Quark matter in neutron stars

Prof. Mark Alford Washington University in St. Louis

Schematic QCD phase diagram

M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP review) A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)

Signatures of quark matter in compact stars

Microphysical propertie	es
-------------------------	----

Observable \leftarrow $\stackrel{\text{Introphysical properties}}{(and neutron star structure)} \leftarrow$ Phases of dense matter

	Property	Nuclear phase	Quark phase
mass, radius	eqn of state	known up to <i>n</i> _{sat}	unknown, can be parameterized

Signatures of quark matter in compact stars

Observable $\leftarrow \frac{\text{Microphysical properties}}{(\text{and neutron star structure})} \leftarrow \text{Phases of dense matter}$

	Property	Nuclear phase	Quark phase
mass, radius	eqn of state	known up to <i>n</i> _{sat}	unknown, can be parameterized
spindown (spin freq, age)	bulk viscosity shear viscosity	Depends on phase:	Depends on phase:
<mark>cooling</mark> (temp, age)	heat capacity neutrino emissivity thermal cond.	n p e $n p e, \mu$ $n p e, \Lambda, \Sigma^-$ n superfluid p supercond	unpaired CFL CFL- <i>K</i> ⁰ 2SC CSL
glitches (superfluid, crystal)	shear modulus vortex pinning energy	π condensate <i>K</i> condensate	LOFF 1SC

Color superconducting phases

Attractive QCD interaction \Rightarrow Cooper pairing of quarks. We expect pairing between *different flavors*.

Quark Cooper pair: $\langle q_{ia}^{\alpha} q_{ib}^{\beta} \rangle$

color
$$\alpha, \beta = r, g, b$$

flavor $i, j = u, d, s$
spin $a, b = \uparrow, \downarrow$

Each possible BCS pairing pattern P is an 18×18 color-flavor-spin matrix

$$\langle q^lpha_{i a} q^eta_{j b}
angle_{1 P I} = \Delta_P \, P^{lpha eta}_{i j \, a b}$$

The attractive channel is:

color antisymmetric [most attractive] space symmetric [*s*-wave pairing] spin antisymmetric [isotropic] \Rightarrow flavor antisymmetric

Quark matter in the real world

In the real world there are three factors that combine to oppose pairing between different flavors.

- 1. Strange quark mass is not infinite nor zero, but intermediate. It depends on density, and ranges between about 500 MeV in the vacuum and about 100 MeV at high density.
- **2.** Neutrality requirement. Bulk quark matter must be neutral with respect to all gauge charges: color and electromagnetism.
- **3.** Weak interaction equilibration. In a compact star there is time for weak interactions to proceed: neutrinos escape and flavor is not conserved.

These factors favor *different Fermi momenta* for different flavors which *opposes* pairing between different flavors

Mismatched Fermi surfaces oppose Cooper pairing

u and *d* quarks near their Fermi surfaces cannot have equal and opposite momenta.

 $\langle u(k)d(-k)\rangle$ condensate is energetically penalized.

The strange quark mass is the cause of the mismatch:

$$p_{Fd} - p_{Fu} pprox p_{Fu} - p_{Fs} pprox rac{M_s^2}{4\mu}$$

Cooper pairing vs. the strange quark mass

CFL: Color-flavor-locked phase, favored at the highest densities:

$$\langle q_i^lpha q_j^eta
angle \sim \delta_i^lpha \delta_j^eta - \delta_j^lpha \delta_i^eta = \epsilon^{lphaeta N} \epsilon_{ijN}$$

breaks chiral symmetry by a new mechanism: $\langle qq \rangle$ instead of $\langle \bar{q}q \rangle$.

2SC: Two-flavor pairing phase. May occur at intermediate densities: $\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \epsilon^{\alpha\beta3} \epsilon_{ij3} \sim (rg - gr)(ud - du)$ or: CFL with kaon condensation (CFL- \mathcal{K}^0),

crystalline phase (LOFF), *p*-wave "meson" condensates, single-flavor pairing (color-spin locking, \sim liq ³He-B).

