# Gluons, color superconductors, and gauge symmetry

#### **Axel Maas**

15<sup>th</sup> of March 2011 Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar Germany













- Color superconductors T are expected to form at large densities
  - Neutron star density?
  - Various types
    - 2SC, 3SC, CFL,...
    - Here generic color-neutral



<sup>[</sup>Karsch, Laermann, 2003]



- Color superconductors T are expected to form at large densities
  - Neutron star density?
  - Various types
    - 2SC, 3SC, CFL,...
    - Here generic color-neutral
- Very hard to tackle
  - Model calculations
  - Perturbation theory and HDL
  - Functional calculations





- Color superconductors T are expected to form at large densities
  - Neutron star density?
  - Various types
    - 2SC, 3SC, CFL,...
    - Here generic color-neutral
- Very hard to tackle
  - Model calculations
  - Perturbation theory and HDL
  - Functional calculations





#### **Calculational scheme**





#### **Calculational scheme**





#### **Calculational scheme**

Quantization (fixed gauge: Landau,...)





#### **Calculational scheme**

Quantization (fixed gauge: Landau,...)





#### **Calculational scheme**





# Calculational scheme

Quantization (fixed gauge: Landau,...)







[Maas, unpublished]







[Fischer, Müller, Maas EPJC 2010]

















Phase diagram: Yang-Mills, Quenched QCD, QCD at low and high density (, Critical Phenomena)





Lücker, Mitrjushkin, Pawlowski, Reinhardt, Watson



Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas

Slides left: 14 (in this section: 0



Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas

Slides left: 14 (in this section: 0

Non-vanishing expectation value of colored condensates



- Non-vanishing expectation value of colored condensates
- Gluons become effectively screened by a Meissner-like effect



- Non-vanishing expectation value of colored condensates
- Gluons become effectively screened by a Meissner-like effect
- Quite analogous to QED superconductors
  - In QED charge is gauge-invariant



- Non-vanishing expectation value of colored condensates
- Gluons become effectively screened by a Meissner-like effect
- Quite analogous to QED superconductors
  - In QED charge is gauge-invariant
- But in QCD it is not



- Non-vanishing expectation value of colored condensates
- Gluons become effectively screened by a Meissner-like effect
- Quite analogous to QED superconductors
  - In QED charge is gauge-invariant
- But in QCD it is not
  - Color condensates are not gauge-invariant [Rajagopal, Wilzcek 2000]



- Non-vanishing expectation value of colored condensates
- Gluons become effectively screened by a Meissner-like effect
- Quite analogous to QED superconductors
  - In QED charge is gauge-invariant
- But in QCD it is not
  - Color condensates are not gauge-invariant [Rajagopal, Wilzcek 2000]
- The gauge symmetry is said to be spontaneously broken...but what does this mean?



- Non-vanishing expectation value of colored condensates
- Gluons become effectively screened by a Meissner-like effect
- Quite analogous to QED superconductors
  - In QED charge is gauge-invariant
- But in QCD it is not
  - Color condensates are not gauge-invariant [Rajagopal, Wilzcek 2000]
- The gauge symmetry is said to be spontaneously broken...but what does this mean?
  - Only possible classically, forbidden in a quantum theory by Elitzur's theorem



- Non-vanishing expectation value of colored condensates
- Gluons become effectively screened by a Meissner-like effect
- Quite analogous to QED superconductors
  - In QED charge is gauge-invariant
- But in QCD it is not
  - Color condensates are not gauge-invariant [Rajagopal, Wilzcek 2000]
- The gauge symmetry is said to be spontaneously broken...but what does this mean?
  - Only possible classically, forbidden in a quantum theory by Elitzur's theorem
  - What happens in the full quantum gauge theory?





