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Introduction

Perturbative results with increasing precision (more loops) are
increasingly needed:

Relate observables measured in lattice QCD to their physical
counterpart via renormalisation

Separate non-perturbative effects from observables assumed
to be sensitive to confinement

Common belief: Gauge fixed gluon and ghost propagators
encode in their momentum dependence such properties

extreme IR behavior: dominated by Gribov effects
intermediate momenta (1 GeV) : vortices, instantons, . . .
large momenta: onset of condensates, first deviations
from asymptotic freedom

Lattice perturbation theory (LPT) in diagrammatic form is much
more involved than continuum perturbation theory (CPT) of QCD:
Thus, only very few higher-loop results from LPT are known !
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Introduction

Alternative
Use stochastic quantization (Parisi and Wu, 1981) realized via
Langevin equation
General non-perturbative application:
Langevin simulations of lattice QCD including
stochastic gauge fixing instead of standard Monte Carlo
(MC) simulations
Zwanziger, Stamatescu, Wolff (1983)

Zwanziger, Seiler, Stamatescu (1984)

Batrouni et al. (1985)

recent application: J. M. Pawlowski, D. Spielmann, I. O. Stamatescu, Lattice Landau

gauge with stochastic quantization, Nucl. Phys. B 830 (2010) 291

Perturbative application:
replaces the standard LPT
⇒ Numerical Stochastic Perturbation Theory (NSPT)
(Di Renzo et al.,1994) used for higher order calculations;
for numerical stability stochastic gauge fixing needed

E.-M. Ilgenfritz (Humboldt-Universität Berlin) Propagators from NSPT and MC St. Goar, March 15 – 18, 2011 5 / 47

http://arxiv.org/abs/0911.4921
http://xxx.lanl.gov/abs/hep-lat/9405019


Introduction

Here: a new application (developed since 2007 Leipzig/Berlin)
that requires complete gauge fixing:
Aim: study of higher-loop ghost and gluon propagators in minimal
Landau gauge to make predictions (postdictions) for usual
LPT and to compare with non-perturbative results
F. Di Renzo, E.-M.I., H. Perlt, A. Schiller, C. Torrero, Nucl. Phys. B 831 (2010) 262

and Nucl. Phys. B 842 (2011) 122

Two other recent, not gauge dependent applications of NSPT :

Very high order lattice perturbation theory for Wilson loops,
R. Horsley, G. Hotzel, E.-M. I., Y. Nakamura, H. Perlt, P.E.L. Rakow, G. Schierholz,

and A. Schiller, arXiv:1010.4674 [hep-lat], Lattice 2010

→ extract gluon condensate from Wilson loops (up to 20 loops)

Hunting the static energy renormalon,
C. Bauer and G. Bali, arXiv:1011.1165 [hep-lat], Lattice 2010

→ extract the leading renormalon in the perturbative expansion
of the static energy (up to 12 loops)
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Langevin equation and NSPT

Langevin equation for lattice QCD

Use Euclidean lattice Langevin equation with “time” t

∂

∂t
Ux ,µ(t ; η) = i (∇x ,µSG[U] − ηx ,µ(t)) Ux ,µ(t ; η)

η Gaussian random noise
SG lattice action
∇x ,µ left Lie derivative

For t → ∞ link gauge fields U are distributed according to
equilibrium measure exp(−SG[U]) .

Discretize t = n ǫ
Get solution at next time step n + 1 in the Euler scheme

Ux ,µ(n + 1; η) = exp(i Fx ,µ[U, η]) Ux ,µ(n; η)

with force
Fx ,µ[U, η] = ǫ∇x ,µSG[U] +

√
ǫ ηx ,µ
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Langevin equation and NSPT

Perturbative Langevin equations

Rescale time step to ε = βǫ and use the rescaled equations
(discrete time t = nε) for a perturbative expansion of links:

Ux ,µ(n; η) → 1 +
∑

l>0

β−l/2U(l)
x ,µ(n; η)

The Langevin equation at finite ε transforms into a
system of simultaneous updates for each order U(l)

x ,µ, beginning like

U(1)(n + 1) = U(1)(n) − F (1)(n) ,

U(2)(n + 1) = U(2)(n) − F (2)(n) +
1
2

(
F (1)(n)

)2
− F (1)(n) U(1)(n) ,

etc.
Random noise η enters only in F (1), noise is propagating
towards higher orders through lower order fields.
The hierarchy is upward open !

