't Hooft Determinant at Finite Temperature with Fluctuations

Mario Mitter

University of Frankfurt and University of Heidelberg

In collaboration with:

Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal

St. Goar, March 2013

GEFÖRDERT VOM

Table of Contents

2 Axial Anomaly with Mesonic 't Hooft Determinant

- 2 Flavor
- 2+1 Flavor

• symmetry of Quantum Chromodynamics (QCD) with N_f massless flavors:

 $U(N_f)_L \times U(N_f)_R \cong U(1)_V / Z_{N_f} \times SU(N_f)_L \times SU(N_f)_R \times U(1)_A / Z_{2N_f}$

• symmetry of Quantum Chromodynamics (QCD) with N_f massless flavors:

 $U(N_f)_L \times U(N_f)_R \cong U(1)_V / Z_{N_f} \times SU(N_f)_L \times SU(N_f)_R \times U(1)_A / Z_{2N_f}$

• spontaneously broken to $U(N_f)_{L+R}$: quark condensate(s) $\langle \bar{q}q \rangle$ \Rightarrow one Nambu-Goldstone boson for every broken generator (pions,...)

• symmetry of Quantum Chromodynamics (QCD) with N_f massless flavors:

 $U(N_f)_L \times U(N_f)_R \cong U(1)_V / Z_{N_f} \times SU(N_f)_L \times SU(N_f)_R \times U(1)_A / Z_{2N_f}$

- spontaneously broken to $U(N_f)_{L+R}$: quark condensate(s) $\langle \bar{q}q \rangle$ \Rightarrow one Nambu-Goldstone boson for every broken generator (pions,...)
- explicit breaking by quark masses \Rightarrow light pseudo-Goldstone modes

• symmetry of Quantum Chromodynamics (QCD) with N_f massless flavors:

 $U(N_f)_L \times U(N_f)_R \cong U(1)_V / Z_{N_f} \times SU(N_f)_L \times SU(N_f)_R \times U(1)_A / Z_{2N_f}$

- spontaneously broken to $U(N_f)_{L+R}$: quark condensate(s) $\langle \bar{q}q \rangle$ \Rightarrow one Nambu-Goldstone boson for every broken generator (pions,...)
- explicit breaking by quark masses \Rightarrow light pseudo-Goldstone modes

η' -meson is no pseudo-Goldstone boson

- $N_f^2 1 + 1$ broken generators
- experiment $N_f = 2$ ($N_f = 3$): 3 pions (+4 kaons and 1 η -meson)
- $U(1)_A$ broken by chiral anomaly

[Adler, Bell, Jackiw, 1969], [Fujikawa, 1979]

• Witten-Veneziano Relation at T = 0: $m_{\eta'}^2 + m_{\eta}^2 - 2m_K^2 \propto \frac{\chi_{YM}}{t_{\pi}^2}$: anomalous $m'_{\eta} \longleftrightarrow$ topological gauge configurations

- Witten-Veneziano Relation at T = 0: $m_{\eta'}^2 + m_{\eta}^2 2m_K^2 \propto \frac{\chi \gamma_M}{f_{\pi}^2}$: anomalous $m_{\eta'}' \longleftrightarrow$ topological gauge configurations
- large T: instantons suppressed $\leftrightarrow U(1)_A$ restored

[Shuryak, 1978]

- Witten-Veneziano Relation at T = 0: $m_{\eta'}^2 + m_{\eta}^2 2m_K^2 \propto \frac{\chi_{YM}}{f_{\pi}^2}$: anomalous $m_{\eta}' \longleftrightarrow$ topological gauge configurations
- large T: instantons suppressed $\leftrightarrow U(1)_A$ restored

Recent experimental results (PHENIX, STAR):

[Csörgö et al., 2010; Vértesi et al., 2011]

- drop $\delta m_{\eta'}\gtrsim$ 200 MeV at chiral transition
- (partial) $U(1)_A$ -symmetry restoration already at chiral crossover?

