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an elementary formula....
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Two questions, in pure Yang-Mills theory:

» What s ‘O> ? i.e., in Schrodinger representation, what is

oAl = (A|0)
‘n> — Qn’0> ?

At low T, the relevant (), are just glueball creation operators. But what
are the relevant (),, at high T, past the deconfinement transition?

» Whatis




Confinement and Casimir Scaling
from Dimensional Reduction

Confinement and chiral symmetry breaking are properties of the QCD vacuum.
Maybe we could learn more about them, if we knew the explicit form of the QCD
vacuum wavefunctional, satisfying

HUy Al = EqVUg|A]
An old proposal: Perhaps, at large scales, the vacuum looks like

1
\Ilgff[A] = N exp —§,u/d3x Tr[F,L%-] JG (1979)

This state has the property of dimension reduction: large Wilson loops in 3+1
dimensions can be computed in 3 Euclidean dimensions.




Dimensional reduction fromD=4-—>3 > 2

for large spacelike Wilson loops
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In D=2 dimensions the Wilson loop can be calculated analytically, and we

know there is an area-law falloff, and Casimir-scaling string tensions.

> Is this the right explanation for Casimir scaling?
> Can we test it?




Casimir scaling in SU(3) lattice gauge theory Bali (2000)
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On the other hand, dimensional reduction can’t be exactly right:

» no color screening (in D=2+1), wrong N-ality properties

» wrong high momentum behavior

At strong couplings, it can be shown that small corrections to the
dimensional reduction wavefunction are responsible for color screening.

So what does the vacuum state look like at all scales, not just
large scales?

There are now a number of proposals on the table. | will concentrate on
D=2+1 dimensions...




GO Wavefunctional (Olejnik & JG)

1 1 ab
Vol] = exp |5 [ uty Fy(o) ) Fhw
2 vV—D? — \g + m? .
successes: mass gap, Coulomb ghost propagator
KKN Wavefunctional (Karabali, Kim& Nair)
ab
1 1
Uk rn|[A] = exp [— /dQCUdQ?J Fio(z) ( ) F1b2(y)
2 V-=V2+m2+m/,,
successes: string tension
problem: not gauge-invariant
Hybrid Wavefunctional
Uy pridlA] = ex L [ ey po () ! ; F2(y)
hybrid — p 9 Y L9 \/—D2 — )\O +m2 +m vy 12\Y

D? is the covariant Laplacian, A, is its lowest eigenvalue, m is a parameter




Coloumb-Gauge Wavefunctional (Reinhardt et al, Szczepaniak et al)

UeolA] = (det[ -V D])_l/ " exp [—% / &k w(k)Ag(k)Ag(—k)]

s |5 [ @k @) - x(0) 410 A2

where w(k), x(k) are determined by a set of integral equations.

successes: enhancement of the Coulomb ghost propagator, confining Coulomb
potential.

problem: no area law for spacelike Wilson loops




GO Wavefunctional

The YM ground state is soluble in three different limits:

1. free field,

Wo[A] = exp [—/d%d% B*(x) (\/;W): Bb(y)]

2. lattice strong-coupling (which has the dimensional reduction form)

~ ok [ Tx[B?]

Uy|U] = exp [94(]\][\[ 3 ZTI‘U(P) + c.c.

3. zero mode: A,(x) independent of x, V is the volume of space

Vv (Al X AQ) . (Al X Ag)
2% VA2 +[A2P

\IJO = exp




The W proposal is obtained by looking for the simplest, gauge-invariant
wavefunctional which obtains dimensional reduction at large scales, and agrees
with the two other analytic solutions in the appropriate limits. In 2+1 dimensions,
the proposal is

1 1 CLb
\IJGO Al =ex - /d2md2 B%(x ( ) Bb
[A] = exp 25 y B%(x) VDt 7)., ()
where
B® = F1a2 is the color magnetic field strength
D? = D, Dy, is the covariant Laplacian
Ao is the lowest eigenvalue of -D?
m is a parameter with dimensions of mass

We have a finite string tension

(from dimensional reduction) if m>0 0 = —mg
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KKN Wavefunctional

Change variables from A, to gauge-invariant J9 the tradeoff is local gauge invariance
for local holomorphic invariance under

J — hJh™ ' + %ahh—l

s

KKN wavefunction in new (J-field) and old (A-field) variables:

[ or2 _ 1 _
U — exp | — dPxd?y 0J%(x ( ) 0.J%
= ex _—L d*zd*y B*(x) ( ! ) B (y)

Y| 2g? Y VVErmitm)y,

where m = ¢°C4 /2. If we just throw away —V? to get to the dimensional reduction
form, then the predicted string tension is 4
o

(N*—1)

8

in excellent agreement with numerical simulations extrapolated to large N.




Hybrid Wavefunctional

The problem with ¥ i i N is that in new variables the bilinear is not holomorphic
invariant, and in old variables it is not gauge-invariant.

The wavefunctional is therefore not a physical state as it stands, and the use of
dimensional reduction to compute the string tensions is questionable.
Some gauge-invariant completion is required.