E.-M. Ilgenfritz (Humboldt-Universität Berlin) Propagators from NSPT and MC St. Goar, March 15 – 18, 2011 9 / 47



Langevin equation and NSPT

Perturbative Langevin equations

In addition, the gauge field variables (Lie algebra valued, A = log U)
are simultaneously stored enforcing antihermitecity to all orders in
1/

√
β. Similar expansion:

Ax ,µ(n; η) →
∑

l>0

β−l/2A(l)
x ,µ(n; η)

A(1)(n) = U(1)(n)

A(2)(n) = U(2)(n) − 1
2

(
U(1)(n)

)2

etc.

To stabilize the Langevin process, stochastic gauge fixing is added
to the update.

Subtraction of zero modes. Possible alternative: twisted boundary
conditions (C. Bauer and G. Bali).
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Langevin equation and NSPT

Perturbative Langevin equations and observables

Construct observables by expansion, Wilson loops in U(l)
x ,µ and

propagators in A(l)
x ,µ !

W (l) =
∑

l1,l2,...,lK ,
P

li=l

P
(

K∏

link=1

U(llink)
link

)

For gauge dependent quantities complete gauge fixing is needed !

We need the minimal Landau gauge which is reached by iterative
Fourier accelerated gauge trafo’s.

One step interchanged with Langevin step = stochastic gauge fixing
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Langevin equation and NSPT

Exact Landau gauge fixing

In contrast to the approximate Landau gauge reachable by stochastic
gauge fixing (along with the Langevin updates), we can guarantee the
minimal Landau gauge (transversality if the gauge field) up to machine
precision.

Perform Landau gauge fixing and measure gluon and ghost
propagators (after typically 50 Langevin steps).

Condition for perturbative Landau gauge at all orders
∑

µ

∂L
µA(l)

x ,µ = 0 , with ∂L
µA(l)

x ,µ ≡ A(l)
x+µ̂/2,µ − A(l)

x−µ̂/2,µ .

Landau gauge is reached iteratively, by a perturbative variant
of the Fourier accelerated steepest descent algorithm
(Davies et al, 1987).
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Propagators in NSPT Ghost propagator

Momentum space ghost propagator

G(p(k)) =
1

N2
c − 1

〈
Tr M−1(k)

〉
U

color trace of M−1(k), the Fourier transform
(i.e. diagonal element in plane wave basis)
of the inverse of the Faddeev-Popov operator

Mab
xy =

[
∂L

µ
Dµ

]ab

xy

with

Dµ[ϕ] =
(

1 +
i
2

Φµ(x) − 1
12

(Φµ(x))
2 − 1

720
(Φµ(x))

4
+ . . .

)
∂R

µ
+ i Φµ(x)

where ϕa
µ = iAa

µ and [Φµ]bc = −ifabcϕ
a
µ.
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Propagators in NSPT Ghost propagator

Momentum space ghost propagator

The expansion based on collecting terms of equal power β−l/2,

A(l)
x ,µ → M(l) →

[
M−1

](l)

M = M(0) +
∑

l>0

β−l/2M(l)

This allows for a recursive evaluation of the inverse without inversions :

M−1 =
[
M−1

](0)
+

∑

l>0

β−l/2
[
M−1

](l)

with
[
M−1

](0)
=

[
M(0)

]
−1

= ∆−1 and

[
M−1

](l)
= −

[
M−1

](0)
l−1∑

j=0

M(l−j)
[
M−1

](j)
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Propagators in NSPT Ghost propagator

Momentum space ghost propagator

The n-loop ghost propagator G(n) is obtained from sandwiching[
M−1

](l=2n)
between plane wave vectors

ξa(x) = δab exp (2π i kµ xµ/Nµ)

for many 4-tuples (k1, k2, k3, k4) and all colors b (this is expensive !)
with lattice momenta

p̂µ(kµ) =
2
a

sin
(

πkµ

N

)
=

2
a

sin
(apµ

2

)

G(n)(p̂(k)) =
(
ξ†,

[
M−1](l=2n)

ξ
)

Ghost dressing function at n loops

J(n)(p) = p2 G(n)(p(k)) and / or Ĵ(n)(p̂) = (p̂)2 G(n)(p(k))
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Propagators in NSPT Ghost propagator

Momentum space ghost propagator

Warning !

M = M(A) (constructed via logarithmic definition of A in terms
of U) differs from the Faddeev-Popov definition (the Hessian of
the linear gauge fixing functional) which is adopted in almost all
MC calculations !

New Monte Carlo simulations needed compatible with NSPT !