Phases of quark matter, again

But there are also non-uniform phases, such as the crystalline ("LOFF" / "FFLO") phase. (Alford, Bowers, Rajagopal, hep-ph/0008208)

Signatures of quark matter in compact stars

Microphysical propertie	es
-------------------------	----

Observable \leftarrow $\stackrel{\text{Introphysical properties}}{(and neutron star structure)} \leftarrow$ Phases of dense matter

	Property	Nuclear phase	Quark phase
mass, radius	eqn of state	known up to <i>n</i> _{sat}	unknown, can be parameterized

Signatures of quark matter in compact stars

Observable $\leftarrow \frac{\text{Microphysical properties}}{(\text{and neutron star structure})} \leftarrow \text{Phases of dense matter}$

	Property	Nuclear phase	Quark phase
mass, radius	eqn of state	known up to <i>n</i> _{sat}	unknown, can be parameterized
spindown (spin freq, age)	bulk viscosity shear viscosity	Depends on phase:	Depends on phase:
<mark>cooling</mark> (temp, age)	heat capacity neutrino emissivity thermal cond.	n p e $n p e, \mu$ $n p e, \Lambda, \Sigma^-$ n superfluid p supercond	unpaired CFL CFL- <i>K</i> ⁰ 2SC CSL
glitches (superfluid, crystal)	shear modulus vortex pinning energy	π condensate <i>K</i> condensate	LOFF 1SC

Discovery of a $2M_{\odot}$ mass neutron star

Can quark matter be the favored phase at high density?

Constraints on the quark matter EoS(1)

Generic quark matter EoS

Generic ansatz: $\varepsilon(p) = \varepsilon_{\rm crit} + \Delta \varepsilon + c_{\rm QM}^{-2}(p - p_{\rm crit})$

Constraints on the quark matter EoS (2)

Generic ansatz: $\varepsilon(p) = \varepsilon_{\rm crit} + \Delta \varepsilon + c_{\rm QM}^{-2}(p - p_{\rm crit})$

Alford, Han, Prakash, unpublished

Observations can constrain QM EoS but not rule out generic QM
 Constraints depend on NM EoS up to transition density

Transport properties and low-energy excitations

Transport properties are determined by *low-energy excitations*. These are very different for different phases.

For 2 light and 1 massive flavor, approx symmetry group is

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_B \times U(1)_{S^*}$

Phase	unbroken sym	gapless modes	light modes
unpaired	no breaking	9 quarks	
2SC	$SU(2)_c \times$ global	5 quarks	
CFL	$SU(2)_V \times U(1)_S^*$	sf phonon " <i>H</i> "	<i>K</i> ⁰ , <i>K</i> ⁺

* weak interactions break strangeness slightly.

r-modes and gravitational spin-down

An r-mode is a quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spontaneously) when a star spins fast enough, and if the shear and bulk viscosity are low enough.

The unstable *r*-mode can spin the star down very quickly, in a few days if the amplitude is large enough (Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom

astro-ph/0101136).

neutron star spins quickly	interior viscosity must be high
	enough to damp the <i>r</i> -modes

Constraints from r-modes: old stars (1)

Constraints from r-modes: spindown rate

f vs \dot{f}_R (df/dt from r-mode spindown)

Future directions

- Neutron-star phenomenology of color superconducting quark matter:
 - Are there any other r-mode damping mechanisms?
 - neutrino emissivity and cooling
 - structure: nuclear-quark interface (gravitational waves?)
 - color supercond. crystalline phase (glitches) (gravitational waves?)
 - CFL: vortices but no flux tubes; stability of vortices...
- More general questions:
 - instability of gapless phases; better treatment of LOFF
 - role of large magnetic fields
 - better weak-coupling calculations
 - better models of quark matter: Functional RG, Schwinger-Dyson
 - solve the sign problem and do lattice QCD at high density.

Blank slide