Gluons, color superconductors, and gauge symmetry

Axel Maas

15th of March 2011
Quarks, Gluons, and Hadronic Matter under Extreme Conditions
St. Goar
Germany
Color superconductors

\[T \approx 170 \text{ MeV} \]

- hadron gas, \(\chi \)-symmetric
- quark-gluon plasma
- color superconductor
- deconfined, \(\chi \)-symmetric

\[\mu, \mu_0 \]

few times nuclear matter density

[Refs: Karsch, Laermann, 2003]
Color superconductors

![Diagram showing phase transitions in color superconductors](image)

- Introductions
- Framework
- CSC
- Higgs
- Results
- Consequences
- Summary

[Karsch, Laermann, 2003]
Color superconductors

- Color superconductors are expected to form at large densities
 - Neutron star density?
 - Various types
 - 2SC, 3SC, CFL,...
 - Here generic color-neutral

\[T \approx 170 \text{ MeV} \]

- Quark-gluon plasma
- Hadron gas
 - Confined, \(\chi \)-symmetric
 - Deconfined, \(\chi \)-symmetric

- Color superconductor

\[\mu \]

\[\text{Few times nuclear matter density} \]

[Karsch, Laermann, 2003]
Color superconductors

- Color superconductors are expected to form at large densities
 - Neutron star density?
 - Various types
 - 2SC, 3SC, CFL,...
 - Here generic color-neutral
- Very hard to tackle
 - Model calculations
 - Perturbation theory and HDL
 - Functional calculations

\[[\text{Karsch, Laermann, 2003}] \]
Color superconductors

- Color superconductors are expected to form at large densities
 - Neutron star density?
 - Various types
 - 2SC, 3SC, CFL,...
 - Here generic color-neutral

- Very hard to tackle
 - Model calculations
 - Perturbation theory and HDL
 - Functional calculations
Calculational scheme
Calcutational scheme
Calculational scheme

Quantization
(fixed gauge: Landau,...)
Calculational scheme

Quantization
(fixed gauge: Landau,...)

Lattice
Functional methods
Calcutational scheme

Quantization (fixed gauge: Landau,...)

Lattice Functional methods

Gluon propagator for SU(3)
Calculational scheme

Quantization (fixed gauge: Landau,...)

Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas

Lattice Functional methods

Running coupling in four dimensions

[Maas, unpublished]
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice
Functional methods

[Cucchieri, Maas, Mendes PRD 2008]
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice

Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice Functional methods

[Fischer, Müller, Maas EPJC 2010]
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice Functional methods

Mesons (, Baryons)

[Fischer, Müller, Maas EPJC 2010]
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice Functional methods

Mesons (, Baryons) Phase diagram

Running coupling in four dimensions

[Electric screening mass SU(2)]

Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas

[Fischer, Müller, Maas EPJC 2010]
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice Functional methods

Mesons (, Baryons)

Phase diagram: Yang-Mills, Quenched QCD, QCD at low and high density (, Critical Phenomena)
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice

Functional methods

Mesons (, Baryons)

Phase diagram: Yang-Mills, Quenched QCD, QCD at low and high density (, Critical Phenomena)

See talks of: Alkofer, Braun, Eichhorn, Fister, Gies, Lücke, Mitrjushkin, Pawlowski, Reinhardt, Watson

[Fischer, Müller, Maas EPJC 2010]
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice Functional methods

Mesons (, Baryons)

Phase diagram: Yang-Mills, Quenched QCD, QCD at low and high density (, Critical Phenomena)

See talks of: Alkofer, Braun, Eichhorn, Fister, Gies, Lücker, Mitrjushkin, Pawlowski, Reinhardt, Watson

[Fischer, Müller, Maas EPJC 2010]
Calculational scheme

Quantization (fixed gauge: Landau,...)

