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Dileptons: The ideal probe
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l+l− are messangers of the hot and dense phase of the collision

l+l− allow to investigate medium effects on hadron properties
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Experimental evidence

CERES Coll.@CERN [G.Agakichiev et al., PRL75(1995)1272]

mee (GeV/c2)

(d
2 N

ee
 /d

ηd
m

) 
/ (

dN
ch

 /d
η)

 (
10

0 
M

eV
/c

2 )-1

CERES/NA45 S-Au 200 GeV/u

2.1 < η < 2.65
p⊥  > 200 MeV/c
Θee > 35 mrad
〈dNch /dη〉  = 125

charm

π 
→

 e
eγ

ρ/
ω

 →
 e

e

φ 
→

 e
e

η →
 eeγ

η , → eeγ

ω → eeπo

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

0 0.5 1 1.5

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
m (GeV/c2)

(d
2 n ee

 /d
ηd

m
) 

/ (
dn

ch
 /d

η)
 (

50
 M

eV
/c

2 )-1 p-Au 450 GeV p⊥  > 50 MeV/c
Θee > 35 mrad
2.1 < η < 2.65
〈dnch /dη〉  = 7.0

HELIOS-3 Coll.: similar enhancement of low-mass dilepton
over the cocktail [M.Masera et al.,NPA590(1995)93c]
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In-medium ρ

ρ spectral function is modified in the medium.
Collisions with sourrounding hadrons lead to a general broadening and
specific “structures” may appear

[R.Rapp,J.Wambach, ANP25(2000)1]
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ρ = [M2

− (m
(0)
ρ )2 − ΣL,T

ρππ − ΣL,T
ρM − ΣL,T

ρB ]−1

Mostly refered to as “broadening” or
“melting” scenario
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NA60@CERN:

evidence for no mass shift of the ρ in In+In@158 AGeV
[R. Arnaldi et al.,PRL96(2006)162302]

data in favour of “complex” spectral functions

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

500

1000

1500

2000

2500

3000

3500
In-In SemiCentral

T
all p

2
dN

/d
M

 p
er

 2
0 

M
eV

/c

)2M (GeV/c

dashed : vacuum

thick solid : R.Rapp spf

dash-dotted : Brown-Rho scaling

“The ρ spf shows a strong broadening
but essentially no mass shift.
This may rule out theoretical models
linking hadron masses
directly to the chiral condensate.”
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At present

SPS data on excess currently explained as thermal ll emission:

d8Nll

d4xd4q
= −

α2m4
ρ

π3g2ρ

L(M2)

M2
fB(q0;T )ImDρ(M, q;T, µB)

with ρ spectral function in-medium modified
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[H.van Hess,R.Rapp,NPA806(2008)339]

See also K.Dusling et al.,PRC75(2007);PRC80(2009)
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The dropping of Teff
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[R.Arnaldi,et al.,EPJ61(2009)711]

Sudden steepening of the mT spectra above the ρ

⇒ interpred as emission from early times at which radial flow has not
yet copiously build up
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Sudden steepening of the mT spectra above the ρ

⇒ interpred as emission from early times at which radial flow has not
yet copiously build up

early times ≡ qq̄ → µµ ?
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Sudden steepening of the mT spectra above the ρ

⇒ interpred as emission from early times at which radial flow has not
yet copiously build up

early times ≡ qq̄ → µµ ?

Realistic transverse dynamics mandatory
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Dynamics of thermal dileptons: our
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Note: In this model expansion is governed by the pressure of the EoS ⇒
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Dynamics of thermal dileptons: our
contribution

We let the in-medium e.m. correlator shine from a full (3+1)
hydrodynamical calculation

⇒ use realistic spectral function, i.e. Σρ(M, q;T, µB)

calculated from scattering with particles (B,M ) of the bath

seek for fingerprints of the dynamical evolution of the fireball
thoughout the (T, µB) plane and the different phases of matter.
Note: In this model expansion is governed by the pressure of the EoS ⇒

dilepton transverse mass spectra are barometer of the various stages.

