

# Exploration of compressed baryonic matter with the CBM experiment at FAIR

Johann M. Heuser GSI, Darmstadt, Germany

HIC for FAIR Workshop "Quarks, Gluons, and Hadronic Matter under Extreme Conditions" March 2011, St. Goar, Germany







# Physics case: Exploring the QCD phase diagram



#### CBM physics program:

- Equation-of-state at high  $\rho_B$
- Deconfinement phase transition
- QCD critical endpoint
- Chiral symmetry restoration

# Diagnostic probes of the high-density phase:

- open charm, charmonia
- low-mass vector mesons
- multistrange hyperons
- flow, fluctuations, correlations

#### **Projects to explore the QCD phase diagram at large \mu\_{B}:**

| RHIC energy-scan, NA61@SPS, MPD@NICA | bulk observables          |
|--------------------------------------|---------------------------|
| CBM@FAIR/SIS-300                     | bulk and rare observables |

# **Transport model predictions**



<11A GeV: dense hadronic (resonance) matter near phase transition</p>

• ~ 30A GeV: maximum baryonic density, beyond phase transition

# **Particle multiplicities**



# **Experimental challenges**



# **Experimental challenges**

Central Au+Au collision at 25 AGeV 160 p 400 π<sup>-</sup> 400 π<sup>+</sup> 44 K<sup>+-</sup>13 K<sup>-</sup> high charged-particle UrQMD + GEANT multiplicities high nuclear interaction rates fast detectors on-line event selection radiation hard, low-mass tracking & vertex detectors

# Facility for Antiproton and Ion Research



High-intensity primary and secondary beams

Efficient parallel operation of up to 5 programs

SIS-100/300: protons: max. 29/89 GeV ions: max. 14/44 GeV

up to Z/A=0.5 *intensities:* at CBM up to 10<sup>9</sup> ions per second

# FAIR construction timeline



| Phase A            |                                                            |                                                                    |                                                                               |                                                                                             | Phase B<br>SIS300 |                                         |
|--------------------|------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|
| Module 0<br>SIS100 | Module 1<br>experimental<br>areas<br>CBM/HADES<br>and APPA | Module 2<br>Super-FRS<br>fixed target<br>areas<br>and CR<br>NuSTAR | Module 3<br>pbar facility,<br>incl. CR for<br>PANDA,<br>options for<br>NuSTAR | Module 4<br>LEB cave for<br>NuSTAR,<br>NESR for<br>NuSTAR and<br>APPA,<br>FLAIR for<br>APPA | Module 5<br>RESR  | Module 6<br>SIS300<br>HESR Cooler<br>ER |

# New buildings at GSI

### Conference & Office Building *KBW*



move-in: March 2011

### Testing Hall and Detector Laboratory



Detector Lab:

- move-in: April 2011
- two stories, ~ 600 m<sup>2</sup>
- clean rooms, assembly areas

# The Compressed Baryonic Matter Experiment



# The Compressed Baryonic Matter Experiment



# Realization of CBM at FAIR

Nuclear collisions from 4 - 45*A* GeV Electrons, muons, charm, hadrons, photons, exotica.

### (1) FAIR Modules 0-3:

- SIS-100
- nuclei up to 14 (11) A GeV, Z/A=0.5 (0.4)
- protons up to 29 GeV
- $\rightarrow$  HADES + CBM

### (2) FAIR Module 6:

- SIS-300
- nuclei up to 44 (34) A GeV, Z/A=0.5 (0.4)
- protons up to 89 GeV

# $\rightarrow$ full CBM



Nuclear collisions: 1-10*A* GeV; Electrons, hadrons, (photons).

# HADES and CBM in the underground hall



Johann M. Heuser - The CBM experiment at FAIR

# **Observables for CBM physics at SIS-300**

- Particles containing charm quarks (D mesons and charmonium)
  → early, dense phase of collision
- Low-mass vector mesons decaying into dilepton pairs ( $\rho, \omega, \phi$ )  $\rightarrow$  hadron properties in the dense and hot fireball
- Collective flow of identified hadrons
  → information on the equation-of-state of dense matter
- Kaons, hyperons and hadronic resonances
  → strangeness sensitive to fireball evolution
- Dynamical fluctuations of particle multiplicities and momenta
  → sensitive to first order phase transition or the critical endpoint
- Photons
  - $\rightarrow$  direct radiation from the early fireball
- Two-particle correlations
  - $\rightarrow$  source size and time evolution of fireball + particle production

# Nuclear matter physics at SIS-100 energies

- <u>Nuclear equation-of-state</u>, <u>quarkyonic matter at high densities</u>: What are the properties and the degrees-of-freedom of nuclear matter at neutron star core densities?
- <u>Hadrons in dense matter:</u> What are the in-medium properties of hadrons? Is chiral symmetry restored at very high baryon densities?
- <u>Strange matter:</u>
  Does strange matter exist in the form of heavy multi-strange objects?
- <u>Heavy flavor physics:</u> How ist charm produced at low beam energies, and how does it propagate in cold nuclear matter?