Lattice Functional methods

Mesons (, Baryons)

Phase diagram: Yang-Mills, Quenched QCD, QCD at low and high density (, Critical Phenomena)

See talks of: Alkofer, Braun, Eichhorn, Fister, Gies, Lücker, Mitrjushkin, Pawlowski, Reinhardt, Watson
Properties of color superconductors

• Non-vanishing expectation value of colored condensates
Properties of color superconductors

- Non-vanishing expectation value of colored condensates
- Gluons become effectively screened by a Meissner-like effect
Properties of color superconductors

- Non-vanishing expectation value of colored condensates
- **Gluons become effectively screened by a Meissner-like effect**
- Quite analogous to QED superconductors
 - In QED charge is gauge-invariant
Properties of color superconductors

- Non-vanishing expectation value of colored condensates
- **Gluons become effectively screened by a Meissner-like effect**
- Quite analogous to QED superconductors
 - In QED charge is gauge-invariant
- But in QCD it is not
Properties of color superconductors

- Non-vanishing expectation value of colored condensates
- **Gluons become effectively screened by a Meissner-like effect**
- Quite analogous to QED superconductors
 - In QED charge is gauge-invariant
- **But in QCD it is not**
 - Color condensates are not gauge-invariant [Rajagopal, Wilzcek 2000]
Properties of color superconductors

- Non-vanishing expectation value of colored condensates
- **Gluons become effectively screened by a Meissner-like effect**
- Quite analogous to QED superconductors
 - In QED charge is gauge-invariant
- **But in QCD it is not**
 - Color condensates are not gauge-invariant [Rajagopal, Wilzcek 2000]
- The gauge symmetry is said to be spontaneously broken...but what does this mean?
Properties of color superconductors

- Non-vanishing expectation value of colored condensates
- **Gluons become effectively screened by a Meissner-like effect**
- Quite analogous to QED superconductors
 - In QED charge is gauge-invariant
- But in QCD it is not
 - Color condensates are not gauge-invariant [Rajagopal, Wilzcek 2000]
- The gauge symmetry is said to be spontaneously broken...but what does this mean?
 - Only possible classically, forbidden in a quantum theory by Elitzur's theorem
Properties of color superconductors

• Non-vanishing expectation value of colored condensates

• **Gluons become effectively screened by a Meissner-like effect**

• Quite analogous to QED superconductors
 • In QED charge is gauge-invariant

• But in QCD it is not
 • Color condensates are not gauge-invariant [Rajagopal, Wilzcek 2000]

• The gauge symmetry is said to be spontaneously broken...but what does this mean?
 • Only possible classically, forbidden in a quantum theory by Elitzur's theorem
 • What happens in the full quantum gauge theory?
A role model: the Higgs effect
A role model: the Higgs effect

- Classically: Higgs field condenses
 - Plays the same role as the color condensates in color superconductors
A role model: the Higgs effect

• Classically: Higgs field condenses
 • Plays the same role as the color condensates in color superconductors

• Standard treatment in (electro)weak theory
 • Mean-field treatment of the Higgs condensate
 • Yields masses for the gauge bosons
 • Perturbative expansion around the mean field
 • Very successful
A role model: the Higgs effect

• Classically: Higgs field condenses
 • Plays the same role as the color condensates in color superconductors

• Standard treatment in (electro)weak theory
 • Mean-field treatment of the Higgs condensate
 • Yields masses for the gauge bosons
 • Perturbative expansion around the mean field
 • Very successful

• Appears to break gauge symmetry
A role model: the Higgs effect

• Classically: Higgs field condenses
 • Plays the same role as the color condensates in color superconductors

• Standard treatment in (electro)weak theory
 • Mean-field treatment of the Higgs condensate
 • Yields masses for the gauge bosons
 • Perturbative expansion around the mean field
 • Very successful

• Appears to break gauge symmetry, but this is only superficial
A role model: the Higgs effect

- Classically: Higgs field condenses
 - Plays the same role as the color condensates in color superconductors

- Standard treatment in (electro)weak theory
 - Mean-field treatment of the Higgs condensate
 - Yields masses for the gauge bosons
 - Perturbative expansion around the mean field

- Appears to break gauge symmetry, but this is only superficial -- there is a trick
The gauge-fixing trick

- (Perturbative continuum) quantization can be done using gauge-fixing
The gauge-fixing trick

• (Perturbative continuum) quantization can be done using gauge-fixing

• Two standard choices
The gauge-fixing trick

- (Perturbative continuum) quantization can be done using gauge-fixing
- Two standard choices
 - (Non-renormalizable) unitary gauge
 - Rewrite the scalar field as $\phi = \rho \exp(i \tau^a \alpha^a)$
 - Make the choice $\partial^\mu A^a_\mu = \partial^2 \alpha^a$
The gauge-fixing trick

- (Perturbative continuum) quantization can be done using gauge-fixing

- Two standard choices
 - (Non-renormalizable) unitary gauge
 - Rewrite the scalar field as $\phi = \rho \exp(i \tau^a \alpha^a)\phantom{\text{a}}$
 - Make the choice $\partial^\mu A_\mu^a = \partial^2 \alpha^a$
 - (Renormalizable) 't Hooft gauge
 - Rewrite the scalar field as $\phi = \begin{pmatrix} \varphi^1 + i \varphi^2 \\ \eta + i \varphi^3 \end{pmatrix}$
 - Make the choice $\partial^\mu A_\mu^a = \begin{pmatrix} \eta \end{pmatrix} \varphi^a$
What is the trick?