Will all previous lattice MC results be obsolete ? We checked
that they are not !
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Propagators in NSPT Gluon propagator

Momentum space gluon propagator

Construct tree-level (n = 0) and different loop orders n 6= 0 from
Fourier transformed gauge fields Ãa,(l)

µ (k)

δabD(n)
µν (p(k)) =

〈
2n+1∑

l=1

[
Ãa,(l)

µ (k) Ãb,(2n+2−l)
ν (−k)

] 〉

Remarks:

Only even orders l = 2n in 1/
√

β are nonvanishing.
Odd orders (half-integer n) are vanishing within errors !
The tree level propagator D(0)

µν arises from quadratic
fluctuations of the gauge field A(l) with l = 1.

In Landau gauge we consider

4∑

µ=1

D(n)
µµ ≡ 3D(n)
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Propagators in NSPT Gluon propagator

Gluon dressing function

Dressing function of gluon propagator

Z (n)(p) = p2 D(n)(p(k))

and/or

Ẑ (n)(p̂) = (p̂)2 D(n)(p(k))

Remarks:

Z (n) is calculated simultaneously (FFT) for all momenta (cheap !)

Gauge fixing must correspond to the A = log U definition !
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Propagators in NSPT Implementation

Implementation of NSPT: three limits to be taken

Choose maximally addressable loop order, take lmax = 2nmax !
(only restrictions: computer time, memory and machine precision)
Solve coupled system of equation for U(l)’s (l = 1, . . . , lmax)
at several ε and lattice volumes !
Get time series of gauge fields A(l) to all chosen orders !
Perform minimal Landau gauge fixing to machine precision !
Evaluate the perturbative ghost and gluon propagators !

• Limit ε → 0
This allows for comparison of results at finite volume with Monte Carlo
measurements.

• Limits V → ∞ and pa → 0
A strategy is worked out to handle finite a and finite volume effects.
Compare with analytic results of standard LPT (as far as available).
Predict new precise numerical results for higher loops: these limits
are obviously implied in standard LPT and CPT !
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Propagators in NSPT Implementation

Raw data: some examples
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Figure: Ẑ (n)(q̂) vs. q̂2 at L = 10 and ε = 0.01.
Left: Separate loop contributions. Right: Vanishing contributions.
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Propagators in NSPT Implementation

Limit ε → 0
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Figure: Tree level dressing function Ẑ (0)(q̂) vs. q̂2 at L = 16.
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Propagators in NSPT Implementation

Broken rotational symmetry

2

3

4

0 5 10 15 20 25 30 35 40

Z
(1

) (
a
q
)

(aq)2

L = 16
L = 12
L = 10
L = 8
L = 6

Figure: One-loop dressing function Z (1)(aq) vs. (aq)2 at all volumes
shown for all inequivalent 4-tuples.

An ad hoc remedy are momentum cuts (like cone cut, etc.).
Fitting with H(4) invariants uses all this information → continuum limit.
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Propagators in NSPT Implementation

Momentum cuts ameliorate lower rotational symmetry

2

3

4

0 5 10 15 20 25 30 35 40

Z
(1

) (
a
q
)

(aq)2

L = 16
L = 12
L = 10
L = 8
L = 6

Figure: One-loop dressing function Z (1)(aq) vs. (aq)2 at all volumes
for near-diagonal 4-tuples (k , k , k , k), (k ± 1, k , k , k), k > 0.

A smooth (aq)2 dependence emerges for near-diagonal momenta.
This happens similarly for all loop contributions.
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Redoing the Monte Carlo calculations Gluon field definitions, gauge functionals and all that

Gluon field definition and resp. gauge functional

Landau gauge (transversality) defined as
(

∑

µ

∂µAµ

)
(x) ≡

∑

µ

(
Ax+ µ̂

2 ,µ
− Ax− µ̂

2 ,µ

)
= 0

Suppose the gluon field definition is replaced by

A(lin)

x+ µ̂

2 ,µ
=

1
2iag0

(
Ux,µ − U†

x,µ

) ∣∣∣
traceless

→ A(log)

x+ µ̂

2 ,µ
=

1
iag0

log (Ux,µ) .

