Heavy quarks in the quark-gluon plasma

Jon-Ivar Skullerud with Aoife Kelly, Dhagash Mehta, Buğra Oktay, Sinéad Ryan and others

NUI Maynooth / FASTSUM collaboration

Quarks, Gluons and Hadronic Matter under Extreme Conditions, St. Goar, 16 March 2011

Outline

Background Quenched vs dynamical Spectral functions

Charmonium

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Charm diffusion

Beauty (and the beast?)

Summary and outlook

Quenched vs dynamical Spectral functions

Background

- J/ψ suppression a probe of the quark–gluon plasma?
- Heavy quarks: hard probes or thermal?
- Quenched lattice results indicate that S-waves survive well into the plasma phase
- Sequential suppression + recombination explains experimental results?
- Heavy quarks as thermometer of QGP?

Quenched vs dynamical Spectral functions

Background

- J/ψ suppression a probe of the quark–gluon plasma?
- Heavy quarks: hard probes or thermal?
- Quenched lattice results indicate that S-waves survive well into the plasma phase
- Sequential suppression + recombination explains experimental results?
- Heavy quarks as thermometer of QGP?
- Uncertainty about which potential to use in potential models, how to treat continuum
- How reliable are quenched lattice simulations?

Quenched vs dynamical Spectral functions

Quenched vs dynamical

Are quenched lattice results reliable?

- $T_c^{N_f=0} \approx 1.5 T_c^{N_f=2+1}, T_c^{N_f=2} \approx T_c^{N_f=2+1}$
- No $D \overline{D}$ threshold in quenched QCD
- Light quarks can catalyse QQ dissociation so it occurs at lower temperature
- Lower T_c , lower T_d conspire to give the same T_d/T_c ?
- Potential models indicate little change in T_d/T_c

Quenched vs dynamical Spectral functions

Quenched vs dynamical

Are quenched lattice results reliable?

- $T_c^{N_f=0} \approx 1.5 T_c^{N_f=2+1}, T_c^{N_f=2} \approx T_c^{N_f=2+1}$
- No $D \overline{D}$ threshold in quenched QCD
- Light quarks can catalyse QQ dissociation so it occurs at lower temperature
- Lower T_c , lower T_d conspire to give the same T_d/T_c ?
- Potential models indicate little change in T_d/T_c
- Only dynamical lattice calculations can give the answer

Quenched vs dynamical Spectral functions

Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$

Quenched vs dynamical Spectral functions

Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Independent handle on temperature

Quenched vs dynamical Spectral functions

Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Independent handle on temperature

- Introduces 2 additional parameters
- Non-trivial tuning problem
 [PRD 74 014505 (2006); PRD 78, 014505 (2008)]

Quenched vs dynamical Spectral functions

Spectral functions

• $\rho_{\Gamma}(\omega, \overrightarrow{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \overrightarrow{p})$ according to

$$G_{\Gamma}(\tau, \overrightarrow{p}) = \int \rho_{\Gamma}(\omega, \overrightarrow{p}) \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)} d\omega$$

- an ill-posed problem
- use Maximum Entropy Method to determine most likely $\rho(\omega)$
- requires a large number of time slices to have any chance of a reliable determination
- must introduce model function $m_0(\omega)$

Femperature dependence Reconstructed correlators Nonzero momentum Fowards the physical limit

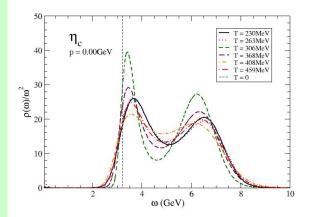
Simulation parameters

[PRD 76 194513 (2007), arXiv:1005.1209]

ξ	a_s (fm)	a_t^{-1} (GeV	$() m_{\pi/}$	$m_{ ho}$	Ns	L_s (fm)
6.0	0.162	7.3	35 C).54	12	1.94
		T (NA)()	T / T			_
	$N_{ au}$	T (MeV)	T/T_c	# (configs	
	80	92	0.42		250	
	32	230	1.05		1000	
	28	263	1.20		1000	
	24	306	1.40		500	
	20	368	1.68		1000	
	18	408	1.86		1000	
	16	459	2.09		1000	

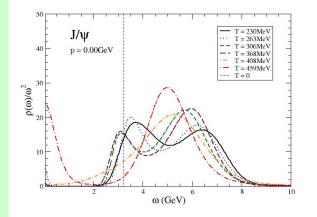
Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

S-wave T dependence (η_c)



Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

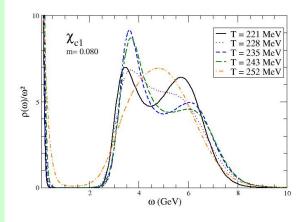
S-wave T dependence (J/ψ)



 J/ψ (S-wave) melts at $T \sim 370 - 400$ MeV or $1.7 - 1.9T_c$?