[CBM Physics Book, 2011]

[Shurvak, 1978]

- Witten-Veneziano Relation at T = 0: $m_{\eta'}^2 + m_{\eta}^2 2m_K^2 \propto \frac{\chi_{YM}}{f_{\pi}^2}$: anomalous $m'_{\eta} \longleftrightarrow$ topological gauge configurations
- large T: instantons suppressed $\leftrightarrow U(1)_A$ restored

[Shuryak, 1978]

Recent experimental results (PHENIX, STAR):

[Csörgö et al., 2010; Vértesi et al., 2011]

- drop $\delta m_{\eta'}\gtrsim$ 200 MeV at chiral transition
- (partial) $U(1)_A$ -symmetry restoration already at chiral crossover?

Effects of $U(1)_A$ at chiral transition:

- χ limit: order or transition [Pisarski, Wilczek, 1983]
- critical scaling
- curvature of transition line [Braun, 2009]

 $U_A(1)$ Anomaly at T
eq 0

QCD with the Functional Renormalization Group

QCD flow equation:

QCD with the Functional Renormalization Group

QCD flow with mesons:

QCD with the Functional Renormalization Group

Low Energy truncation (Quark-Meson model):

$$\partial_{k}\Gamma_{k} = \frac{1}{2} \qquad (\bigcirc) \qquad - \qquad (\bigcirc) \qquad \\ \Gamma_{k \to \Lambda \to 1 \text{GeV}} = S_{QM} \qquad \longleftrightarrow \qquad \Gamma_{QCD,\Lambda} \ , \qquad \underset{\text{low}}{\overset{\text{high}}{\underset{k \to \Delta k}{\overset{\text{h}gh}{\underset{k \to A}{\overset{\text{h}gh}{\underset{k \to A}{\overset{h}gh}{\underset{k \to A}{\overset{h}gh}{\underset{k \to A}{\overset{h}gh}{\underset{k \to A}{\overset{h}gh}{\underset{k \to A}{\overset{h}gh}}{\overset{h}gh}}}}}}}}}}}}} }$$

Low Energy Effective Description

The Quark-Meson Model (general N_f) [Ellwanger, Wetterich, 1994; Jungnickel, Wetterich, 1996]

$$\begin{split} \mathcal{L}_{QM} &= \bar{q} \left(\mathrm{i} \partial_{\mu} \gamma_{\mu} + \mathrm{i} h t^{a} \left(\sigma^{a} + \mathrm{i} \gamma_{5} \pi^{a} \right) \right) q + \mathcal{L}_{M} \\ \mathcal{L}_{M} &= \mathrm{tr} \left[\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma \right] + U \left(\left\{ \rho_{i} \right\}, \xi \right) - \mathrm{tr} \left(C \left(\Sigma + \Sigma^{\dagger} \right) \right) \\ \Sigma &= t^{a} \left(\sigma^{a} + \mathrm{i} \pi^{a} \right) , \quad t^{a} : \text{ generators of } U(N_{f}) \\ \rho_{i} &= \mathrm{tr} \left[\left(\Sigma^{\dagger} \Sigma \right)^{i} \right] , \quad C = \mathrm{diag} \left(c_{1}, \dots, c_{N_{f}} \right) \end{split}$$

Low Energy Effective Description

The Quark-Meson Model (general N_f) [Ellwanger, Wetterich, 1994; Jungnickel, Wetterich, 1996]

$$\begin{split} \mathcal{L}_{QM} &= \bar{q} \left(\mathrm{i} \partial_{\mu} \gamma_{\mu} + \mathrm{i} h t^{\mathfrak{s}} \left(\sigma^{\mathfrak{s}} + \mathrm{i} \gamma_{5} \pi^{\mathfrak{s}} \right) \right) q + \mathcal{L}_{M} \\ \mathcal{L}_{M} &= \mathrm{tr} \left[\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma \right] + U \left(\left\{ \rho_{i} \right\}, \boldsymbol{\xi} \right) - \mathrm{tr} \left(C \left(\Sigma + \Sigma^{\dagger} \right) \right) \\ \Sigma &= t^{\mathfrak{s}} \left(\sigma^{\mathfrak{s}} + \mathrm{i} \pi^{\mathfrak{s}} \right) , \quad t^{\mathfrak{s}} : \text{ generators of } U(N_{f}) \\ \rho_{i} &= \mathrm{tr} \left[\left(\Sigma^{\dagger} \Sigma \right)^{i} \right] , \quad C = \mathrm{diag} \left(c_{1}, \ldots, c_{N_{f}} \right) \end{split}$$