- Classically: Higgs field condenses
  - Plays the same role as the color condensates in color superconductors



- Classically: Higgs field condenses
  - Plays the same role as the color condensates in color superconductors
- Standard treatement in (electro)weak theory
  - Mean-field treatment of the Higgs condensate
    - Yields masses for the gauge bosons
  - Perturbative expansion around the mean field
  - Very successful



- Classically: Higgs field condenses
  - Plays the same role as the color condensates in color superconductors
- Standard treatement in (electro)weak theory
  - Mean-field treatment of the Higgs condensate
    - Yields masses for the gauge bosons
  - Perturbative expansion around the mean field
  - Very successful
- Appears to break gauge symmetry



- Classically: Higgs field condenses
  - Plays the same role as the color condensates in color superconductors
- Standard treatement in (electro)weak theory
  - Mean-field treatment of the Higgs condensate
    - Yields masses for the gauge bosons
  - Perturbative expansion around the mean field
  - Very successful
- Appears to break gauge symmetry, but this is only superficial



- Classically: Higgs field condenses
  - Plays the same role as the color condensates in color superconductors
- Standard treatement in (electro)weak theory
  - Mean-field treatment of the Higgs condensate
    - Yields masses for the gauge bosons
  - Perturbative expansion around the mean field
  - Very successful
- Appears to break gauge symmetry, but this is only superficial – there is a trick



# The gauge-fixing trick

 (Perturbative continuum) quantization can be done using gauge-fixing


# The gauge-fixing trick

- (Perturbative continuum) quantization can be done using gauge-fixing
- Two standard choices



# The gauge-fixing trick

- (Perturbative continuum) quantization can be done using gauge-fixing
- Two standard choices
  - (Non-renormalizable) unitary gauge
    - Rewrite the scalar field as  $\phi = \rho \exp(i \tau^a \alpha^a)$
    - Make the choice  $\partial^{\mu} A^{a}_{\mu} = \partial^{2} \alpha^{a}$



# The gauge-fixing trick

- (Perturbative continuum) quantization can be done using gauge-fixing
- Two standard choices
  - (Non-renormalizable) unitary gauge
    - Rewrite the scalar field as  $\phi = \rho \exp(i \tau^a \alpha^a)$
    - Make the choice  $\partial^{\mu} A^{a}_{\mu} = \partial^{2} \alpha^{a}$
  - (Renormalizable) 't Hooft gauge
    - Rewrite the scalar field as  $\phi = \begin{pmatrix} \varphi^1 + i \varphi^2 \\ \eta + i \varphi^3 \end{pmatrix}$
    - Make the choice  $\partial^{\mu} A^{a}_{\mu} = \langle \eta \rangle \varphi^{a}$



## What is the trick?

- Both gauge conditions include the matter field – in a manifestly asymmetric way
  - 't Hooft gauge only in the 'broken' phase



# What is the trick?

- Both gauge conditions include the matter field – in a manifestly asymmetric way
  - 't Hooft gauge only in the 'broken' phase
- Global part of the gauge symmetry is explicitly broken
  - Preferred direction in color space
  - Direction of the Higgs field with non-vanishing expectation value



## What is the trick?

- Both gauge conditions include the matter field – in a manifestly asymmetric way
  - 't Hooft gauge only in the 'broken' phase
- Global part of the gauge symmetry is explicitly broken
  - Preferred direction in color space
  - Direction of the Higgs field with non-vanishing expectation value
- What happens for a different, manifestly symmetric choice?



• Manifest symmetric choice



• Manifest symmetric choice: Landau gauge  $\partial^{\mu}A^{a}_{\mu}=0$ 



- Manifest symmetric choice: Landau gauge  $\partial^{\mu}A^{a}_{\mu}=0$ 
  - No explicit breaking of the global symmetry if not aligned – no preferred direction



- Manifest symmetric choice: Landau gauge  $\partial^{\mu}A^{a}_{\mu}=0$ 
  - No explicit breaking of the global symmetry if not aligned – no preferred direction
  - Elitzurs theorem demands no spontaneous breaking