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

P-waves



P-waves melt at T < 250 MeV or $1.2T_c$?

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Reconstructed correlators

Reconstructed correlator is defined as

$$G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega$$

where K is the kernel

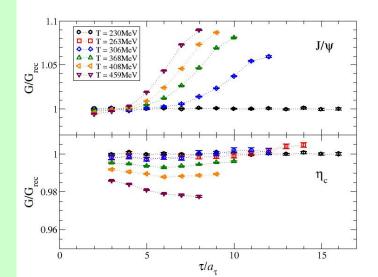
$$K(\tau, \omega, T) = rac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

If $\rho(\omega; T) = \rho(\omega; T_r)$ then $G_r(\tau; T, T_r) = G(\tau; T)$

We use $N_{\tau} = 32$ as our reference temperature

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

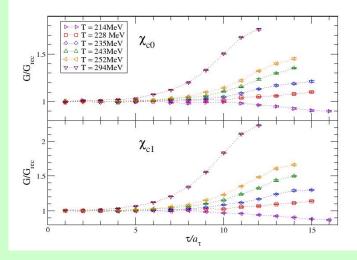
S-waves



12 / 31

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

P-waves



Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

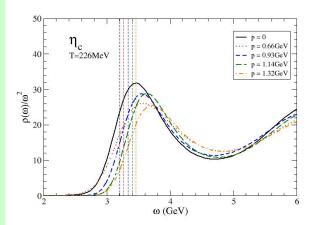
Nonzero momentum

[With MB Oktay, arXiv:1005.1209]

- Charmonium is produced at nonzero momentum
- Transverse momentum (and rapidity) distributions important to distinguish between models
- Momentum dependent binding?
- Gives an additional window to transport properties

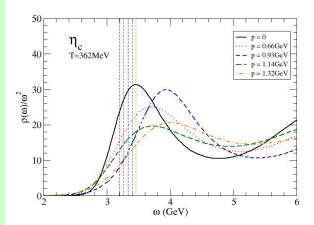
Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Nonzero momentum results $\eta_c, 12^3 \times 32$



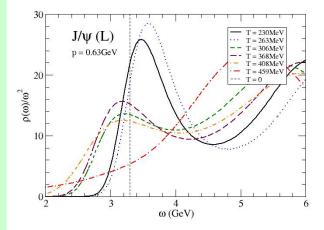
Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Nonzero momentum results $\eta_c, 12^3 \times 20$



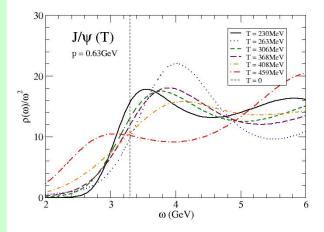
Temperature dependence Reconstructed correlators **Nonzero momentum** Towards the physical limit

Transverse vs longitudinal



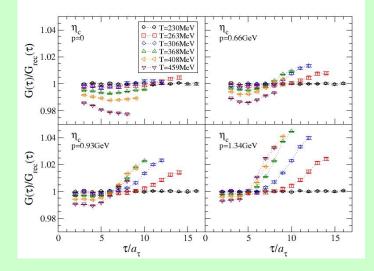
Temperature dependence Reconstructed correlators **Nonzero momentum** Towards the physical limit

Transverse vs longitudinal



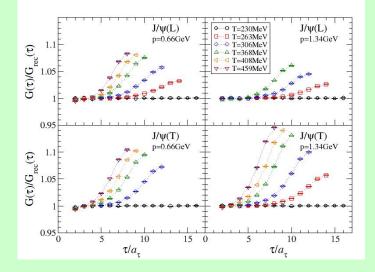
Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Reconstructed correlators



Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Reconstructed correlators



Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

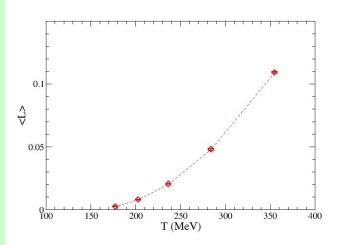
Towards the physical limit

Anisotropic clover-improved Wilson fermions, 2+1 flavours [HadSpec Collab, PRD **79** 034502 (2009)]

