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The f\“'f = 2 + 1 Polyakov-Quark-Meson Model

Degrees of Freedom

Gluons Polyakov loop &
effectively
described
Mesons (Pseudo-)scalar fields
by
Quarks Interaction between @
and mesons
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The f\“'f = 2 + 1 Polyakov-Quark-Meson Model

PQM Lagrangian (Ny =2+ 1)

m Let us start with the tree-level lagrangian
Lo = Linesons + Lquarks + Lgauge + Lint
where M = \,(04 + im,) = X Myeatar + i) - ]\prseudo
Lopesons = Tr(8,MO*MT) —m>Te(MTM) — M [Tr(MTM)]* —
A Tr(MTM)? + ¢[det(M) + det(MT)] +

+Tr[H(M + M")]
Loyvarks = @ (i'Y'uau) q
Loauge = —iﬁ F B
Lint = Lyukawa + Lmin. coupl.
Lyukawa = —9GN - Mycatar)q — i9G8(7°X - Mpseudo)q
Lonin. coupl. = —9sqV" Auq
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The f\“'f = 2 + 1 Polyakov-Quark-Meson Model

PQM in-medium effective potential

» Finally (?) the in-medium effective potential of the PQM model is
D=U+U+ Q4

m? oy, M 9 o 1 4
Uloy,0y) = 7(0:c +0,) + 5 920y + §(2A1 + A2)o,+
1 c
) +4_1(>\1 + X2)oy — maﬁay — hyoy — hyoy
U (P, P _ _ _ _
% = —%A(T)@@ + B(T)In [1 — 669 + 4(P° + &°) — 3(dP)?]

. d®p
.thi (01,0y7@,@;T,,u) = —2Tf_uzds/(27)3 X

% {ln [1 4 3(® + G~ Bar—1n)/TYe=(Bay=up)/Ty 4 6—3(Eq,f—ﬂf)/T:| +

+ In [1 + 3(4_5 + @e—(quf"'l‘f)/T)e—(Eq’f‘i‘ﬂf)/T + 6—3(quf+lif)/T} }
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A Fermion Sign Problem in Chiral Models

A Sign Problem in Effective Models Coupled to the

Polyakov Loop

= The effective potential {2 at finite T" and p is a complex function of
the complex variables @ and .

» This can be seen explicitly by defining new (real) variables

a = Re@=w
2_

8 = Im@zgp_,(l5
21

m The effective potential can be written in terms of o and 5.

m The Polyakov loop potentials are manifestly real functions of the new
real variables. For example,

Upoty (@, 5) __bo(T)
@0 _ 228 (02 1 57) — D (0® ~ 306%) +

2 2\2
+ 2+ )
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A Fermion Sign Problem in Chiral Models

The Sign Problem in Effective Models Coupled to the

Polyakov Loop

» The quark contribution (2,5 can be put in a manifestly complex form
_ OR ol
$24g = $29q + 15244

with
d3p
R ._ E A/
Qqq = —2T f /W 10g[ R2 + I2]
d3p I
I . _ _
2y:=-2T Ef / e arctan (R)
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A Fermion Sign Problem in Chiral Models

The Sign Problem in Effective Models Coupled to the

Polyakov Loop

R .ol
$29q = L4g + 1824
with the (8—even) real part

Ri=14 ¢ 3E-w)/T 4 —3(E+w)/T 4 —6E/T
2
+60467E/T [cosh <ﬁ> + efE/T cosh <—‘u>] +
T T
2
+6ae_4E/T [cosh (—M) + e_E/T cosh (ﬁ>:| +
T T

49(a2 + B2)(1 + e 2B/ TYe 2B/T | 15002 _ 32)e=3B/T coun (ﬁ)

and the (8—odd) imaginary part

I:= Gﬁe_E/T [sinh (ﬁ) - e_E/T sinh (2—H>] + 6Be_4E/T [e_E/T sinh <ﬁ> — sinh (2—H>i| —
T T T T

_36a sinh (%) e3B/T
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A Fermion Sign Problem in Chiral Models

The Sign Problem in Effective Models Coupled to the

Polyakov Loop

» The PQM grand partition function (sum over all field states)
Srau = / [Do,[Day)[Da][D] e~ Fraulroues]