- Manifest symmetric choice: Landau gauge  $\partial^{\mu}A^{a}_{\mu}=0$ 
  - No explicit breaking of the global symmetry if not aligned – no preferred direction
  - Elitzurs theorem demands no spontaneous breaking
  - Higgs field has always zero expectation value



- Manifest symmetric choice: Landau gauge  $\partial^{\mu}A^{a}_{\mu}=0$ 
  - No explicit breaking of the global symmetry if not aligned – no preferred direction
  - Elitzurs theorem demands no spontaneous breaking
  - Higgs field has always zero expectation value
    - But always non-zero expectation value squared



- Manifest symmetric choice: Landau gauge  $\partial^{\mu}A^{a}_{\mu}=0$ 
  - No explicit breaking of the global symmetry no preferred direction
  - Elitzurs theorem demands no spontaneous breaking
  - Higgs field has always zero expectation value
    - But always non-zero expectation value squared
  - Confirmed in lattice calculations

[Langguth et al. NPB 1986, Jersak et al. PRD 1985]



- Manifest symmetric choice: Landau gauge  $\partial^{\mu}A^{a}_{\mu}=0$ 
  - No explicit breaking of the global symmetry if not aligned – no preferred direction
  - Elitzurs theorem demands no spontaneous breaking
  - Higgs field has always zero expectation value
    - But always non-zero expectation value squared
  - Confirmed in lattice calculations [Langguth et al. NPB 1986, Jersak et al. PRD 1985]
- Mechanism: No direction of Higgs field preferred global rotations 'wash out' expectation value



• How is the Higgs effect manifest?



- How is the Higgs effect manifest?
- What are the consequences for the correlation functions?



- How is the Higgs effect manifest?
- What are the consequences for the correlation functions?
  - Technical: How can they be accessed?



- How is the Higgs effect manifest?
- What are the consequences for the correlation functions?
  - Technical: How can they be accessed?
  - Physical: How do both phases differ?



- How is the Higgs effect manifest?
- What are the consequences for the correlation functions?
  - Technical: How can they be accessed?
  - Physical: How do both phases differ?
- Caution with the analogy
  - Quantum phase diagram of the Higgs case is non-trivial



[Fradkin & Shenker, PRD 1979]

- Confinement and Higgs not completely separated
- Translation to color superconductors?



• Basic quantities in the framework: propagators



- Basic quantities in the framework: propagators
  - Gluon, Higgs (, ghost); yield running gauge coupling



- Basic quantities in the framework: propagators
  - Gluon, Higgs (, ghost); yield running gauge coupling
- Gluon propagator

$$D_{\mu\nu}^{ab}(x-y) = \langle A_{\mu}^{a}(x) A_{\nu}^{b}(y) \rangle \\ D_{\mu\nu}(p) = (\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}}) \frac{Z(p)}{p^{2}}$$

- Longitudinal part exactly zero
- All directions equivalent (no QED)



- Basic quantities in the framework: propagators
  - Gluon, Higgs (, ghost); yield running gauge coupling
- Gluon propagator

$$D_{\mu\nu}^{ab}(x-y) = \langle A_{\mu}^{a}(x) A_{\nu}^{b}(y) \rangle \\ D_{\mu\nu}(p) = (\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}}) \frac{Z(p)}{p^{2}}$$

- Longitudinal part exactly zero
- All directions equivalent (no QED)
- Higgs propagator

$$D_{S}^{ij}(x-y) = \langle \phi_{i}^{+}(x)\phi_{j}(y) \rangle$$

Includes would-be Goldstones

Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas









- Screening mass full quantum (Meissner) effect
  - Pole mass yet unclear





- Screening mass full quantum (Meissner) effect
  - Pole mass yet unclear
- Very similar to confinement

