Non-perturbative results for two- and three-point functions of Landau gauge Yang-Mills theory

Markus Q. Huber

Institute of Nuclear Physics, Technical University Darmstadt

March 18, 2013

Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar

Landau gauge Green functions from functional methods

Landau gauge Green functions:

- Information about confinement
- Input for phenomenological calculations, e.g., bound states, QCD phase diagram

Landau gauge Green functions from functional methods

Landau gauge Green functions:

- Information about confinement
- Input for phenomenological calculations, e.g., bound states, QCD phase diagram

QCD phase diagram with functional equations:

- + no sign problem at non-zero chemical potential
- + physical quark masses easy
 - infinitely large system ightarrow influence of higher Green functions?
 - ⇒ tests of truncations

Introduction T=0 T>0 Summary

Landau Gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$\begin{split} \mathcal{L} &= \frac{1}{2} F^2 + \mathcal{L}_{gf} + \mathcal{L}_{gh} \\ F_{\mu\nu} &= \partial_{\mu} \mathbf{A}_{\nu} - \partial_{\nu} \mathbf{A}_{\mu} + i g \left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu} \right] \end{split}$$

Propagators and vertices are gauge dependent \rightarrow choose any gauge, ideally one that is convenient.

Landau gauge

- simplest one for functional equations
- $\bullet \ \partial_{\mu} \textbf{A}_{\mu} = 0 \colon \quad \mathcal{L}_{\textit{gf}} = \frac{1}{2\xi} (\partial_{\mu} \textbf{A}_{\mu})^2, \quad \xi \to 0$
- requires ghost fields: $\mathcal{L}_{gh} = \bar{c} (-\Box + g \mathbf{A} \times) c$
- 2 fields: —— -----

3 vertices:

Dyson-Schwinger equations: Propagators

Dyson-Schwinger equations (DSEs) of gluon and ghost propagators:

- Equations of motion of correlation functions:
 Describe how fields propagate and interact non-perturbatively!
- Infinite tower of coupled integral equations.
- Derivation straightforward, but tedious
 → automated derivation with DoFun [MQH, Braun, CPC183 (2012)].
- Contain three-point and four-point functions: ghost-gluon vertex , three-gluon vertex , four-gluon vertex

Dyson-Schwinger equations: Propagators

Dyson-Schwinger equations (DSEs) of gluon and ghost propagators:

- Equations of motion of correlation functions:
 Describe how fields propagate and interact non-perturbatively!
- Infinite tower of coupled integral equations.
- Derivation straightforward, but tedious
 → automated derivation with DoFun [MQH, Braun, CPC183 (2012)].
- Contain three-point and four-point functions:
 ghost-gluon vertex , three-gluon vertex , four-gluon vertex

Truncated propagator Dyson-Schwinger equations

Standard truncation:

using bare ghost-gluon vertex and three-gluon vertex model

Influence of dynamic ghost-gluon vertex?

Truncated propagator Dyson-Schwinger equations

Standard truncation:

using bare ghost-gluon vertex and three-gluon vertex model

Influence of dynamic ghost-gluon vertex?

Truncating Dyson-Schwinger equations

gluon	ghost	gh-gl	3-g	4-pt.	ref.
$\overline{\hspace{1em}}$	0	0	model	0	[Mandelstam, PRD20 (1979)]

 $D_{gl,\mu\nu}(p) = \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{\tilde{Z}(p^2)}{p^2}$

• gluon dressing $\tilde{Z}(p^2)$ IR divergent \rightarrow IR slavery

Truncating Dyson-Schwinger equations

gluon	ghost	gh-gl	3-g	4-pt.	ref.
✓	0	0	model	0	[Mandelstam, PRD20 (1979)]
✓	✓	models	models	0	[von Smekal, Hauck, Alkofer, PRL 79 (1997)]

 $D_{gl,\mu\nu}(p) = \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2}$ $D_{gh}(p) = -\frac{G(p^2)}{p^2}$

- gluon dressing $Z(p^2)$ IR vanishing
- deviations from lattice results in mid-momentum regime

Truncating Dyson-Schwinger equations

	gluon	ghost	gh-gl	3-g	4-pt.	ref.
	✓	0	0	model	0	[Mandelstam, PRD20 (1979)]
•	✓	✓	models	models	0	[von Smekal, Hauck, Alkofer, PRL 79 (1997)]
	√	√	√	model	0	[MQH, von Smekal, 1211.6092]

$$\begin{split} D_{gl,\mu\nu}(p) &= \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2} \\ D_{gh}(p) &= -\frac{G(p^2)}{n^2} \end{split}$$
Sternbeck, hep-lat/0609016]

- gluon dressing $Z(p^2)$ IR vanishing
- improved mid-momentum behavior

Improved truncations necessary for quantitative results and also extensions, e.g., non-zero temperature [Fister, Pawlowski, 1112.5440].