# In full equilibrium (mean-field approximation)

|4 Vv

(U +Up + 2 +i024])
m It can be split in a f—even part and an imaginary S—odd term

Vv .
Spom = T (28—cven + 1523 0dd)
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A Fermion Sign Problem in Chiral Models

The Sign Problem in Effective Models Coupled to the

Polyakov Loop

» The mean-field PQM "“partition function” (sum over homogeneous
states)

Zoon = / [D#[Dal /_ Z dp exp [—%Q]

g = Yo Y0
/[DO'][DO[]/ dlBe T *B—even oV {4 —odd
—0o0

= /[D‘ﬂ [Da]/ dg e~ T Po—cven [e_i¥9ﬁ‘°dd —I—eH%QB—Odd]
0

- / [D&][Da][DB] e T 2-cvencos [; Qﬁﬂ

Integrand is not > 0 — Sign Problem!
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A Fermion Sign Problem in Chiral Models

The Sign Problem in Effective Models Coupled to the

Polyakov Loop

m If we insist to define an effective potential, the 1-loop quark
contribution

> r T vV ou
Qg5 = Q(Sq) + v log [cos (TQ‘S‘I)>]
» Thermodynamical limit (V' — oo) poorly defined!
= Tentative solution: {2, — 0, i.e.,

~Ya _ ~r(e®ried)

v _V &)
e T = e ‘Q‘:‘e T'Q )

— ‘e_T
m This is analogous to

detD(A,m,u,T) — |detD(A, m, u,T)|
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Some Results of the PQM Model in Equilibrium

States of Thermodynamical Equilibrium

= Now that 2 = £ is a real function of real variables, it makes sense to
write

Z = / (D]~ €]
u Equilibrium < Minimum of Scsf (impossible if Seff[kﬁ] e

oe _oe _oe_oe_
801_803/_8@_85_

and the 4 eigenvalues of

0%€

= axox,

(X = 04,0y, a, 8) are all positive.
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Some Results of the PQM Model in Equilibrium

Parameters

Phase Diagram and Evolution of Order
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Homogeneous Thermal Nucleation and Surface Tension

Bubble Nucleation in 1%* Order Transitions

Phase transitions need a dynamical underlying mechanism.
15¢ order PhT, small metastability — bubble nucleation.
Timescale for PhT 2 Timescale for bubble nucleation.
Average time for first seed (critical) bubble (in a unit volume)

AFbub]

tnucl ~ €Xp [Sbub] ~ €XP |: T

Free energy shift due to the nucleation of a bubble

AFbub - Fbubble - Fmetastable

= Thin-wall approximation (X: quark-hadron surface tension)

4
Foubble = —?WREAS +4TR2Y
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Homogeneous Thermal Nucleation and Surface Tension

The Importance of the Surface Tension

Average time for first seed (critical) bubble (in a unit volume)

AFbub]

tpucl ~ €xp |: T

= Again in the thin-wall approximation (good close to coexistence)

16m X3
AFyp = ?W
m The surface tension dominates the nucleation time
trnucl ~ €Xp [23]
m Y can be calculated from the effective model: we do it!

B.W.Mintz (DFT-UERJ) Nucleation in the PQM Model St. Goar, March 18t v, 2013



Homogeneous Thermal Nucleation and Surface Tension

Surface Tension with more than 1 Order Parameter

m The situation can be quite complicated with 2 or more order
parameter: saddle-points + many coupled EL equation.
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Homogeneous Thermal Nucleation and Surface Tension

The Straight Line Ansatz Gives an Overestimate of X

True bubble (solution of coupled EL equations): Lftme(r).

Any other function ff(r) that connects the minima has
SW¢] > SWruel.
But S~ AF ~ 3.

Therefore,
the straight line gives an overestimate of the surface tension!

E:h/oldf 2E(€)

hi= (40,2 + (A0, + (580 + (AD)?
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Homogeneous Thermal Nucleation and Surface Tension

Overestimate of the Surface Tension in the PQM Mode

u Surface tension along the coexistence (1%¢ order) line of the phase
diagram.

u Poly-I and Log Parametrizations: X < 15MeV /fm? (low value!).
m Poly-ll parametrization: strange behavior...