### Software tools:

- Framework FAIRroot: Root + Virtual Monte Carlo
  - Transport codes GEANT 3 & 4, FLUKA
  - Event generators UrQMD, HSD, PLUTO
- Realistic detector layouts and response functions
- Fast ("SIMDized") track reconstruction algorithms for online event selection



# Silicon Tracking System and Micro Vertex Detector

### Silicon Tracking System, Micro Vertex Detector, Target, Beam pipe, installed in the Superconducting Dipole Magnet





#### **STS:** Heart of the CBM experiment

- silicon microstrip detectors
- 8 tracking stations in thermal enclosure

### MVD:

- monolithic silicon pixel detectors
- 2 vertex stations in vacuum vessel

# STS track reconstruction performance study



# **Electron identification**



Johann M. Heuser - The CBM experiment at FAIR

# **Muon detection**



# **Di-lepton measurements**

Signal and background yields from physics event generators (HSD, UrQMD)
 Full event reconstruction based on realistic detector layout and response



# Muon id:

segmented hadron absorber + tracking system

125(225) cm iron, 15(18) det. layers

#### 125 cm Fe: 0.25 ident. μ/event

dominant background: μ from π, K decay (0.13/event)



# **Di-lepton measurements**

Signal and background yields from physics event generators (HSD, UrQMD)
 Full event reconstruction based on realistic detector layout and response



Johann M. Heuser - The CBM experiment at FAIR

# Hadron identification, Time-of-flight measurement

### **Resistive Plate Chambers**

### ongoing R&D:

- Ultra thin glass MRPC
- Ceramic RPC
- Differential strip RPC



#### simulations:

- Segmented geometry
- Detector response, double hits
- 80ps time resolution



# **Open charm production**



# Open charm detection



- Ultrathin Micro Vertex Detector
- Monolithic Active Pixel Sensors
- high-performance carbon supports
- material budget <0.5 %  $X_0$  per station

e.g.  $D^0 \rightarrow K^-\pi^+$ 



# Au+Au collisions, 25A GeV

### STS tracking, MVD vertexing, proton rejection via TOF



 $10^{12}$  min. bias events,<br/>ca. 2-20 weeks @ reduced<br/>interaction rate  $10^5$ - $10^6$ /s: $16k D^0 + 46k \bar{D}^0$ <br/> $87k D^0 + 251k \bar{D}^0$ and $26k D^+ + 49k D^-$ <br/>and(HSD)<br/>(SHM)

Exotica  $\{\Xi^0, \Lambda\}$ 



Thermal multiplicity  $(7 \times 10^{-3})$ 

≈ 30 days of data taking at 10 MHz

CBM will see  $\{\Xi^0, \Lambda\}$  with thermal yields

Even three OOM below this yield the signal will be visible above BG.

# Identification of hyperons at SIS-100



# Charm and charmonium production at SIS-100



small statistics

assuming a high-rate Micro Vertex Detector

6 J/ψ recorded in 10<sup>10</sup> events (b=0) (3·10<sup>4</sup> J/ψ per week)

# **Di-lepton measurement at SIS-100**

# HADES

Monte Carlo simulation: Di-electron invariant mass spectrum

# CBM

Full event reconstruction: Di-muon invariant mass spectrum (only ω meson as signal)



# $J/\psi$ detection via muons at SIS-100

### p+Au collisions, 25 GeV





### **Detector developments**



No simple trigger primitive, like high  $p_t$ , available to tag events of interest. Open charm: The only selective signature is the detection of the decay vertex.



# Timeline towards the CBM experiment



# CBM Collaboration: 55 institutions, > 400 members



15<sup>th</sup> CBM Collaboration Meeting, April 12 - 16, 2010 at GSI

Croatia China **Czech Republic** France Hungary India Korea Norway Germany Poland Romania Russia Ukraine

# **CBM Progress Report 2010**

# 100 pages, shortly available at *www-cbm.gsi.de*

#### Contents:

- Micro Vertex Detector
- Silicon Tracking System
- Ring Imaging Cherenkov Detector
- Muon System
- Transition Radiation Detectors
- Time-of-Flight Detectors
- Calorimeters
- Magnet
- FEE and DAQ
- Physics Performance
- Software and Algorithms



# **CBM Physics Book**

Lecture Notes in Physics Vol. 814 (2011) 1000 pages, 400 figures, 2000 citations

Unheberrechtlich geschütztes Material

Bengt L. Friman Claudia Höhne Jörn E. Knoll Stefan K.K. Leupold Jorgen Randrup Ralf Rapp Peter Senger *Editors* 

#### LECTURE NOTES IN PHYSICS 814

# The CBM Physics Book

Compressed Baryonic Matter in Laboratory Experiments General Introduction Prelude by Frank Wilczek Facets of Matter Executive Summary

Part I BULK PROPERTIES OF STRONGLY INTERACTING MATTER

> Part II IN-MEDIUM EXCITATIONS

Part III COLLISION DYNAMICS

Part IV OBSERVABLES AND PREDICTIONS

> Part V CBM EXPERIMENT