investigate importance of non-thermal contribution . Explore
consequences of an eventual continuous decoupling

Getting ready for FAIR (in the spirit of HIC for FAIR)
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A hybrid model for the dynamics of
the HIC

UrQMD → SHASTA → UrQMD
Embeds a 3+1 ideal hydrodynamical evolution for the hot and dense stage of
the reaction. Hydrodynamical grid is mapped into UrQMD according to
Cooper-Frye prescription
[H.Petersen et al.,PRC78(2008)044901]

Non-equilibrium initial

condition via UrQMD

Hydrodynamics

(or transport)

evolution

Final decoupling via

hadronic cascade

(UrQMD)

Now available as UrQMD version 3.3. Visit http://urqmd.org/
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Emission rates – in-medium ρ (LMR)

ρ∗ → ll

d8Nρ∗→ll

d4xd4q
= −

α2m4
ρ

π3g2ρ

L(M2)

M2
fB(q0;T )ImDρ(M, q;T, µB)

Dρ(M, q;T, µB) =
[

M
2
−m

2
ρ − Σρ(M, q;T, µB)

]−1

Spectral density for the ρ meson in a
heat bath of N and π re-derived from
Eletsky,et al.PRC64 (2001)
035202] and tabelled

Authors give fρa as free to download∗

⇒ close the loop ⇒ Σρ

Σρa(p) = −
mρmaT

πp

∞
∫

ma

dω ln
[

1−exp(−ω+/T )

1−exp(−ω−/T )

]

fρa

(

mρω

ma

)

∗http://groups.physics.umn.edu/nucth/archive10.03/index.html
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Emission rates – 4 π and qq̄ (IMR)

4π → ll rate from the reverse process measured in e+e− annihilation

d8N4π→ll

d4xd4q
=

4α2

(2π)2
e
−q0/T M2

16π3α2
σ(e+e− → 4π)

σ(e+e− → 4π) from BaBar data

e+e− → 2π+2π−

[B.Aubert et al.,PRD71(2005),052001]

e+e− → π+π−2π0

[Druzhinin:2007cs]

0

10

20

30

40

1000 1500 2000

ND
OLYA

CMD

SND

M3N
DM1
GG2
DM2CMD2
BaBar

EC.M. (MeV)

σ(
e+

e-  →
 2

π+
2π

- ) 
(n

b)

Dimuon radiation from a hybrid evolution model – p. 11/21



Emission rates – 4 π and qq̄ (IMR)

4π → ll rate from the reverse process measured in e+e− annihilation

d8N4π→ll

d4xd4q
=

4α2

(2π)2
e
−q0/T M2

16π3α2
σ(e+e− → 4π)

σ(e+e− → 4π) from BaBar data

e+e− → 2π+2π−

[B.Aubert et al.,PRD71(2005),052001]

e+e− → π+π−2π0

[Druzhinin:2007cs]

0

10

20

30

40

1000 1500 2000

ND
OLYA

CMD

SND

M3N
DM1
GG2
DM2CMD2
BaBar

EC.M. (MeV)

σ(
e+

e-  →
 2

π+
2π

- ) 
(n

b)

qq̄ → ll in LO

[J.Cleymans,et al., PRD35(1987),2153]

dNqq̄→ll

d4xd4q
=

α2

4π4

T

q
fB(q0;T )

∑

q

e2q ln
(x− + exp[−(q0 + µq)/T ]) (x+ + exp[−µq/T ])

(x+ + exp[−(q0 + µq)/T ]) (x− + exp[−µq/T ])

Dimuon radiation from a hybrid evolution model – p. 11/21



EoS

[J.Steinheimer and S.Schramm, JPG38(2011)035001]

0 100 200 300 400
0

50

100

150

200

250

300

q [MeV]

T 
[M

eV
]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Dimuon radiation from a hybrid evolution model – p. 12/21



EoS

[J.Steinheimer and S.Schramm, JPG38(2011)035001]

Obtained from coupling the Polyakov loop to a chiral hadronic
flavor-SU(3) model, adding quark d.o.f.