200,
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Summary and Conclusions

CONCLUSIONS
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Summary and Conclusions

Summary and Conclusions

m The fermion sign problem is also present in chiral effective models
coupled to the Polyakov loop, even at mean-field level.

m The fermion sign problem in the PQM and PNJL models is related to
an imaginary part of the equilibrium effective potential — a complex
equilibrium effective potential has no physical meaning.

m The ad-hoc elimination of Qg) allows the existence of minima
m Thermodynamically consistent determination of equilibrium properties.
m Determination of quasi-equilibrium properties of the system (e.g., X).
w Our overestimate & < 15 MeV/fm?: low value, in line with previous
results with chiral models [Palhares/Fraga (2010),
Pinto/Koch/Randrup (2012)].
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EXTRA SLIDES

Phase Transitions of Strongly Interacting Matter

= QCD is relatively well understood only at high energies (perturbation
theory): asymptotic freedom and chiral symmetry restoration.

= However, "our(i.e., nuclear) regime: very low energies.

early universe
Quark-Gluon

Plasma

FAIR

Hadrons

Color
Superconductivity

" neutrbn stars
| O
mN/3 He u

B.W.Mintz (DFT-UERJ)

[Fraga/Schaffner-Bielich/Pisarski]
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EXTRA SLIDES
Chiral Symmetry

m Chiral transformation on a fermion field:
= mg # 0: chiral symmetry broken. E.g.: in the vacuum.

= mg = 0: chiral symmetry restored. E.g.: high temperatures.
_ _ 1
L = Pint 0,1 — ginpo + 5(8M0)2 ~U(o)

m Integrate over constant o field.
m Mean field approximation: o — (o).

Lepr = (v Op — meps)h + Uess((0)),

where meyr = g (o).
u Chiral symmetry of quarks broken by (o) # 0 (controlled by Ues¢).
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EXTRA SLIDES
Confinement

m Quarks are confined inside hadrons. Why? How?
= One (debatable) criterion: Wilson area law for static ¢g pair.

Up = <7>exp [ig }é dqu“]> — exp [iE(R)T]

E(R) = aR: confinement.
w At finite temperature, M* — R3 x S1.
» Polyakov loop: go around (compact) imaginary time direction

T €1[0,0).
g
ig/o drA°

® — 0 AF — oco: confinement.
® — 1< AF — 0: free quarks.

1
b= FTrP exp

c

= exp [-SAF]
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EXTRA SLIDES
PQM in-medium effective potential

» Grand partition function (fixed 7', u):

2= [awawaipmes {- ["ar [ érie -}

= 15 step: Mean-Field Approximation

M — (M)

A — (A

1 K2
——TrF? —
1 A

— @

—_ ~

0,80"D) +U(P, &, T)
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EXTRA SLIDES

PQM in-medium effective potential

w 2™ step:
m Explicit symmetry breaking: Hy, Hs, Hg # 0 — "flavorless’vacuum.
m VEV of pseudoscalars: (m,) = 0.
m SU(2) isospin symmetry (Ny =2+1): H3 =0 = (03) = (m3) = 0.
m Diagonalization [Schaefer/Wagner, 2009]:

. V200 + o

T = T =
V3

) o0 — V20s

i

m Final form of tree-level meson potential

2

m A 1

U(oy,oy) = 7(03 + JZ) + 7103305 + 3
2

1 c
+Z()\1 + )\2)0;1 — —=0,0y — hyop — hyoy

2v2

(2/\1 + )\2)0';61 +
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EXTRA SLIDES
PQM in-medium effective potential

u 3" step (equal for PQM, PNJL):
m Integrate out the quarks (1-loop)

245 (02,04, D, 5, T, 1)

f=u,d,s
~ {m [14—3((15—1—@@‘( 0. THe)ITY e~ (Eq,r = uf)/T)_|_e—3(qu pf)/T ]

_|_
T ln [1 + 3(B + Pe~Bastun)/T)e=(Eos+up)/T 4 o=3(B, f+Nf)/T] }

m Constituent quarks are massive quasiparticles

Ey = ,/p2+mfc

_ _ g0y g0y
My = Mg = —— ms = —=

2 V2
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EXTRA SLIDES
PQM in-medium effective potential

w 4" step: The Polyakov loop potential

m Ad-hoc potential.
m Parameters fitted from thermodynamics (pure gauge lattice).

