- I would like to thank Colleagues in the World for Encouraging and Warm Voices, and many countries for the help.
- In West Japan, Osaka, Hiroshima, Fukuoka etc., as far as I know all Universities have no damage.
- In Tokyo, people are fine, but shortage of Electricity and Water
- At KEK, the network was down(now restarted), and workshops this week are cancelled, but people are fine.
- At RIKEN, all are fine.
- At J-PARC, there are damages due to the earthquake, but the Tunami was blocked, and all people are fine.
- At Tohoku, people of Nuclear Physics group, and ELPH lab are OK.
- Tokyo Univ. Computer center decided to stop their large cluster system because of the electric cut.
- We are worrying about the Nuclear reactors in Fukushima.

Finite Density QCD Simulations with Wilson Fermions

Keitaro NAGATA (Univ.Tokyo) Atsushi NAKAMURA (Hiroshima Univ.)

Quarks, Gluons, and Hadronic Matter under Extreme Conditions 15. Mar. 2011 St. Goar, Germany I. Introduction

- 2. Reduction Formula
- 3. Imainary Chemical Potential

Study QCD at finite density ! Status Report It means little output for real physics ?

Lattice QCD with Wilson Fermions

QCD at Finite T and ρ $Z = \operatorname{Tr} e^{-\beta(\hat{H} - \mu \hat{N})} \quad \beta \equiv 1/kT$ $\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi$ $-\frac{1}{4} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}$ $Z = \int \prod d\psi(\bar{x}) d\psi(x) dA_{\mu}(x)$ $\times e^{-\int_{0}^{\beta} (\mathcal{L}_{\text{Gluon}} + \bar{\psi}_{4} \Delta \psi)}$

Quark Matrix $\Delta = i\gamma^{\mu}D_{\mu} - m - \mu\gamma_{0}$ Space-Time Lattice

 $Z = \int \prod dA_{\mu}(x) \det \Delta e^{-S_{\text{Gluon}}}$

Quark Matrix $\Delta = i\gamma^{\mu}D_{\mu} - m - \mu\gamma_{0}$ Space-Time Lattice

() ()

Lattice Spacing

 $\mathbf{\Omega}$

Lattice Spacing

5

Lattice Spacing

0

$\frac{\pi}{a}$ Momentum Cut-Off *a* of this field theory

5

Sign Problem in Finite Density QCD

Finite Density QCD

$$Z = \operatorname{Tr} e^{-\beta(H-\mu N)} = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \, e^{-\beta S_G - \bar{\psi}\Delta\psi}$$
$$= \int \mathcal{D}U \prod_f \det \Delta(m_f) \, e^{-\beta S_G}$$
$$\Delta(\mu) = D_\nu \gamma_\nu + m + \mu \gamma_0$$
$$\Delta(\mu)^{\dagger} = -D_\nu \gamma_\nu + m + \mu^* \gamma_0 = \gamma_5 \Delta(-\mu^*) \gamma_5$$
$$(\det \Delta(\mu))^* = \det \Delta(\mu)^{\dagger} = \det \Delta_{\ast}(-\mu^*)$$

$$(\det \Delta(\mu))^* = \det \Delta(\mu)^{\dagger} = \det \Delta(-\mu^*)$$
For $\mu = 0$
 $(\det \Delta(0))^* = \det \Delta(0)$
 $\det \Delta \square Real$
For $\mu \neq 0$ (in general)
 $\det \Delta \square Complex$
 $Z = \int \mathcal{D}U \prod_{f} \det \Delta(m_f, \mu_f) e^{-\beta S_G}$
Complex Sign Problem

Physical Origin of Sign Problem Wilson Fermions $\Delta = I - \kappa Q$ KS(Staggered) Fermions $\Delta = m - Q'_{1}$ = $m(I - \frac{1}{m}Q)$ $Q = \sum \left(Q_i^+ + Q_i^- \right) + \left(e^{+\mu} Q_4^+ + e^{-\mu} Q_4^- \right)$ i=1 $Q^+_{\mu} = * * U_{\mu}(x)\delta_{x',x+\hat{\mu}}$ $Q_{\mu}^{-}=\ast\ast U_{\mu}^{\dagger}(x')_{\mathrm{\tiny 10}}\delta_{x',x-\hat{\mu}}$

$\det \Delta = e^{\operatorname{Tr} \log \Delta} = e^{\operatorname{Tr} \log (I - \kappa Q)}$ $= e^{-\sum \frac{1}{n}\kappa^n \operatorname{Tr} Q^n}$

Only closed loops survive.