Ghost-gluon vertex DSE

Full DSE:

- Lattice results [Cucchieri, Maas, Mendes, PRD77 (2008); Ilgenfritz et al., BJP37 (2007)]
- OPE analysis [Boucaud et al., JHEP 1112 (2011)]
- Modeling via ghost DSE [Dudal, Oliveira, Rodriguez-Quintero, PRD86 (2012)]
- Semi-perturbative DSE analysis [Schleifenbaum et al., PRD72 (2005)]
- FRG [Fister, Pawlowski, 1112.5440]

Ghost-gluon vertex

$$\Gamma_{\mu}^{A\bar{c}c,abc}(k;p,q) := \text{i}\,\text{g}\,\text{f}^{abc}\left(p_{\mu}\text{A}(k;p,q) + k_{\mu}\text{B}(k;p,q)\right)$$

Note:

B(k; p, q) is irrelevant in Landau gauge (but it is not the pure longitudinal part). Taylor argument applies only to longitudinal part (it's an STI).

IR and UV consistent truncation:

System of eqs. to solve:

gluon and ghost propagators + ghost-gluon vertex

Only unfixed quantity in present truncation: three-gluon vertex.

Three-gluon vertex: Ultraviolet

Bose symmetric version:

$$D^{A^3,UV}(x,y,z) = G\left(\frac{x+y+z}{2}\right)^{\alpha} Z\left(\frac{x+y+z}{2}\right)^{\beta}$$

Fix α and β :

- 1 UV behavior of three-gluon vertex
- 2 IR behavior of three-gluon vertex?

Three-gluon vertex: Ultraviolet

Bose symmetric version:

$$D^{A^3,UV}(x,y,z) = G\left(\frac{x+y+z}{2}\right)^{\alpha} Z\left(\frac{x+y+z}{2}\right)^{\beta}$$

Fix α and β :

- 1 UV behavior of three-gluon vertex
- 2 IR behavior of three-gluon vertex \rightarrow yes, but . . .

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.

d=2,3: seen on lattice [Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],

d=2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

$$d = 2$$
:

[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

$$D_{\text{proj}}^{A^3}(p^2, p^2, \pi/2)$$

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.

d=2,3: seen on lattice [Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],

d=2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

$$d = 2$$
:

[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

 $D_{\text{proj}}^{A^3}(p^2, p^2, \pi/2)$

d = 4:

[Cucchieri, Maas, Mendes, PRD77 (2008)]

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.

d=2,3: seen on lattice [Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],

d=2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

$$d = 2$$
:

[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

$$D_{\text{proj}}^{A^3}(p^2, p^2, \pi/2)$$

$$d = 4$$
:

[Cucchieri, Maas, Mendes, PRD77 (2008)]

$$D^{A^3,IR}(x,y,z) = h_{IR}G(x+y+z)^3(f^{3g}(x)f^{3g}(y)f^{3g}(z))^4$$

IR damping function
$$f^{3g}(x) := \frac{\Lambda_{3g}^2}{\Lambda_{3g}^2 + x}$$

Influence of the three-gluon vertex

 $Z(p^2)$

- ullet Vary $\Lambda_{3g} o$ vary mid-momentum strength
- Ghost almost unaffected
- Thin line: Leading IR order
 DSE calculation for
 three-gluon vertex
 ⇒ zero crossing

Optimized effective three-gluon vertex:

Choose Λ_{3g} where gluon dressing has best agreement with lattice results. [MQH, von Smekal, 1211.6092]

Dynamic ghost-gluon vertex: Propagator results

Dynamic ghost-gluon vertex, opt. eff. three-gluon vertex [MQH, von Smekal, 1211.6092]

Good quantitative agreement for ghost and gluon dressings.

Dynamic ghost-gluon vertex: Propagator results

Dynamic ghost-gluon vertex, opt. eff. three-gluon vertex [MQH, von Smekal, 1211.6092]

FRG results

[Fischer, Maas, Pawlowski, AP324 (2009)]

Good quantitative agreement for ghost and gluon dressings.

Ghost-gluon vertex: Selected configurations (decoupling)

$$\Gamma_{\mu}^{\bar{Acc},abc}(k;p,q) := i\,g\,f^{abc}\left(p_{\mu}A(k;p,q) + k_{\mu}B(k;p,q)\right)$$

Fixed angle:

[MQH, von Smekal, 1211.6092]

Fixed anti-ghost momentum:

Ghost-gluon vertex: Comparison with lattice data

Orthogonal configuration $k^2 = 0$, $q^2 = p^2$:

- constant in the IR
- relatively insensitive to changes of the three-gluon vertex (red/green lines: different three-gluon vertex models)

DSE calculation: [MQH, von Smekal, 1211.6092] lattice data: [Sternbeck, hep-lat/0609016]

Towards the phase diagram of QCD with DSEs

- Lattice results helpful
 - as input

Towards the phase diagram of QCD with DSEs

- Lattice results helpful
 - as input
 - for comparison and testing reliability of a truncation non-zero chemical potential $4 \rightarrow$ use theories without sign problem, e.g., SU(2), G_2

Towards the phase diagram of QCD with DSEs

- Lattice results helpful
 - as input
 - for comparison and testing reliability of a truncation non-zero chemical potential $4 \rightarrow$ use theories without sign problem, e.g., SU(2), G_2
- Self-consistent functional RG calculation of correlation functions:

```
[Fister, Pawlowski, 1112.5440; Fister, PhD thesis, 2012]
```

DSE calculations:

```
[Maas, Wambach, Alkofer, EPJC42 (2005); Cucchieri, Maas, Mendes, PRD75 (2007)]
```

First steps towards full system: Take some lattice input.