$U(1)_A$ anomaly in QM-Model

• "integrate instantons" in QCD Lagrangian \Rightarrow contribution to Lagrangian proportional (for QCD with $\theta = 0$)

$$\det_f(\bar{q}_R q_L) + \det_f(\bar{q}_L q_R)$$

• axial anomaly in QM-model: $\xi = det(\Sigma) + det(\Sigma^{\dagger})$

['t Hooft, 1976]

• Functional RG for effective potential $(\sigma_0 \leftrightarrow \bar{u}u + \bar{d}d, \sigma_3 \leftrightarrow \bar{d}d - \bar{u}u)$: $U_k(\Sigma) = \tilde{U}_k(\rho_1, \xi) - c_0\sigma_0 - c_3\sigma_3 ,$

 \Rightarrow scale and temperature dependence of $U(1)_A$ violating terms

- Functional RG for effective potential $(\sigma_0 \leftrightarrow \bar{u}u + \bar{d}d, \sigma_3 \leftrightarrow \bar{d}d \bar{u}u)$: $U_k(\Sigma) = \tilde{U}_k(\rho_1, \xi) - c_0\sigma_0 - c_3\sigma_3 ,$
- \Rightarrow scale and temperature dependence of $U(1)_A$ violating terms • $\Gamma_{\Lambda \approx 1 \text{GeV}}$ via m_{π} , f_{π} , $m_d + m_u$, $m_{\eta'}$ and m_{σ} at $k \rightarrow 0$ and T = 0

Mesonic Masses

solid: RG, short dashed: MF

[MM, Schaefer, Strodthoff, von Smekal, in preparation 2013]

Condensates

• realistic ($N_f = 3$) $m_{\eta'}$: $m_{\eta'}(k \rightarrow 0) = 980$ MeV

[MM, Schaefer, Strodthoff, von Smekal, in preparation 2013]

Explicit Symmetry Breaking and Vacuum Alignment

- $ho_1 \propto \sigma_0^2 + \sigma_3^2$ respects rotations in σ_0, σ_3 plane
- absence of determinant terms ξ : $(\langle \sigma_0 \rangle, \langle \sigma_3 \rangle) \propto (c_0, c_3)$

Explicit Symmetry Breaking and Vacuum Alignment

- $ho_1 \propto \sigma_0^2 + \sigma_3^2$ respects rotations in σ_0, σ_3 plane
- absence of determinant terms ξ : $(\langle \sigma_0 \rangle, \langle \sigma_3 \rangle) \propto (c_0, c_3)$
- physical: $c_0 \approx 2 \cdot c_3$ (or $m_d \approx 2 \cdot m_u$)
- but: $\langle \sigma_0 \rangle \gg \langle \sigma_3 \rangle$ (or $\langle \bar{d}d + \bar{u}u \rangle \gg \langle \bar{d}d \bar{u}u \rangle$)

Explicit Symmetry Breaking and Vacuum Alignment

- $ho_1 \propto \sigma_0^2 + \sigma_3^2$ respects rotations in σ_0, σ_3 plane
- absence of determinant terms ξ : $(\langle \sigma_0 \rangle, \langle \sigma_3 \rangle) \propto (c_0, c_3)$

• physical:
$$c_0 \approx 2 \cdot c_3$$
 (or $m_d \approx 2 \cdot m_u$)

• but: $\langle \sigma_0 \rangle \gg \langle \sigma_3 \rangle$ (or $\langle \bar{d}d + \bar{u}u \rangle \gg \langle \bar{d}d - \bar{u}u \rangle$)

• suppression of $\langle \sigma_3 \rangle$ requires generation of other operator ho_1 , e.g. ξ

New Phase transition: Z_2 Universality Class

$$c_0 = c_3$$
 (one bare quark massless):

• $c_0 \sigma_0 + c_3 \sigma_3$: symmetry $\sigma_0 \leftrightarrow \sigma_3$

$$\xi^{2} = \left(\frac{\sigma_{0}^{2} - \sigma_{3}^{2}}{2}\right)^{2}$$
:
symmetry $\sigma_{0} \leftrightarrow \sigma_{3}$

New Phase transition: Z_2 Universality Class

[MM, Schaefer, Strodthoff, von Smekal, in preparation 2013]