Lowest μ -dependent terms

 $\kappa^{N_t} e^{-\mu N_t} \operatorname{Tr}(Q^- \cdots Q^-)$

TrL : Polyakov Loop

 $= * * \kappa^{N_t} e^{-\mu/T} \mathrm{Tr} L^{\dagger}$

Add both terms

No-Sign-Problem Cases

1. Imaginary Chemical Potential $(\det \Delta(\mu))^* = \det \Delta(-\mu^*)$ $\mu = i\mu_I \quad (\det \Delta(\mu_I))^* = \det \Delta(\mu_I)$ 2. Color SU(2) $U_{\mu}^* = \sigma_2 U_{\mu} \sigma_2$ $\det \Delta(U, \gamma_{\mu})^* = \det \Delta(U^*, \gamma_{\mu}^*) = \det \sigma_2 \Delta(U, \gamma_{\mu}^*) \sigma_2$ $= \det \Delta(U, \gamma_{\mu})$ 3. Iso-Vector Type (finite iso-spin)

$$\mu_d = -\mu_u$$

 $\det \Delta(\mu_u) \det \Delta(\mu_d) = \det \Delta(\mu_u) \det \Delta(-\mu_u)$
 $= \det \Delta(\mu_u) \det \Delta(\mu_u)^* = |\det \Delta(\mu_u)|^2$ (Phase Quench)

Studies of Finite Density QCD (SU(3)) with Wilson Fermions

- H.-S. Chen, X.-Q. Luo
 - -Phys.Rev. D72 (2005) 0345041
 - -hep-lat/0411023
- A.Li, X. Meng, A. Alexandru, K-F. Liu

 –PoS LAT2008:032 and 178 (arXiv:0810.2349, arXiv: 0811.2112)
- C. Gattringer and L. Liptak –arXiv:0906.1088
- J. Danzer, C. Gattringer, L. Liptak and M. Marinkovic –arXiv:0907.3084 and LAT2009: 185 (2009) (arXiv: 0910.3541)

In the finite density lattice QCD,

 we should often handle the fermion determinant, directly,

–e.g.

Multi-parameter Re-weighting by Fodor-Katz

$$\begin{split} \langle O \rangle &= \frac{1}{Z} \int \mathcal{D}UO \, \det \Delta(\mu) \, e^{-\beta S_G} \\ \frac{1}{Z} \int \mathcal{D}UO \, \det \Delta(0) \, e^{-\beta_0 S_G} \, \underbrace{\frac{\det \Delta(\mu)}{\det \Delta(0)} \, e^{(\beta_0 - \beta) S_G}}_{\text{Measure}} \end{split}$$

For KS Fermions, a Trick behind

- Gibbs Formula(*)
 - P.E.Gibbs, Phys.Lett. B172 (1986) 53-61

$$\det \Delta = z^{-N} \begin{vmatrix} -B(-V) - z & 1 \\ -V^2 & -z \end{vmatrix}$$
$$= \begin{vmatrix} \begin{pmatrix} BV & 1 \\ -V^2 & 0 \end{pmatrix} - zI \end{vmatrix}$$
$$= \det (P - zI)$$
$$= \prod (\lambda_i - z) \qquad P$$

- P is $(2 \times N_c \times N_x \times N_y \times N_z)^2$ (Matrix Reduction)

*) A similar formula was developped by Neuberger (1997) for a chiral fermion and applied by Kikukawa(1998).

A Reduction Formula for Wilson Fermions

☆Keitaro Nagata and Atsushi Nakamura Wilson Fermion Determinant in Lattice QCD Phys. Rev. D82,094027 (arXiv:1009.2149)
☆A. Alexandru and U. Wenger arXiv:1009.2197
☆Budapest-Wuppertal group also obtained a similar result. The same matrix transformation like KS case cannot be employed, due to the fact that

 $r\pm\gamma_4$ have no inverse, if the Wilson term r=1. Gibbs started to multiply V to the fermion matrix Δ . Instead, we multiply $P=(c_ar_-+c_br_+Vz^{-1})$

Here,

19

 c_a and c_b are arbitary non-zero numbers.

$$\det P = (c_a c_b z^{-1})^{N/2}$$

if we take the following trick, Borici (2004) $r_{+}r_{-} = \frac{r^{2} - 1}{4} = \epsilon \rightarrow 0$ where $r_{\pm} \equiv \frac{r \pm \gamma_{4}}{2}$