Then the Landau gauge is fulfilled if

F (lin)
U [g] =

1
4V

∑

x,µ

(
1 − 1

3
Re Tr gUx,µ

)
→ Min

is replaced by

F (log)
U [g] =

1
4VNc

∑

x,µ

Tr
[

gA(log)

x+ µ̂

2 ,µ

gA(log)

x+ µ̂

2 ,µ

]
→ Min

E.-M. I, Ch. Menz, M. Müller-Preussker, A. Schiller, A. Sternbeck, Phys. Rev. D in print
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Redoing the Monte Carlo calculations Gluon field definitions, gauge functionals and all that

Iterative gauge fixing for the logarithmic definition

gUx,µ → (rg)Ux,µ = rx
gUx,µ r †x+µ

local gauge fixing

rx = exp

(
−iα (

∑

µ

∂µ
gA(log)

µ
)(x)

)

Fourier accelerated gauge fixing

rx = exp

(
−iαF̂−1

[
q2

max

q2 F̂

[
(
∑

µ

∂µ
gA(log)

µ
)(x)

]])

Multigrid accelerated gauge fixing

rx = exp

(
−iα q2

max ∆−1(
∑

µ

∂µ
gA(log)

µ
)(x)

)
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Redoing the Monte Carlo calculations Comparison between MC results for both definitions

Gluon and ghost propagators: decoupling solution

0 2 4 6 8 10 12
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

momentum q [GeV]

Z
G

l(q
2 )

324, β = 6.2
244, β = 6.0
164, β = 5.8

0 2 4 6 8 10 12
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

momentum q [GeV]

Z
G

h(
q2 )

324, β = 6.2
244, β = 6.0
164, β = 5.8

Figure: Top: Renormalized gluon (left) and ghost dressing function (right) for the logarithmic
definition and various a = a(β). The physical volume is fixed to V = (2.2 fm)4. Bottom: The
same for fixed β = 6.0 for different volumes V . Data has been renormalized at q = µ ≈ 3.2 GeV.
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Redoing the Monte Carlo calculations Comparison between MC results for both definitions

Bare propagators are multiplicatively “renormalized”
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Figure: Top: Ratio of ghost propagators relating the two definitions for β = 6.0 (left)and β = 9.0
(right). Bottom: The same for the gluon propagators.
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Redoing the Monte Carlo calculations Comparison between MC results for both definitions

The running coupling is reproduced

A. Sternbeck et al., PoS (LAT2009) 210

αMM
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Figure: The running coupling obtained from Monte Carlo gluon and ghost dressing functions.
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Selected results from NSPT Comparing NSPT with the new MC results

Summed NSPT propagators: β restored

Ĵ(nmax) =

nmax∑

n=0

1
βn Ĵ(n) , β = 6/g2 ,

(
Ĵ(n) = (p̂2/p2)J(n)

)
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Figure: The cumulatively summed perturbative ghost (left) and gluon (right) dressing functions
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Selected results from NSPT Comparing NSPT with the new MC results

Propagators, MC vs. NSPT (naive and boosted)

Bare coupling in LPT bad expansion parameter (Lepage, Mackenzie,1993)

Use a variant of boosted LPT with boosted coupling

g2
b = g2/Ppert(g2) > g2

Reorder into a series in g2
b with smaller expansion coefficients
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Figure: Comparison of naive and boosted LPT with MC data at L = 12 at β = 6.0. (left): bare
gluon dressing function (up to 4-loop); (right): bare ghost dressing function (up to 3-loop)
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Selected results from NSPT Comparing NSPT with the new MC results

Running coupling, MC vs. NSPT (naive and boosted)
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Figure: Comparison of naive and boosted LPT with MC data for the running coupling αs(q2)
for a L = 12 lattice, with the gluon (ghost) dressing function up to 4-loop (3-loop) accuracy. (left):
β = 6.0 ; (right): β = 9.0 .
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Selected results from NSPT Comparing NSPT with the new MC results

Running coupling, MC vs. NSPT (zoomed into high
momenta)
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Figure: Comparison of naive and boosted LPT with MC data for the running coupling αs(q2)
for a L = 12 lattice, with the gluon (ghost) dressing function up to 4-loop (3-loop) accuracy. (left):
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits

Relation to standard LPT, handling of finite a effects

Example: extract non-log constant J1,0 in one-loop measurement

At infinite volume and in continuum limit

J (1)(pa) = J1,1 log(pa)2 + J1,0

logarithmic behavior J1,1 is assumed to be known

Anticipating lattice artifacts (non-zero a, infinite volume) rewrite

J (1)(pa) = J1,1 log(pa)2 + J1,0(pa)

Use hypercubic-invariant Taylor expansion [(pa)n =
∑

µ
(apµ)n]

J1,0(pa) = J1,0 + c1,1 (pa)2 + c1,2
(pa)4

(pa)2 + c1,3 (pa)4+c1,4
(
(pa)2)2

+c1,5
(pa)6

(pa)2 + · · ·
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits

Relation to standard LPT, handling of finite volume

Take into account finite size (L = aN)

J (1)(pa, pL) = J1,1 log(pa)2 + J1,0;L(pa, pL)