So we look for a wavefunctional with the following properties:

1. Gauge-invariant
2. has the dimensional reduction property
3. reducesto V¥ N on abelian configurations

ab
1 a 1
\Ijhybm'd = €XP [292 /d2xd29 B (x) (\/_D2 — X + m?2 _|_m) Bb(y)

Ty




Coulomb Gauge Wavefunctional

The approach was initiated by Szczepaniak and collaborators (Indiana), and
refined/corrected by Reinhardt and collaborators (Tibingen). Here we follow
Feuchter and Reinhardt. The proposal to be tested is

Voold) = e |- [ S ACRE() A

where w(k) is to be determined by minimizing the vacuum energy to one loop.
The result is a complicated set of integral equations which are solved numerically.




Here is the set of equations determining w(k) :
C1,C2 are renormalization constants. Given those constants, the set is solved
numerically.

w(k) = w(k) — x(k),
w(k) = k2 + X2 (k) + co + AT (k) + 2x (k) [ATV (k) 4 ¢1]
AT (k) = 1™ (k) — 10)(0),

1090 =5 [ 3 0 vig - T

d=' (k) =d™ () — (Ta(k) — La(p)),
Li(k) = &/ T4 1y (kg MR

2 (27‘(‘)2 (q) (q — k)Q
V(k)E/dDg; e (0| P (2, 0, [A])] @) = 5% L F Lz( )
f(k) _ dexeik$<\If‘ {%] ‘\If>x a-02b

[f dPzethr (V| —S— =5 D V) ) a0 b}

_ N d2q o d@)dlg— )
x(k) = TC/ (27)2 [1 —(k-q) ] b




In this approach, the color Coulomb potential

Ve(R) = — <(VZ?(V2)V29>:>HR

rises almost (but not quite) linearly in 2+1 dimensions.

Spacelike Wilson loops, however,

W(C) = (Yee|Tr[U(C)]|¥ca)

do not seem to obtain the required area law falloff; this would require some
refinement going beyond the Gaussian ansatz.




Testing Vacuum Proposals by Measurement of the Vacuum

A modified Monte Carlo: on time-slice t=0, restrict the available configurations
to some subset

U={U"(x),m=1,2,..,M)

and select them, at t=0, via the Metropolis algorithm.

Let N, be the number of times the m-th configuration is generated. In the
limit that N, , = ©°




So, given

V2[U] = Ne BlU
_ —R[U]-Ry

with anybody’s proposal for R[U] , all we have to do is to plot

Ny

tot

—log[ ] vs. R[U™)]

If the proposal is right, then the data should fall on a straight line,
with slope = 1.




Reason: Start with the identity

WU ) = / DU {H [ s(Ux(x,0) - U™ <x>1} e
x k=1

where

w2U" (%))
SM e Ui™(x)]

V2U™ (x)] =

S DU T, Tz 01U (x,0) = ULV ()] e~

) Y1 / DU {HX [13_, 8[Us(x,0) — U™ (X)]} o—S

This is a statistical system with the t=0 timeslice restricted to a set of M lattices. The
system can be simulated numerically, and

- N,




Since  Wo[U] is just a rescaling of U, [U], it follows that

W2[U(™)] . N,
5 = lim —
\IJO[U(m)] Ntot—)OO Nm




Abelian Plane Waves

Abelian lattice configuration: [U,,U,]=0, variable amplitude.
Oscillation in the y-direction with wavelength equal to the lattice length L:

U™ (1, n2) =\/1 = (™ (n2))? 1L + ial™ (ng)o
Ug(m)(nlanQ) :]12

2
a\™ (ny) = \/oz + ym cos ( 7;”2)

~

squared lattice momentum  k? = 2(1 — COS(27T/L))

For physical units, set string tension o = (440 MeV)?

Olat
0}

lattice spacing a — as usual.




Predictions:

Ntot
where
( 1 k2
5 9% Vk2+m?2 GO
w(k™) = <
1 k- KKN
\ 9% VE2+m2+m

For CG, a numerical solution is required. However, w;(0) =0 if ¢;=0,
otherwise ws(0) > 0.




Fit the Monte Carlo data to

N. ~
—10g< 2 ) = 2(a + vj)wrmc(k?) + 70

abelian plane wave, Bg=9, L=24

“10g(N;Nyo)
P

10 12 14 16 18 20 22 24 26 28 30
2(c+m)

slope is wy,c(k?)

Compare to the predicted values for w(k?).




Results:

opmc(P)

0.8

0.6

0.4

0.2

I I I I -l
*“\ﬂ\‘\«‘\(\‘:“"‘\(‘ “““
“(‘\“;‘(“
e
Rt
Rete
I e 4
o
g
"" * BE—6 -
Pe=9 o
,,”'\:‘ BE=12 ————— Y
| GO fit
ar® KKN fit -----
v Coulomb gauge ------ |
*
&
| | | |
p? (GeV?)

g2/m is the
fitting parameter

GO, KKN both work well, and are indistinguishable in this range of momenta.
CG also works well, for the choice (shown here) of c,=0.