Gluon propagator: lattice based fits [Fischer, Maas, Müller, EPJC68 (2010)]

First steps towards full system: Take some lattice input.

Gluon propagator: lattice based fits [Fischer, Maas, Müller, EPJC68 (2010)]

Ghost propagator [preliminary]:

First steps towards full system: Take some lattice input.

Gluon propagator: lattice based fits [Fischer, Maas, Müller, EPJC68 (2010)]

Ghost propagator [preliminary]:

lattice: [Maas, Pawlowski, Spielmann, von Smekal, PRD85 (2012)]

First steps towards full system: Take some lattice input.

Gluon propagator: lattice based fits [Fischer, Maas, Müller, EPJC68 (2010)]

Ghost-gluon vertex

Remember: Relevance of ghost-gluon vertex for non-zero temperature known from functional RG [Fister, Pawlowski, 1112.5440]!

Simple approximation:

Fully iterated ghost propagator Gluon propagator from the lattice [Fischer, Maas, Müller, EPJC68 (2010)]

Ghost-gluon vertex semi-perturbatively at symmetric point $(p^2 = q^2 = k^2)$

Ghost-gluon vertex

Remember: Relevance of ghost-gluon vertex for non-zero temperature known from functional RG [Fister, Pawlowski, 1112.5440]!

Simple approximation:

Fully iterated ghost propagator Gluon propagator from the lattice [Fischer, Maas, Müller, EPJC68 (2010)]

Ghost-gluon vertex semi-perturbatively at symmetric point $(p^2 = q^2 = k^2)$

[preliminary]

• Systematic improvement of truncations of DSEs possible.

- Systematic improvement of truncations of DSEs possible.
- Newest step: Inclusion of ghost-gluon vertex and qualitative three-gluon vertex model [MQH, von Smekal, 1211.6092]
 - Required for quantitative results and
 - likely also for some aspects of non-zero temperature and density calculations.
 - Reproduction of lattice data possible.

- Systematic improvement of truncations of DSEs possible.
- Newest step: Inclusion of ghost-gluon vertex and qualitative three-gluon vertex model [MQH, von Smekal, 1211.6092]
 - Required for quantitative results and
 - likely also for some aspects of non-zero temperature and density calculations.
 - Reproduction of lattice data possible.
- Towards the phase diagram of QCD:
 - √ Ghost propagator
 - √ Ghost-gluon vertex semi-perturbatively
 - ☐ Ghost-gluon vertex self-consistent
 - □ Gluon propagator
 - Quarks
 - Phase transitions

- Systematic improvement of truncations of DSEs possible.
- Newest step: Inclusion of ghost-gluon vertex and qualitative three-gluon vertex model [MQH, von Smekal, 1211.6092]
 - Required for quantitative results and
 - likely also for some aspects of non-zero temperature and density calculations.
 - Reproduction of lattice data possible.
- Towards the phase diagram of QCD:
 - √ Ghost propagator
 - √ Ghost-gluon vertex semi-perturbatively
 -] Ghost-gluon vertex self-consistent
 - □ Gluon propagator
 - Quarks
 - Phase transitions

Thank you for your attention.

Decoupling and scaling solutions

DSEs: Vary ghost boundary condition [Fischer, Maas, Pawlowski, AP324 (2009)]

Realization on lattice?

- Dependence of propagators on Gribov copies, e.g., [Bogolubsky, Burgio, Müller-Preussker, Mitrjushkin, PRD 74 (2006); Maas, PR524 (2013)]
- First hints from [Sternbeck, Müller-Preussker, 1211.3057]:
 choosing Gribov copies by the lowest eigenvalue of the Faddeev-Popov operator
- ullet d=2: [Maas, PRD75 (2007); Maas et al., EPJC68 (2010); Cucchieri et al., PRD85 (2012)]

Continuum d=2

Analytic and numerical arguments from DSEs for scaling only [Cucchieri, Dudal, Vandersickel, PRD85 (2012); MQH, Maas, von Smekal, JHEP1211 (2012)] as well as from analysis of Gribov region [Zwanziger, 1209.1974].

Ghost-gluon vertex and scaling solution

Fixed angle:

$\cos(\varphi) = -0.999$ 1.8 1.6 1.4 1.2 1.0 $1.\times 10^{-6}$ 0.0001 $p^{2}[\text{GeV}^{2}]$ 0.1 100. $1.\times 10^{-6}$

Fixed momentum:

- Dressing not 1 in the IR ← Contributions from loop corrections (for decoupling they are suppressed)
- Scaling/decoupling also seen in ghost-gluon vertex