= J1,1 log(pa)2 + J1,0(pa) + [J1,0;L(pa, pL) − J1,0(pa)]

= J1,1 log(pa)2 + J1,0(pa) + δJ1,0(pa, pL)

Neglect corrections on corrections

δJ1,0(pa, pL) → δJ1,0(0, pL)

This allows for a non-linear fit of the non-log part:
for a given 4-tuple kµ = (k1, k2, k3, k4) measurements at different lattice sizes
N are affected by same pL effect due to the trivial identity

pµL = pµaN = 2πkµ

Note: no need to guess a functional form of the finite size effect
need of “renormalisation” data point for infinite volume
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits

Fitting strategy

select interval [(pa)2
min, (pa)2

max] where a hypercubic expansion of Ji,0

with a manageable number of terms can be performed

choose data in that interval from a sufficiently large amount of 4-tuples
common to all chosen lattice sizes

subtract all logarithmic pieces (for higher loops use fit results from lower
loops to get coefficients of non-leading log’s)

take an additional data point at (ap)2 ≈ (ap)2
max (⇒ extra 4-tuple kmax)

from the largest lattice as reference point for infinite volume: putting
δJi,0(0, pL(kmax)) = 0

perform a non-linear fit using all data points from different lattice sizes L4

plus the reference data point (no functional form guessed) and assuming
a specific functional behavior for the H(4) dependence

vary the momentum squared window and find an optimal χ2 region for
“best” values Ji,0
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits

Extrapolation examples
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Figure: Fitting of 2-loop ghost J2,0 (left) and 1-loop gluon JG
1,0 (right) non-log constants following

the outlined procedure
◦ : raw data from different lattice sizes L4 (logarithms subtracted)
⋆ : data after correcting for finite-volume effects pLa
• : data after correcting pLa and (some) hypercubic effects
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits

Example for final non-logarithmic constants
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Figure: 2-loop ghost (left) and 1-loop gluon (right) non-log constants for “best” fits
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Selected results from NSPT Higher loops in the V → ∞ and a → 0 limits

Final results for LPT (β = 6/g2, Ln ≡ log(pa)2)

one-loop non-logarithmic constant known since 30 years
H. Kawai, R. Nakayama, K. Seo, Nucl. Phy. B189 (1981) 40
Ghost dressing function [〈J1,0〉 = 0.52523(95)]

J3−loop(a, p, β) = 1 +
1

β

h

−0.0854897 Ln+0.525314
i

+

+
1

β2

h

0.0215195 Ln2
−0.358423 Ln+1.4872(57)

i

+

+
1

β3

h

−0.0066027Ln3+0.175434 Ln2
−1.6731(1) Ln + 4.94(27)

i

Gluon dressing function [〈Z1,0〉 = 2.303(34)]

Z 3−loop(a, p, β) = 1 +
1

β

h

−0.24697 Ln+2.29368
i

+

+
1

β2

h

0.08211Ln2
−1.48445 Ln+7.93(12)

i

+

+
1

β3

h

−0.02964Ln3+0.81689 Ln2
−8.13(3) Ln + 31.7(5)

i

Relations to standard RI’MOM or MS schemes known
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Summary

Summary

We have applied NSPT to calculate in Landau gauge the gluon propagator
up to four loops and the ghost propagator up to three loops.

The summed dressing functions are compared to recent MC results obtained
in Berlin using the same definition of gauge fields, the corresponding Landau
gauge fixing and Faddeev-Popov matrix as in LPT.

To improve the comparison, we have used boosted LPT to achieve faster
convergence.

One key goal of the lattice study of propagators is to learn about their genuinely
non-perturbative content. The knowledge of higher loop perturbative results is
therefore desirable.

Commonly the large-momentum tail is fitted by continuum-like formulae.
Further ambiguities are possible, since irrelevant discretization artefacts
might substantially contribute to the perturbative tail.

At large lattice momenta our calculations indicate that the perturbative
dressing functions from NSPT with more than four loops will match the
MC measurements, enabling a fair accounting of the perturbative tail.
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Summary

Summary continued

The strong difference left over in the intermediate and – moreover – in the
infrared momentum region not considered here should then be attributed
to non-perturbative effects (power corrections and contributions from
non-perturbative localized excitations).

Relation to standard LPT in limits V → ∞ and pa → 0

Our fitting strategy of lattice artifacts and finite-size corrections seems to be
sufficiently accurate.

Good agreement is found with one-loop results of diagrammatic LPT which
are known since many years.

We have communicated original two- and three-loop results for the propagators.
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