ξ	<i>as</i> (fm) a_t^{-1} ((GeV)	$m_{\pi}/m_{ ho}$	Ns	L _s (f	m)
3.5	0.	122	5.68	0.45	24	2.	.93
-		T (NA) ()			<i>c</i> :		-
_	$N_{ au}$	T (MeV)	T/T_c	# con	tigs	used	_
	160	35	0.2		—		
	32	177	1.0		242	38	
	28	203	1.1		306	100	
	24	237	1.3		259	57	
	20	284	1.6		625	539	
	16	355	2.0		289	102	

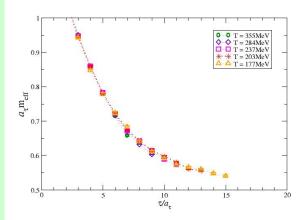
Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Polyakov loop



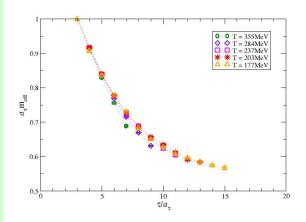
Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Pseudoscalar effective mass



Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

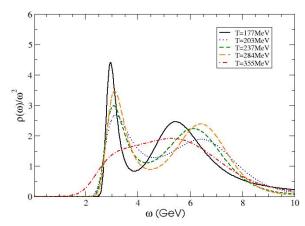
Vector effective mass



Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Pseudoscalar spectral function

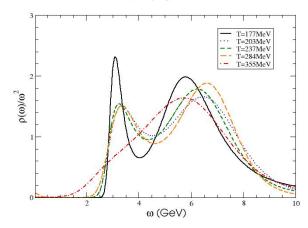
 $\eta_{c} (a_{\tau}m_{c} = 0.087)$



Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit

Vector spectral function

 $J/\psi (a_{\tau}m_{c} = 0.087)$



Charm diffusion

How fast do charm quarks thermalise? The heavy quark diffusion constant *D* is given by

$$D = \frac{1}{\chi^{00}} \lim_{\omega \to 0} \frac{\rho_V(\omega)}{\omega} \,,$$

 ho_V is the spectral function of the conserved-current operator V_i

$$\chi^{00} = \frac{1}{T} \int \langle V_0(\overrightarrow{x},t) V_0(\overrightarrow{0},t) d^3 x$$

Charm diffusion

How fast do charm quarks thermalise? The heavy quark diffusion constant *D* is given by

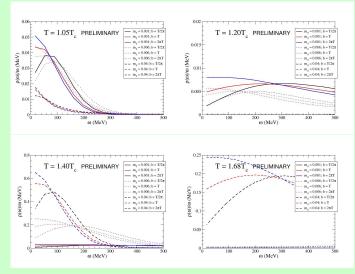
$$D = \frac{1}{\chi^{00}} \lim_{\omega \to 0} \frac{\rho_V(\omega)}{\omega} \,,$$

 ho_V is the spectral function of the conserved-current operator V_i

$$\chi^{00} = \frac{1}{T} \int \langle V_0(\overrightarrow{x}, t) V_0(\overrightarrow{0}, t) d^3 x$$

Preliminary results using default model $m(\omega) = m_0 \omega (b + \omega)$

Results



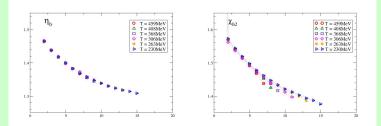
Beauty (and the beast?)

[See also talk by Gert Aarts]

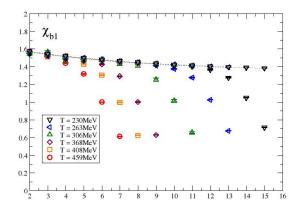
- Many b quarks will be produced at ALICE
- $T_d^{\Upsilon} \sim 5 T_c$ hard to do on the lattice
- χ_b melts at $T_d^{\chi_b} \lesssim 1.2 T_c$?
- Use NRQCD and relativistic action, compare two approaches

Results from relativistic beauty

- Used the same action as for charm (and light quarks)
- Used both point and derivative operators for P-waves



Operator dependence



Derivative operators better behaved — smaller constant mode?

30/31

Summary

- Charmonium S-waves survive to $T \sim 1.6 2T_c$
- P-waves melt at $T < 1.3 T_c$
- Significant momentum dependence in reconstructed correlators
- Transverse vector correlators are more sensitive to temperature and momentum
- Charm diffusion feasible from lattice simulations
- Relativistic beauty results compatible with NRQCD
- Simulations on finer lattices with realistic quark content underway