#### Gluons

#### Gauge boson propagator

4d, unquenched: 24<sup>4</sup> beta=2.0, kappa=0.25, lambda=0.5 4d, Higgs, 24<sup>4</sup> beta=2.3, kappa=0.32, lambda=1.0 4d, quenched: 24<sup>4</sup> beta=2.2 [Maas EPJC 2011]



- Screening mass full quantum (Meissner) effect
  - Pole mass yet unclear
- Very similar to confinement and quenched



#### Gluons

#### Gauge boson propagator

4d, unquenched: 24<sup>4</sup> beta=2.0, kappa=0.25, lambda=0.5 4d, Higgs, 24<sup>4</sup> beta=2.3, kappa=0.32, lambda=1.0 4d, quenched: 24<sup>4</sup> beta=2.2 [Maas EPJC 2011]



- Screening mass full quantum (Meissner) effect
  - Pole mass yet unclear
- Very similar to confinement and quenched
  - Changes in the gauge-fixing (ghost) sector

Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas



# **Running coupling**

4d, Higgs, 24<sup>4</sup> beta=2.3, kappa=0.32, lambda=1.0

[Maas EPJC 2011]



 Screening leads to suppression of interactions at small momenta



# **Running coupling**

4d, unquenched: 24<sup>4</sup> beta=2.0, kappa=0.25, lambda=0.5 4d, Higgs, 24<sup>4</sup> beta=2.3, kappa=0.32, lambda=1.0 4d, quenched: 24<sup>4</sup> beta=2.2 [Maas EPJC 2011]

Running coupling



- Screening leads to suppression of interactions at small momenta
- No qualitative difference seen

Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas



#### Scalar

4d, Higgs, 24<sup>4</sup> beta=2.3, kappa=0.32, lambda=1.0

[Maas EPJC 2011]





#### Scalar

4d, Higgs, 24<sup>4</sup> beta=2.3, kappa=0.32, lambda=1.0

[Maas EPJC 2011]



- Close to tree-level with positive mass squared
- Dynamical mass generation



#### Scalar

Scalar propagator

4d, unquenched: 24<sup>4</sup> beta=2.0, kappa=0.25, lambda=0.5 4d, Higgs, 24<sup>4</sup> beta=2.3, kappa=0.32, lambda=1.0 4d, quenched: 24<sup>4</sup> beta=2.2 [Maas EPJC 2011]

D<sub>s</sub>(p) [1/Gev<sup>2</sup>] Quenched ۸ Unquenched 0.4 Higgs phase  $1/(p^2+(1.5)^2)$ 0.3 0.2 0.1 <sup>0</sup>0 2 3 p [GeV]

- Close to tree-level with positive mass squared
- Dynamical mass generation
- Little difference between the 'phases'

Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas



# Summary from the Higgs

- Higgs effect is manifestly a quantum effect
  - Can be captured in some gauges using a meanfield+perturbation theory ansatz
  - In other gauges a full dynamical quantum effect
    - Mean field zero
  - The choice is arbitrary, but something nonperturbative is always involved!



# Summary from the Higgs

- Higgs effect is manifestly a quantum effect
  - Can be captured in some gauges using a meanfield+perturbation theory ansatz
  - In other gauges a full dynamical quantum effect
    - Mean field zero
  - The choice is arbitrary, but something nonperturbative is always involved!
  - Physical consequences similar
    - Screened gauge boson
    - Higgs acquires positive mass squared



# Summary from the Higgs

- Higgs effect is manifestly a quantum effect
  - Can be captured in some gauges using a meanfield+perturbation theory ansatz
  - In other gauges a full dynamical quantum effect
    - Mean field zero
  - The choice is arbitrary, but something nonperturbative is always involved!
  - Physical consequences similar
    - Screened gauge boson
    - Higgs acquires positive mass squared
- What is the consequence for color superconductors?


Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges



- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
  - What could corresponding gauge choices in QCD be?



- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
  - What could corresponding gauge choices in QCD be?
    - No natural generalization of the 't Hooft gauge
      - Fermions have to high mass dimension and require a bilinear for a condensate



- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
  - What could corresponding gauge choices in QCD be?
    - No natural generalization of the 't Hooft gauge
      - Fermions have to high mass dimension and require a bilinear for a condensate
    - Explicit additional global conditions



- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
  - What could corresponding gauge choices in QCD be?
    - No natural generalization of the 't Hooft gauge
      - Fermions have to high mass dimension and require a bilinear for a condensate
    - Explicit additional global conditions
    - Maximal Abelian gauges select a particular color direction (see poster of Markus Huber)



- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
  - What could corresponding gauge choices in QCD be?
    - No natural generalization of the 't Hooft gauge
      - Fermions have to high mass dimension and require a bilinear for a condensate
    - Explicit additional global conditions
    - Maximal Abelian gauges select a particular color direction (see poster of Markus Huber)
      - But independent of the matter fields



- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
  - What could corresponding gauge choices in QCD be?
    - No natural generalization of the 't Hooft gauge
      - Fermions have to high mass dimension and require a bilinear for a condensate
    - Explicit additional global conditions
    - Maximal Abelian gauges select a particular color direction (see poster of Markus Huber)
      - But independent of the matter fields
- Not necessary: Physics independent of the gauge choice



- Standard approach in models corresponds possibly to the mean-field ansatz in 't Hooft gauges
  - What could corresponding gauge choices in QCD be?
    - No natural generalization of the 't Hooft gauge
      - Fermions have to high mass dimension and require a bilinear for a condensate
    - Explicit additional global conditions
    - Maximal Abelian gauges select a particular color direction (see poster of Markus Huber)
      - But independent of the matter fields
- Not necessary: Physics independent of the gauge choice
  - Calculations can be performed using Landau gauge without explicit condensates



Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas

 In the Higgs system the transition between different phases may be gauge-dependent [Caudy, Greensite PRD 2008]



- In the Higgs system the transition between different phases may be gauge-dependent [Caudy, Greensite PRD 2008]
  - How is the phase structure in QCD at finite density made gauge-invariant?



- In the Higgs system the transition between different phases may be gauge-dependent [Caudy, Greensite PRD 2008]
  - How is the phase structure in QCD at finite density made gauge-invariant?
  - How proceeds gluon screening?



- In the Higgs system the transition between different phases may be gauge-dependent [Caudy, Greensite PRD 2008]
  - How is the phase structure in QCD at finite density made gauge-invariant?
  - How proceeds gluon screening?
  - What can be learned further from a comparison to the Higgs system – and where does the analogy ends?



- Gauge symmetry requires a careful treatment of color condensates
  - Color condensates are in general gauge-dependent
  - Elitzur's theorem implies constraints



- Gauge symmetry requires a careful treatment of color condensates
  - Color condensates are in general gauge-dependent
  - Elitzur's theorem implies constraints
- Higgs system can be used as an analogy
  - Higgs effect without a condensate as a quantum phenomena
  - Pseudo-Meissner effect



- Gauge symmetry requires a careful treatment of color condensates
  - Color condensates are in general gauge-dependent
  - Elitzur's theorem implies constraints
- Higgs system can be used as an analogy
  - Higgs effect without a condensate as a quantum phenomena
  - Pseudo-Meissner effect
- Provides a possible route how to treat color superconductors in a correlation-function-based framework [Nickel et al. 2006-2008, Skullerud 2008-2010]



- Gauge symmetry requires a careful treatment of color condensates
  - Color condensates are in general gauge-dependent
  - Elitzur's theorem implies constraints
- Higgs system can be used as an analogy
  - Higgs effect without a condensate as a quantum phenomena
  - Pseudo-Meissner effect
- Provides a possible route how to treat color superconductors in a correlation-function-based framework [Nickel et al. 2006-2008, Skullerud 2008-2010]
  - Even in Landau gauge

Gluon, Color Superconductors, and Gauge Symmetry/Axel Maas