 $c_0 = c_3$ (one bare quark massless):

• $\beta = 0.37 (Z_2 \text{ universality class: } 0.326)$

$N_f = 2 + 1$

• Functional RG for effective potential ($\sigma_x \leftrightarrow \bar{u}u = \bar{d}d, \sigma_y \leftrightarrow \bar{s}s$):

$$U_k(\Sigma) = ilde{U}_k(
ho_1,
ho_2) + c oldsymbol{\xi} - c_x \sigma_x - c_y \sigma_y \; ,$$

$$\Rightarrow$$
 constant $U(1)_A$ violating term

• Functional RG for effective potential ($\sigma_x \leftrightarrow \bar{u}u = \bar{d}d, \sigma_y \leftrightarrow \bar{s}s$):

$$U_k(\Sigma) = ilde{U}_k(
ho_1,
ho_2) + c oldsymbol{\xi} - c_x \sigma_x - c_y \sigma_y \; ,$$

 \Rightarrow constant $U(1)_A$ violating term

• $\Gamma_{\Lambda \approx 1 \text{GeV}}$ via observables at $k \rightarrow 0$ and T = 0

Mesonic Masses I at Physical Mass Point

 \bullet with determinant $\propto \Sigma^3$

without determinant

+ scalar nonet

Mesonic Masses II at Physical Mass Point

+ scalar nonet

 $U_A(1)$ Anomaly at $T \neq 0$

Chiral Condensates at Physical Mass Point

without determinant

[MM, Schaefer, in preparation 2013]

with determinant

Order of transition in chiral limit:

[Pisarski, Wilczek, 1984]

• $N_f > 2$: 1st order

[Laermann, Philipsen, 2003]

Order of transition in chiral limit:

[Pisarski, Wilczek, 1984]

- $N_f > 2$: 1st order
- N_f = 2: 1st order without 't Hooft determinant

[Laermann, Philipsen, 2003]

Order of transition in chiral limit:

[Pisarski, Wilczek, 1984]

- $N_f > 2$: 1st order
- N_f = 2: 1st order without 't Hooft determinant
- $N_f = 2$: 2^{nd} order with $c\xi$ insensitive to $T < T_c$

Analysis with mesonic fluctuations

[Laermann, Philipsen, 2003]

Order of transition in chiral limit:

[Pisarski, Wilczek, 1984]

- $N_f > 2$: 1st order
- N_f = 2: 1st order without 't Hooft determinant
- $N_f = 2$: 2^{nd} order with $c\xi$ insensitive to $T < T_c$

Analysis with mesonic fluctuations

Order at
$$m_u = m_d = 0$$
?

[Laermann, Philipsen, 2003]

MF vs. RG: Chiral Condensates in Light Chiral Limit

with determinant

without determinant

[MM, Schaefer, in preparation 2013]

Critical Exponents in Light Chiral Limit

[MM, Schaefer, in preparation 2013]

- compare well with O(4) exponents in leading order derivative expansion
- indistinguishable from our results for O(4) QM-model

• temperature dependence: $m_{\eta'}$

- temperature dependence: $m_{\eta'}$
- 2 flavor:
 - 't Hooft term prevents vacuum alignment $(\langle \sigma_0 \rangle, \langle \sigma_3 \rangle) \propto (c_0, c_3)$
 - new Z₂ phase transition

- temperature dependence: $m_{\eta'}$
- 2 flavor:
 - 't Hooft term prevents vacuum alignment $(\langle \sigma_0
 angle, \langle \sigma_3
 angle) \propto (c_0, c_3)$
 - new Z₂ phase transition
- 2+1 flavor:
 - light chiral limit without determinant: first order
 - light chiral limit with determinant: O(4) universality class

- temperature dependence: $m_{\eta'}$
- 2 flavor:
 - 't Hooft term prevents vacuum alignment ($\langle \sigma_0
 angle, \langle \sigma_3
 angle$) \propto (c_0, c_3)
 - new Z₂ phase transition
- 2+1 flavor:
 - light chiral limit without determinant: first order
 - light chiral limit with determinant: O(4) universality class

Connect to QCD:

- initial values directly from QCD
- dynamical hadronization
- effect of 't Hooft term on curvature of transition line
- Polyakov loop potential