- Both gauge conditions include the matter field – in a manifestly asymmetric way
- 't Hooft gauge only in the 'broken' phase
What is the trick?

• Both gauge conditions include the matter field – in a manifestly asymmetric way
 • 't Hooft gauge only in the 'broken' phase

• Global part of the gauge symmetry is explicitly broken
 • Preferred direction in color space
 • Direction of the Higgs field with non-vanishing expectation value
What is the trick?

• Both gauge conditions include the matter field – in a manifestly asymmetric way
 • 't Hooft gauge only in the 'broken' phase

• Global part of the gauge symmetry is explicitly broken
 • Preferred direction in color space
 • Direction of the Higgs field with non-vanishing expectation value

• What happens for a different, manifestly symmetric choice?
Symmetric gauge choice

• Manifest symmetric choice
Symmetric gauge choice

- Manifest symmetric choice: Landau gauge $\partial^\mu A_{\mu}^a = 0$
Symmetric gauge choice

- Manifest symmetric choice: Landau gauge $\partial^\mu A^a_\mu = 0$
 - No explicit breaking of the global symmetry if not aligned – no preferred direction
Symmetric gauge choice

- Manifest symmetric choice: **Landau gauge** $\partial^\mu A^a_\mu = 0$
 - No explicit breaking of the global symmetry if not aligned – no preferred direction
 - Elitzurs theorem demands no spontaneous breaking
Symmetric gauge choice

• Manifest symmetric choice: Landau gauge $\partial^\mu A_\mu^a = 0$

 • No explicit breaking of the global symmetry if not aligned – no preferred direction

 • Elitzurs theorem demands no spontaneous breaking

 • Higgs field has always zero expectation value
Symmetric gauge choice

• Manifest symmetric choice: Landau gauge $\partial^\mu A^a_\mu = 0$

 • No explicit breaking of the global symmetry if not aligned – no preferred direction

 • Elitzurs theorem demands no spontaneous breaking

 • Higgs field has always zero expectation value

 • But always non-zero expectation value squared
Symmetric gauge choice

- Manifest symmetric choice: Landau gauge $\partial^\mu A^a_\mu = 0$
 - No explicit breaking of the global symmetry – no preferred direction
 - Elitzurs theorem demands no spontaneous breaking
 - Higgs field has always zero expectation value
 - But always non-zero expectation value squared
- Confirmed in lattice calculations
 [Langguth et al. NPB 1986, Jersak et al. PRD 1985]
Symmetric gauge choice

- Manifest symmetric choice: Landau gauge $\partial^\mu A^a_\mu = 0$
 - No explicit breaking of the global symmetry if not aligned – no preferred direction
 - Elitzurs theorem demands no spontaneous breaking
 - Higgs field has always zero expectation value
 - But always non-zero expectation value squared
 - Confirmed in lattice calculations [Langguth et al. NPB 1986, Jersak et al. PRD 1985]
- Mechanism: No direction of Higgs field preferred – global rotations 'wash out' expectation value
Consequences

• How is the Higgs effect manifest?
Consequences

• How is the Higgs effect manifest?

• What are the consequences for the correlation functions?
Consequences

- How is the Higgs effect manifest?
- What are the consequences for the correlation functions?
 - Technical: How can they be accessed?
Consequences

• How is the Higgs effect manifest?

• What are the consequences for the correlation functions?
 • Technical: How can they be accessed?
 • Physical: How do both phases differ?
Consequences

- How is the Higgs effect manifest?
- What are the consequences for the correlation functions?
 - Technical: How can they be accessed?
 - Physical: How do both phases differ?
- Caution with the analogy
 - Quantum phase diagram of the Higgs case is non-trivial
 - Confinement and Higgs not completely separated
- Translation to color superconductors?