After very long calculation (See Nagata-Nakamura arXiv:1009.2149), we get

$$\det \Delta(\mu) = (c_a c_b)^{-N/2} z^{-N/2}$$
$$\times \left(\prod_{i=1}^{N_t} \det(\alpha_i)\right) \det \left(z^{N_t} + Q\right)$$

Eigen Value Distributions

24

 $\det(\xi + Q) = \prod (\xi + \lambda_k) = \sum C_n \xi^n$

 $\beta = 1.85$ 4^4

 $\log |C_n|$

 $\log|C_n|\left(e^{\mu/T}\right)^n$

$$\begin{aligned} & \operatorname{Reweighting Factor} \\ & \langle O \rangle = \frac{1}{Z} \int \mathcal{D}UO \, \det \Delta(\mu) \, e^{-\beta S_G} \\ & = \frac{1}{Z} \int DUO \, \det^2\!\!\Delta(0) e^{-\beta_0 S_G} \mathcal{R}.\mathcal{F}. = \frac{\langle 0 \times R.F. \rangle_0}{\langle R.F. \rangle_0} \\ & \operatorname{Measure Reweighting Factor} \end{aligned}$$

$$\begin{aligned} & \operatorname{Here} \\ & \mathcal{R}.\mathcal{F}. \ = \left(\frac{\det \Delta(\mu)}{\det \Delta(0)}\right)^2 \!\!\times \! e^{(\beta_0 - \beta) S_G} \equiv e^{2\theta} e^F e^G \end{aligned}$$

Reweighting Factor should be "LARGE".

"LARGE" ? It is a function of U.

Large Contribution ?

Small Fluctuation ?

S.Ejiri, Phys.Rev. D69 (2004) 094506 hep-lat/0401012

28

$\langle ((F+G) - \langle F+G \rangle)^2 \rangle \quad 8^3 \times 4$ $\beta 0 = 1.80$

Preliminary

 $\beta 0 = 1.90$

 $\beta 0 = 1.85$

$$\langle \cos 2\theta \rangle = \langle \cos 2\theta \ R.F \rangle_0 / \langle R.F \rangle_0$$

Imaginary Chemical Potential

Expected Phase diagram in µl regions a la Reberge-Weiss T $\frac{\mu_I}{T} = \frac{\pi}{3}$ $T_{RW} \quad L \neq 0$ $L \neq 0$ Temperature $\phi = 0$ $2\pi/3$ T_{pc} Hadron $L \sim 0$

Polyakov loop $P = L_P \exp(i\phi_P)$

If μ is pure imaginary there is no sign problem.

Imaginary to real chemical potential

T=0.93Tc beta = 1.80

mu = 0.235

0.6

2011年3月15日火曜日

-0.4

-0.2

0.2

0

0.4

0.2

0

-0.2

-0.4

Polyakov loop scatter plot

0.2 0.4 0.6

-0.4 -0.2 0 0.2 0.4 0.6

-0.4 -0.2

0

-0.4

 $\beta = 1.90 - 1.95$

2-peak behaviour around β =1.92

-0.4 -0.2 0 0.2 0.4 0.6

-0.4 -0.2 0 0.2 0.4 0.6

 $\beta = 1.94 - 1.99$

spontanous breaking in high T

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0.2

0

0.4

0.6

-0.2

-0.4

Polyakov Loop (L: absolute, r: phase) µ-dependence

deconfinement transition

- We determine the shape of the pseudo-critica
- assuming the phase of PL is also an order parameter of the deconfinement transition in μ l region.

Susceptibility μ–dependence

Susceptibility T-dependence

- **Deconfinement** and **RW transition** lines end at the same point within errors.
- The RW end-point shows the 2nd order behavior.

Pade
$$\beta_{pc} = c_0 \frac{1 + c_1 \mu_I^2}{1 + c_2 \mu_I^2}$$

pi and rho propagators

pi and rho propagators (2)

To Do List (1)

- We (Nagata and I) must learn how to find good Reweighting parameters (often only a few out of 100 configurations contribute), and how to be sure the overlap is large enough.
- We must check the fluctuation of Canonical Ensamble (obtained by the Fugacity expansion) coefficients is under controle.
- Trials to increase Signal/Noise ration,
- \rightleftharpoons e.g., Fugacity expansion, then set $C_n = 0$ for n=3m+1, 3m+2.

To Do List (2) (after List (1))

- Solution $12^3 \times 6$
- Smaller quark mass
- To Investigate QCD Phase using both real and imaginary chemical potential.
- Canonical Ensamble approach