Status of the QCD phase diagram from the lattice

Owe Philipsen

- Is there a critical end point in the QCD phase diagram?
- Is it connected to a chiral phase transition?
- Imaginary chemical potential: rich phase structure, benchmark for models!

The conference location...

The conference location...

...a critical point for Rhine navigation

The QCD phase diagram established by experiment:

Nuclear liquid gas transition with critical end point

QCD phase diagram: theorist's view

QGP and colour SC at asymptotic T and densities by asymptotic freedom!

Until 2001: no finite density lattice calculations, sign problem!

Expectation based on models: NJL, NJL+Polyakov loop, linear sigma models, random matrix models, ...

The Monte Carlo method, zero density

$$T = \frac{1}{aN_t}$$
 Continuum limit: $N_t \to \infty, a \to 0$

Here: $N_t = 4 - 10$ $a \sim 0.1 - 0.3 \text{ fm}$

staggered fermions

Theory: how to calculate p.t., critical temperature

Order of transition: finite volume scaling $\chi_{max} \sim V^{\sigma}$

The order of the p.t., arbitrary quark masses $\mu = 0$

How to identify the order of the phase transition

$$B_4(\bar{\psi}\psi) \equiv \frac{\langle (\delta\bar{\psi}\psi)^4 \rangle}{\langle (\delta\bar{\psi}\psi)^2 \rangle^2} \xrightarrow{V \to \infty} \begin{cases} 1.604 & \text{3d Ising} \\ 1 & \text{first-order} \\ 3 & \text{crossover} \end{cases}$$

$$\mu = 0$$
: $B_4(m,L) = 1.604 + bL^{1/\nu}(m-m_0^c), \quad \nu = 0.63$

Hard part: order of p.t., arbitrary quark masses $\,\mu=0\,$

physical point: crossover in the continuum

Aoki et al 06

chiral critical line on $N_t = 4, a \sim 0.3 \text{ fm}$

- de Forcrand, O.P. 07
- consistent with tri-critical point at $m_{u,d} = 0, m_s^{\rm tric} \sim 2.8T$
- But: $N_f = 2$ chiral O(4) vs. 1 st still open $U_A(1)$ anomaly!

Di Giacomo et al 05, Kogut, Sinclair 07 Chandrasekharan, Mehta 07

The nature of the transition for phys. masses

...in the staggered approximation...in the continuum...is a crossover!

Aoki et al. 06

The 'sign problem' is a phase problem

$$Z = \int DU \left[\det M(\mu)\right]^f e^{-S_g[U]}$$

importance sampling requires positive weights

Dirac operator: $D (\mu)^{\dagger} = \gamma_5 D (-\mu^*) \gamma_5$

 $\Rightarrow \det(M) \text{ complex for SU(3), } \mu \neq 0$ $\Rightarrow \text{real positive for SU(2), } \mu = i\mu_i$ $\Rightarrow \text{real positive for} \quad \mu_u = -\mu_d$

N.B.: all expectation values real, imaginary parts cancel, but importance sampling config. by config. impossible!

Same problem in many condensed matter systems!

Finite density: methods to evade the sign problem

Taylor expansion:

$$\langle O \rangle(\mu) = \langle O \rangle(0) + \sum_{k=1} c_k \left(\frac{\mu}{\pi T}\right)^{2k}$$

coefficients one by one, convergence?

Imaginary $\mu = i\mu_i$: no sign problem, fit by polynomial, then analytically continue

$$\langle O \rangle(\mu_i) = \sum_{k=0}^{N} c_k \left(\frac{\mu_i}{\pi T}\right)^{2k}, \qquad \mu_i \to -i\mu$$

requires convergence for analytic continuation

All require $\mu/T < 1$!

