_A^\dagger(x, y) \gamma_5 \Gamma] \rangle_A \]

\[\leq \sqrt{\langle \text{tr}[S_A S_A^\dagger] \rangle_A} \sqrt{\langle \text{tr}[\Gamma \gamma_5 S_A^\dagger \gamma_5 \Gamma (\Gamma \gamma_5 S_A^\dagger \gamma_5 \Gamma)^\dagger] \rangle_A} \]

\[= \langle \text{tr}[S_A(x, y) S_A^\dagger(x, y)] \rangle_A, \]

Inequality saturated when \(\Gamma = i\gamma_5 \).

- Cauchy-Schwarz inequality:

\[\text{tr}(AB^\dagger) \leq \sqrt{\text{tr} AA^\dagger} \sqrt{\text{tr} BB^\dagger} \]