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CSC

Properties of color superconductors

Non-vanishing expectation value of colored condensates

Gluons become effectively screened by a Meissner-like
effect

Quite analogous to QED superconductors
* In QED charge is gauge-invariant

But in QCD it is not

* Color condensates are not gauge-invariant

The gauge symmetry is said to be spontaneously
broken...but what does this mean?

* Only possible classically, forbidden in a quantum theory
by Elitzur's theorem

 What happens in the full guantum gauge theory?
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* Mean-field treatment of the Higgs condensate
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* Perturbative expansion around the mean field

* Very successful

* Appears to break gauge symmetry, but th|s |s
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Higgs

The gauge-fixing trick

* (Perturbative continuum) quantization can be
done using gauge-fixing

 Two standard choices
* (Non-renormalizable) unitary gauge
 Rewrite the scalar field as ¢=pexp(i7°x")
* Make the choice 6" 4/=0"«"
* (Renormalizable) 't Hooft gauge

* Rewrite the scalar field as ¢=
» Make the choice 8" 4°=n ¢
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Higgs

What is the trick?

* Both gauge conditions include the matter
field — in @ manifestly asymmetric way

* 't Hooft gauge only in the 'broken' phase

* Global part of the gauge symmetry is
explicitly broken

* Preferred direction in color space

* Direction of the Higgs field with non-vanishing
expectation value

* What happens for a different, manifestly
symmetric choice?
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Higgs

Symmetric gauge choice

» Manifest symmetric choice: Landau gauge 0" 4 =0

* No explicit breaking of the global symmetry if not
aligned - no preferred direction

* Elitzurs theorem demands no spontaneous
breaking

* Higgs field has always zero expectation value
 But always non-zero expectation value squared
 Confirmed in lattice calculations

* Mechanism: No direction of Higgs field preferred -
global rotations 'wash out' expectation value -
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Consequences

* How is the Higgs effect manifest?

 What are the consequences for the
correlation functions?

 Technical: How can they be accessed?

* Physical: How do both phases differ?

Higgs phase _®

4

. . ; &3

* Caution with the analogy ; -

* Quantum phase diagram of the . <
Higgs case is non-trivial - gauge couping

* Confinement and Higgs not completely separated

* Translation to color superconductors? e Fo)
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Basic quantities

* Basic quantities in the framework: propagators
* Gluon, Higgs (, ghost); yield running gauge coupling
* Gluon propagator
ab . a b
D (x—y)= <4 (x)4,(y)>

[TRY
p.p, Z(p)
D, (p)=(6,,——5)—3

P P
* Longitudinal part exactly zero

* All directions equivalent (no QED)
* Higgs propagator
Di(x—y)= <¢; (x)p;(y)>
* Includes would-be Goldstones
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4d, quenched: 24* beta=2.2

Gauge boson propagator
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* Screening mass - full qguantum (Meissner) effect
* Pole mass yet unclear
* Very similar to confinement - and quenched

 Changes in the gauge-fixing (ghost) sector
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* No qualitative difference seen
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Sca Ia r 4d, Higgs, 24* beta=2.3, kappa=0.32, lambda=1.0

4d, quenched: 24* beta=2.2

Scalar propagator
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* Close to tree-level with positive mass squared
* Dynamical mass generation
_* Little difference between the 'phases'’
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Summary from the Higgs

* Higgs effect is manifestly a quantum effect

* Can be captured in some gauges using a mean-
field+perturbation theory ansatz

* In other gauges a full dynamical quantum effect

e Mean field zero

* The choice is arbitrary, but something non-
perturbative is always involved!

* Physical consequences similar
* Screened gauge boson
* Higgs acquires positive mass squared

 What is the consequence for color
superconductors?
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Color superconductors

 Standard approach in models corresponds possibly to
the mean-field ansatz in 't Hooft gauges

 What could corresponding gauge choices in QCD be?

* No natural generalization of the 't Hooft gauge

* Fermions have to high mass dimension and
require a bilinear for a condensate

* Explicit additional global conditions

 Maximal Abelian gauges select a particular color
direction (see poster of Markus Huber)

* But independent of the matter fields
* Not necessary: Physics independent of the gauge choice

* Calculations can be performed using Landau
gauge without explicit condensates
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What are the possible consequences?

* In the Higgs system the transition
between different phases may be
gauge-dependent
* How is the phase structure in QCD at finite

density made gauge-invariant?
* How proceeds gluon screening?
* What can be learned further from a

comparison to the Higgs system - and
where does the analogy ends?
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