Test of methods: comparing $T_c(\mu)$

de Forcrand, Kratochvila 05

 $N_t = 4, N_f = 4$; same actions (unimproved staggered), same mass

The calculable region of the phase diagram

need
$$\mu/T \lesssim 1$$
 $(\mu = \mu_B/3)$

Upper region: equation of state, screening masses, quark number susceptibilities etc. under control

The (pseudo-) critical temperature

$$\frac{T_c(\mu)}{T_c(0)} = 1 - \kappa(N_f, m_q) \left(\frac{\mu}{T}\right)^2 + \dots$$

• Curvature rather small • $\kappa \propto \frac{N_f}{N_c}$ Toublan 05

de Forcrand, O.P. 03 D'Elia, Lombardo 03

Phase boundary in the chiral limit

$$\frac{\chi_{m,q}}{T} = \frac{\partial^2 \langle \bar{\psi}\psi \rangle_l / T^3}{\partial (\mu_q / T)^2} = \frac{2\kappa T}{t_0 m_s} h^{-(1-\beta)/\beta\delta} \frac{df_G(z)}{dz}$$
scaling form of magnetic EoS

$$t \equiv \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa_q \left(\frac{\mu_q}{T} \right)^2 \right)$$
$$h \equiv \frac{1}{h_0} \frac{m_l}{m_s}$$
$$z = h^{1/\beta\delta}/t$$

hotQCD 11

- Curvature of crit. line from Taylor expansion
 2+1 flavours, Nt=4, 8 improved staggered
- Extrapolation to chiral limit assuming O(4),O(2) scaling of magn. EoS
- Consistent with determinations at finite mass with imag. chem. pot.

$$\frac{T_c(\mu)}{T_c(0)} = 1 - 0.059(2)(4) \left(\frac{\mu}{T}\right)^2 + O\left(\left(\frac{\mu}{T}\right)^4\right)$$

Phase boundary for physical masses

- Curvature of crit. line from Taylor expansion
 2+1 flavours, Nt=6,8,10 improved staggered
- Observables $ar{\psi}\psi_r,\chi_s$
- Continuum extrapolation:

$$\kappa^{(\bar{\psi}\psi_r)} = 0.0066(20) \quad \kappa^{(\chi_s/T^2)} = 0.0089(14)$$

$$\kappa(T; N_t) = \kappa(T_c; \text{cont}) + c_0 \cdot t + c_1 \cdot t^2 + c_2/N_t^2 + c_3 \cdot t/N_t^2$$
$$t = \frac{T - T_c}{T_c}$$

Comparison with freeze-out curve

Much harder: is there a QCD critical point?

Much harder: is there a QCD critical point?

Two strategies: **1** follow vertical line: $m = m_{phys}$, turn on μ

Much harder: is there a QCD critical point?

Two strategies:

- **1** follow vertical line: $m = m_{phys}$, turn on μ
- **2** follow critical surface: $m = m_{crit}(\mu)$

Approach Ia: CEP from reweighting

Fodor, Katz 04

 $N_t = 4, N_f = 2 + 1$ physical quark masses, unimproved staggered fermions

Lee-Yang zero:

0.5

 $2\mu/m_{\star}$

1.5

Splittorf 05, Stephanov 08

Approach Ib: CEP from Taylor expansion

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$

Nearest singularity=radius of convergence

$$\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|}, \quad \lim_{n \to \infty} \left|\frac{c_0}{c_{2n}}\right|^{\frac{1}{2n}}$$

Predictivity ?

Different definitions agree only for $n \to \infty$ not n=1,2,3,... CEP may not be nearest singularity, control of systematics?

Radius of convergence necessary condition, but can it proof the existence of a CEP?

Approach 2: follow chiral critical line ----- surface

 $c_1 > 0$

 $c_1 < 0$

$$\frac{m_c(\mu)}{m_c(0)} = 1 + \sum_{k=1} c_k \left(\frac{\mu}{\pi T}\right)^{2k}$$

- 1. Tune quark mass(es) to $m_c(0)$: 2nd order transition at $\mu = 0, T = T_c$ known universality class: 3*d* Ising
- 2. Measure derivatives $\frac{d^k m_c}{d\mu^{2k}}|_{\mu=0}$:

Turn on imaginary μ and measure $\frac{m_c(\mu)}{m_c(0)}$

de Forcrand, O.P. 08,09

Finite density: chiral critical line \longrightarrow critical surface

Curvature of the chiral critical surface

 $N_f = 3$

 $N_f = 2 + 1, m_s = m_s^{\text{phys}}$

consistent
$$8^3 \times 4$$
 and $12^3 \times 4$, $\sim 5 \times 10^6$ traj.

$$\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T}\right)^2 - 47(20) \left(\frac{\mu}{\pi T}\right)^4 - \dots$$
8th derivative of P