[Intricated diagram with labels: Higgs phase, Confinement, ~gauge coupling, Higgs mass]
Basic quantities

- Basic quantities in the framework: propagators
Basic quantities

• Basic quantities in the framework: propagators
 • Gluon, Higgs (, ghost); yield running gauge coupling
Basic quantities

- Basic quantities in the framework: propagators
 - Gluon, Higgs (, ghost); yield running gauge coupling
- Gluon propagator

\[D^{ab}_{\mu\nu}(x-y) = <A^a_\mu(x)A^b_\nu(y)> \]

\[D_{\mu\nu}(p) = (\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2}) \frac{Z(p)}{p^2} \]

- Longitudinal part exactly zero
- All directions equivalent (no QED)
Basic quantities

- Basic quantities in the framework: propagators
 - Gluon, Higgs (, ghost); yield running gauge coupling
 - **Gluon propagator**
 \[D_{\mu\nu}^{ab}(x-y) = \langle A^a_\mu(x) A^b_\nu(y) \rangle \]
 \[D_{\mu\nu}(p) = \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) \frac{Z(p)}{p^2} \]
 - Longitudinal part exactly zero
 - All directions equivalent (no QED)
 - **Higgs propagator**
 \[D_{S}^{ij}(x-y) = \langle \phi^+_i(x) \phi_j(y) \rangle \]
 - Includes would-be Goldstones
Gluons

4d, Higgs, $24^4 \beta=2.3$, $\kappa=0.32$, $\lambda=1.0$

Introduction – Framework – CSC – Higgs – Results – Consequences – Summary

Gluon propagator

$D(p) \text{[GeV}^2\]}

$\frac{1}{p^2 + (1 \text{ GeV})^2}$

Higgs phase
Gluons

Gluon propagator

- Screening mass – full quantum (Meissner) effect
- Pole mass yet unclear

4d, Higgs, 24^4, beta=2.3, kappa=0.32, lambda=1.0
Gluons

- Screening mass – full quantum (Meissner) effect
- Pole mass yet unclear
- Very similar to confinement
Gluons

- Screening mass – full quantum (Meissner) effect
 - Pole mass yet unclear
- Very similar to confinement – and quenched

4d, unquenched: 24^4 beta=2.0, kappa=0.25, lambda=0.5
4d, Higgs, 24^4 beta=2.3, kappa=0.32, lambda=1.0
4d, quenched: 24^4 beta=2.2

[Maas EPJC 2011]
Gluons

- Screening mass – full quantum (Meissner) effect
 - Pole mass yet unclear
- Very similar to confinement – and quenched
 - Changes in the gauge-fixing (ghost) sector
Running coupling

\[\frac{\alpha(p^2)}{2\alpha(\mu^2)} \]

- Screening leads to suppression of interactions at small momenta

4d, Higgs, 24^4 beta=2.3, kappa=0.32, lambda=1.0

[Maas EPJC 2011]
Running coupling

- Screening leads to suppression of interactions at small momenta
- No qualitative difference seen
Scalar

Scalar propagator

$D_s(p) [1/\text{GeV}^2]$

$p [\text{GeV}]$

$4d, \text{Higgs, } 24^4 \beta=2.3, \kappa=0.32, \lambda=1.0$

Higgs phase

$1/(p^2+(1.5^2))$
Scalar

Scalar propagator

- Close to tree-level with positive mass squared
- Dynamical mass generation

4d, Higgs, 24^4 beta=2.3, kappa=0.32, lambda=1.0

[Maas EPJC 2011]
Scalar

- Close to tree-level with positive mass squared
- Dynamical mass generation
- Little difference between the 'phases'

4d, unquenched: 24^4 beta=2.0, kappa=0.25, lambda=0.5
4d, Higgs, 24^4 beta=2.3, kappa=0.32, lambda=1.0
4d, quenched: 24^4 beta=2.2

[Maas EPJC 2011]
Summary from the Higgs

- **Higgs effect is manifestly a quantum effect**
 - Can be captured in some gauges using a mean-field+perturbation theory ansatz
 - In other gauges a full dynamical quantum effect
 - Mean field zero
 - The choice is arbitrary, but something non-perturbative is always involved!
Summary from the Higgs

- Higgs effect is manifestly a quantum effect
 - Can be captured in some gauges using a mean-field+perturbation theory ansatz
 - In other gauges a full dynamical quantum effect
 - Mean field zero
 - The choice is arbitrary, but something non-perturbative is always involved!
- Physical consequences similar
 - Screened gauge boson
 - Higgs acquires positive mass squared
Summary from the Higgs