m Polynomial parametrization

upoly(¢7 2 by(T)

_ 5 b3 3 | g3 by (=20
T = 5 2 6(@ +45)+4(45q§)

m Logarithmic parametrization

“IogT(f’ 2 _ _% A(T)BS+ B(T)In [1 — 66 + A(&° + &°) — 3(50)?]
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EXTRA SLIDES

The Fermion Sign Problem in QCD (in a Nutshell)

m The QCD Lagrangian is

1 »
Locp = = Fp B + 4(i" 0y —m + 97" Ay)q

» The grand partition function is (gauge fixing omitted)

Zgcp = /[DA] [Dg][Dq] exp [— /Oﬁ dr /d3$ (Lgcep — 1gyoq)

m Formally performing the fermionic integrals yields

Zqep = /[DA] e~ det D(A, m, u, T)

» The Dirac determinant detD(A, m, u, T) is complex for real p # 0.

m Therefore, the would-be Boltzmann weight is not positive-defined
— sign problem.
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EXTRA SLIDES

Calculating the Surface Tension (1 order parameter)

Assume an effective potential V' and only one order parameter ¢.

At coexistence, the in-medium effective potential has two degenerate
minima: V(¢1) = V(¢2) = 0.
» The surface tension is defined by [¢p: solution of minimum action]

[0 (5)

= In the thin-wall approximation (good close to coexistence)
@2
Y= , do\/2V (9)
1
m Knowledge of potential between minima is necessary.
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EXTRA SLIDES

Calculating the Surface Tension (1 order parameter)

o / (d¢b )>2:/¢2d¢\/m

1

l [ B —
5 51

=081 R =
e <
: £
= 0.6 1 3]
g Inside the Bubble £
A 04t 4
>
o} g
)= E
02F g
© D

0 n L n L n L L Il L L n L L L L L L

50 100 150 200 250 300 350 %2 02 0 _02 04 06 08 1 12 14
Radial Coordinate [a.u.] Order Parameter [a.u.]

» Bubble equation (inverted potential)

2 T T
TOT) | 2400 _ )
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EXTRA SLIDES

Surface Tension with more than 1 Order Parameter

m The situation can be quite complicated with 2 or more order
parameter: saddle-points + many coupled EL equation.
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EXTRA SLIDES

Surface Tension with more than 1 Order Parameter

m One assumption near coexistence: only two minima ¥; and ¥,

-

![Ii = (O-g)7 O-g(/i)a a(i)v 5(1))

= Nucleation time
tpuel ~ €Xp |:S (Wbubble)}

fbubble: solution of 4 Euler-Lagrange equations that connects minima.

S(Ppupbie): mMinimum action.

m However, no general method to solve the coupled EL equations...
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EXTRA SLIDES
The Straight Line Ansatz

Let us make the problem simpler!

m Project the potential over a straight line that connects the minima.
» The line is parametrized by £(r) € [0, 1].

o = (1=l + &0

o = (1-¢&)oy 1) +&ol?)

a = 1-=&a +ea®

B o= (1-¢pW+¢?

The problem is now effectively 1-dimensional.

Okay... but we must have lost something...
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EXTRA SLIDES
The Straight Line Ansatz Gives an Overestimate of X

True bubble (solution of coupled EL equations): Lftme(r).

Any other function ff(r) that connects the minima has
SW¢] > SWruel.
But S~ AF ~ 3.

Therefore,
the straight line gives an overestimate of the surface tension!

E:h/oldf 2E(€)

hi= (40,2 + (A0, + (580 + (AD)?
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The Position of the CEP

m The position of the CEP is different with the two approaches...

Parametrization Ty [MeV] | (Tc, uc)[MeV] || (Te, pe)¥[MeV]
Log [Roessner: 07] 182 (143, 129) (143, 128)
270 (192, 88) (192, 84)
Poly-1 [Scavenius: 02] 182 (139,99) (140,92)
270 (171,103) (175, 83)
Poly-1l [Ratti: 06] 182 (146,115) (152,80)
270 (176, 129) (184,103)

Table: m, = 500 MeV and T, = 182 MeV (with effective screening) or
To = 270 MeV (pure gauge).
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