 $16^3 \times 4$, Grid computing, $\sim 10^6$ traj. $\frac{m_c^{u,d}(\mu)}{m_c^{u,d}(0)} = 1 - 39(8) \left(\frac{\mu}{\pi T}\right)^2 - \dots$

de Forcrand, O.P. 08,09

On coarse lattice exotic scenario: no chiral critical point at small density

Weakening of p.t. with chemical potential also for:

-Heavy quarks

-Light quarks with finite isospin density

Kogut, Sinclair 07

de Forcrand, Kim, Takaishi 05

-Electroweak phase transition with finite lepton density Gynther 03

Towards the continuum: $N_t = 6, a \sim 0.2 \text{ fm}$

$$\frac{m_{\pi}^{c}(N_{t}=4)}{m_{\pi}^{c}(N_{t}=6)} \approx 1.77 \qquad N_{f}=3 \qquad \qquad \mbox{de Forcrand, Kim, O.P. 07} \mbox{Endrodi et al 07}$$

Physical point deeper in crossover region as $a \rightarrow 0$

Cut-off effects stronger than finite density effects!

Preliminary: curvature of chiral crit. surface remains negative de Forcrand, O.P. 10

No chiral critical point at small density, other crit. points possible

Same statement with different methods

Study suitably defined width of crossover region

$$\frac{1}{W} \frac{\partial W}{\partial (\mu^2)} = - \left. \frac{1}{T_c} \frac{\partial \kappa}{\partial T} \right|_{T=T_c}$$

strengthening of transition

Endrödi et al., 11 find weakening of crossover

Chiral/deconf. and Z(3) transitions at imaginary μ

Nf=4: D'Elia, Di Renzo, Lombardo 07 Nf=2: D'Elia, Sanfilippo 09 Nf=3: de Forcrand, O.P. 10

Strategy: fix $\frac{\mu_i}{T} = \frac{\pi}{3}, \pi$, measure Im(L), order parameter at $\frac{\mu_i}{T} = \pi$

determine order of Z(3) branch/end point as function of m

Results:

$$B_4(\beta, L) = B_4(\beta_c, \infty) + C_1(\beta - \beta_c)L^{1/\nu} + C_2(\beta - \beta_c)^2L^{2/\nu} \dots$$

B4 at intersection has large finite size corrections (well known), ν more stable

 $\nu = 0.33, 0.5, 0.63$

for 1st order, tri-critical, 3d Ising scaling

Phase diagram at fixed $\frac{\mu_i}{T} = \frac{\pi}{3}, \pi$

On infinite volume, this becomes a step function, smoothness due to finite L

Critical lines at imaginary $\,\mu$

 $\mu = 0$

-Connection computable with standard Monte Carlo! -Here: heavy quarks in eff. theory

Similar chiral crit. surface: tric. line renders curvature negative!

 $m \to \infty$: QCD \to theory of Polyakov lines \to universality class of 3d 3-state Potts model (3d Ising, Z(2))

de Forcrand, Kim, Kratochvila, Takaishi

QCD, Nt=1, strong coupling series: Potts: Langelage, O.P. 09 4 9.5 3.5 9 3 8.5 Imaginary μ Real µ 2.5 с В m_c /T 8 2 7.5 1.5 7 1 $6.6+1.6((\pi/3)^2+(\mu/T)^2)^{2/5}$ 6.5 0.5 -0.5 0.5 1.5 2 2.5 -1 0 -1.5 1 -1.5 -1 -0.5 0.5 0 1 $(\mu/T)^2$ $(\mu/T)^2$

tri-critical scaling:

$$\frac{m_c}{T}(\mu^2) = \frac{m_{tric}}{T} + K\left[\left(\frac{\pi}{3}\right)^2 + \left(\frac{\mu}{T}\right)^2\right]^{2/5} \quad \text{exponent universal}$$

Conclusions

Reweighting, Taylor: indications for critical point, systematics ?

- Chiral crit. surface, deconfinement crit. surface: Transitions weaken with chemical potential
- For lattices a~0.3, 0.2 fm no chiral critical point for $\ \mu/T \lesssim 1$
- Still possible: chiral critical point at large chemical potential non-chiral critical point(s)