describes chiral restoration and deconfinement phase transition

contains the correct asymptotic d.o.f. (quarks ↔ hadrons)
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EoS

[J.Steinheimer and S.Schramm, JPG38(2011)035001]

Obtained from coupling the Polyakov loop to a chiral hadronic
flavor-SU(3) model, adding quark d.o.f.

describes chiral restoration and deconfinement phase transition
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λ : fraction of QGP

◮ λ increases with increasing T

◮ large coexistence phase

◮ “weight” hadronic and QGP rates with λ

d8Nll

d4xd4q
= [1− λ]

(

d8N4π→ll

d4xd4q
+

d8Nρ→ll

d4xd4q

)

+ λ
dNqq̄→ll

d4xd4q
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Comparison to NA60 – M spectra

invariant mass spectra of the excess analysed for 12 pT bins

[E.S.,J.Steinheimer,M.Bleicher and S.Schramm, arXiv:1102.4574]
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Comparison to NA60 – M spectra

invariant mass spectra of the excess analysed for 12 pT bins

[E.S.,J.Steinheimer,M.Bleicher and S.Schramm, arXiv:1102.4574]
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Comparison to NA60 – mT spectra

transverse mass spectra of the excess analysed for 4 M bins
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0.4<M<0.9 GeV
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Summary and Conclusions

In-medium dilepton calculations within a (3+1) hydro+transport approach
performed for the first time

Low mass region (M < 0.5) of dilepton spectra dominated by in-medium
radiation at low pT

Low mass region (M < 0.5) GeV shows resonable pT scaling

Cascade emission saturates the region M ∼ mρ

Sum of thermal and cascade emission results in overestimation of the
M ∼ mρ region for pT . 1 GeV

In mass region (1 < M < 1.5) GeV emission from QGP accounts for
about half of the yield; reasonable pT scaling

behaviour of Teff vs. M (mass ordering up to mρ and subsequent drop)
naturally emerged, however quantitative discrepancies found

Teff underestimated for 0.4 < M < 0.9 GeV, reproduced for 1 < M < 1.4

GeV and 0.2 < M < 0.4 GeV

Thanks to: J.Steinheimer and S. Schramm (EoS), D.Rischke (hydro code),
B.Bäuchle, G.Gräf, T.Lang, M.Mitrovski, M.Nahrang, H.Petersen
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Outlook

Study of centrality dependence ⇒ seek for a model able to qualitatively
account for the onset of thermal behaviour in a “natural” way (on-going
work)

Extend the model for description of the whole IMR (1.5 < M < 3 GeV)
addition of six-pion annihilation
technicalities (e.g. extend tables for rates)

First estimates for dilepton emission at FAIR (C. Wieners, bachelor thesis)

Challenge : is there a physics scenario able to account for the large
values of Teff extracted from experimental data?

Thanks for your attention!
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Our next step

◮ Thermal rates with in-medium s.f.: dependence on
M, q(pµu

ν), T, µB

◮ Hydro cells: 200×200×200× ∼ 100
◮ Want to perform >1000 HIC events (because hybrid!)
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Our next step

◮ Thermal rates with in-medium s.f.: dependence on
M, q(pµu

ν), T, µB

◮ Hydro cells: 200×200×200× ∼ 100
◮ Want to perform >1000 HIC events (because hybrid!)

◮ Rate MC sampled+optimization of the routine in terms of velocity.
User-friendly output.

◮ MC routine already written up.
First full-run perfomed with success.

SHASTA is shining the in-medium e.m. correlator!!
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In-medium scenarios

• ’dropping’ mass scenario

Effective Lagrangian+mean field: m⋆
V

mV
=

m⋆
N

mN
=

f⋆
π

fπ
∼ 0.8 at ρ0

[Brown,Rho,PRL66 (1991) 2720]

QCD sum rules: m⋆
V

mV
= 1− α ρB

ρ0
α ∼ 0.16± 0.06

[Hatsuda,Lee, PRC46 (1992) R34]

G.Q.Li,C.M.Ko,

G.E.Brown,H.Sorge,

NPA611 (1996) 539
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