- Higgs effect is manifestly a quantum effect
 - Can be captured in some gauges using a mean-field+perturbation theory ansatz
 - In other gauges a full dynamical quantum effect
 - Mean field zero
 - The choice is arbitrary, but something non-perturbative is always involved!
- Physical consequences similar
 - Screened gauge boson
 - Higgs acquires positive mass squared
- What is the consequence for color superconductors?
Color superconductors

- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
Color superconductors

- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges

 - What could corresponding gauge choices in QCD be?
Color superconductors

- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
 - What could corresponding gauge choices in QCD be?
 - No natural generalization of the 't Hooft gauge
 - Fermions have to high mass dimension and require a bilinear for a condensate
Color superconductors

- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
 - What could corresponding gauge choices in QCD be?
 - No natural generalization of the 't Hooft gauge
 - Fermions have to high mass dimension and require a bilinear for a condensate
 - Explicit additional global conditions
Color superconductors

- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges

 - What could corresponding gauge choices in QCD be?
 - No natural generalization of the 't Hooft gauge
 - Fermions have to high mass dimension and require a bilinear for a condensate
 - Explicit additional global conditions
 - Maximal Abelian gauges select a particular color direction (see poster of Markus Huber)
Color superconductors

• Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges

 • What could corresponding gauge choices in QCD be?
 • No natural generalization of the 't Hooft gauge
 • Fermions have to high mass dimension and require a bilinear for a condensate
 • Explicit additional global conditions
 • Maximal Abelian gauges select a particular color direction (see poster of Markus Huber)
 • But independent of the matter fields
Color superconductors

- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
 - What could corresponding gauge choices in QCD be?
 - No natural generalization of the 't Hooft gauge
 - Fermions have to high mass dimension and require a bilinear for a condensate
 - Explicit additional global conditions
 - Maximal Abelian gauges select a particular color direction (see poster of Markus Huber)
 - But independent of the matter fields
 - Not necessary: Physics independent of the gauge choice
Color superconductors

- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
 - What could corresponding gauge choices in QCD be?
 - No natural generalization of the 't Hooft gauge
 - Fermions have to high mass dimension and require a bilinear for a condensate
 - Explicit additional global conditions
 - Maximal Abelian gauges select a particular color direction (see poster of Markus Huber)
 - But independent of the matter fields
 - Not necessary: Physics independent of the gauge choice
 - Calculations can be performed using Landau gauge without explicit condensates
What are the possible consequences?

- In the Higgs system the transition between different phases may be gauge-dependent [Caudy, Greensite PRD 2008]
What are the possible consequences?

• In the Higgs system the transition between different phases may be gauge-dependent [Caudy, Greensite PRD 2008]

• How is the phase structure in QCD at finite density made gauge-invariant?
What are the possible consequences?

• In the Higgs system the transition between different phases may be gauge-dependent [Caudy, Greensite PRD 2008]
 - How is the phase structure in QCD at finite density made gauge-invariant?
 - How proceeds gluon screening?
What are the possible consequences?

- In the Higgs system the transition between different phases may be gauge-dependent [Caudy, Greensite PRD 2008]
 - How is the phase structure in QCD at finite density made gauge-invariant?
 - How proceeds gluon screening?
 - What can be learned further from a comparison to the Higgs system – and where does the analogy ends?
Summary

- Gauge symmetry requires a careful treatment of color condensates
 - Color condensates are in general gauge-dependent
 - Elitzur's theorem implies constraints
Summary

- **Gauge symmetry requires a careful treatment of color condensates**
 - Color condensates are in general gauge-dependent
 - Elitzur's theorem implies constraints
- **Higgs system can be used as an analogy**
 - Higgs effect without a condensate as a quantum phenomena
 - Pseudo-Meissner effect
Summary

- Gauge symmetry requires a careful treatment of color condensates
 - Color condensates are in general gauge-dependent
 - Elitzur's theorem implies constraints
- Higgs system can be used as an analogy
 - Higgs effect without a condensate as a quantum phenomena
 - Pseudo-Meissner effect
- Provides a possible route how to treat color superconductors in a correlation-function-based framework [Nickel et al. 2006-2008, Skullerud 2008-2010]
Summary

- Gauge symmetry requires a careful treatment of color condensates
 - Color condensates are in general gauge-dependent
 - Elitzur's theorem implies constraints
- Higgs system can be used as an analogy
 - Higgs effect without a condensate as a quantum phenomena
 - Pseudo-Meissner effect
- Provides a possible route how to treat color superconductors in a correlation-function-based framework [Nickel et al. 2006-2008, Skullerud 2008-2010]
 - Even in Landau gauge