Non-Abelian Constant Configurations

For abelian plane waves in the low-momentum limit, for GO, KKN, and CG,

R[A] x w(k?)(A; - A1 + A, - A5)

and it is just a question of how much the w(k?) agree in the given range
studied.

In contrast for weak-field, non-abelian constant configurations

—

(Al X /fg) . (14)1 X A}) GO, hybrld

In this case, GO & hybrid are qualitatively different from CG.




fixed amplitude, variable “non-abelianicity” controlled by angle 6

@@

for small a,

and this is easy to check, since we should have — log[N,, /N;¢]

5

(n)
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GO and hybrid are fine,

CG doesn’t work.
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FIG. 6. Plot of —log(N, /Nt) vs. Rgo for the non-abelian constant
configurations with variable non-abelianicity. The straight line fit has
slope = 1.02.



variable amplitude, maximal “non-abelianicity” 8=m/2

Ul(m) (nl,ng) = \/1 — (a(m))2]12 + ia(m)al

Uz(m) (nl,ng) — \/1 — (a(m))2]12 + iCL(m)O'Q

(m) [CV—I")/m] 1/4
a p—

2012
We plot
—1og(Ny /Niot) vs. R[U™)]
The proposal W[U] = exp[-R[U]] works if

1. the datain this plot falls on a straight line
2. withslope=1




Both GO and hybrid work well:
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Numerical Simulation of the GO/hybrid Wavefunctionals

It is also possible to simulate the probability distribution \11(2) [U] for the GO and
hybrid proposals. Olejnik & JG PRD77 (2008)

Using this method, one can compute the

aq
1. Coulomb gauge ghost propagator G(R) — _ <_>

2. color Coulomb potential VC(R):—< 1 <_v2) 1 >CLa

3. mass gap, extracted from <Tr[F122(:1;)]Tr[F122(y)]>
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FIG. 10. The ghost propagator derived from standard Monte Carlo
(MC) simulation at Bg = 9, and the same quantity calculated by sim-
ulation of the GO and hybrid wavefunctionals, by the technique de-
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agreement with the Coulomb potential is not as good, but the disagreement stems from
rare “exceptional” configurations, for which the Fadeev-Popov operator —V - D has an
unusually small eigenvalue. The Coulomb potential is more sensitive to these than the

ghost propagator. When exceptional configurations are excluded, agreement is restored.




Conclusions at T=0

Both GO and Hybrid (=KKN for abelian) fit the data almost perfectly, for both
abelian plane wave and non-abelian constant lattice configurations.

The Coulomb gauge proposal also works for abelian plane waves, if we choose
c,=0. It fails on non-abelian constant configurations.

So far, we cannot distinguish the GO from the Hybrid proposal. Will need to go
to shorter wavelengths.

Physics conclusion: There is some truth to Dimensional Reduction in the
Infrared. Long wavelength vacuum fluctuations in 2+1 at fixed time resemble

fluctuations in a two-dimensional Euclidean theory. (Explains Casimir scaling.)

Next step: D=3+1 dimensions.




What are the important high-T states?

We assume that at any temperature, energy eigenstates have the general form

n) = Qnl0)

where Q, is some gauge-invariant operator. The possibilities are infinite. We can always
build gauge-invariant operators from, e.g.

1. eigenstates and eigenvalues of covariant differential operators

Flo®(2)¢% (x); A\n] where — D?¢,, = Aoy

n m

2. transformations g[x;A] which take the gauge field A to a physical (e.g.
Coulomb) gauge, i.e.

G |g[x; Al o Ag(x)




There are also

» Wilson loop operators W(C) - create electric flux tubes;

» ‘t Hooft loop operators B(C) - create magnetic flux tubes.

These are “local” in the sense that their construction does not require solving
differential equations in the full volume of space.

Also, in fixed gauges, electric and magnetic flux tubes are seen (in numerical
simulations) to have a constituent structure




Gluon-Chain Model (Thorn & JG, 1980’s) - in Coulomb gauge, electric flux
tubes appear as a chain of constituent gluons, bound by confining
Coulombic forces.

Recent numerical investigation: Olejnik & JG PRD 79 (2009)

| 5
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A similar picture was advocated at
high temperatures, T>T. by
Shuryak and Liao (2006).




Center vortices (magnetic flux tubes) in maximal center gauge:
a monopole-antimonopole chain.

There is quite a lot of numerical evidence that these objects play a role in
generating a confining force which respects N-ality. (review: hep-lat/0301023)
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Fig. 8.6 Hypothetical collimation of monopole/antimonopole flux into center vortex tubes on the
abelian-projected lattice.




(for electric/magnetic
pictures of the SQGP, cf.
Chernodub & Zakharov
and Shuryak)

So one guess, at high T, is

In) = {electric flux tube operators}

x {magnetic flux tube operators}|0)

Low T: only small electric flux tubes (low-lying glueballs) - would be
important. Center vortices are only vacuum fluctuations.

As T increases: longer electric flux tubes (excited glueball states) - are not so
much suppressed.

At T> T, ,what happens? Do electric flux tubes just disappear? Or percolate?
Do they eventually “melt”?




Adjoint Torelon Operators

Ideally, one would like to compute <Y>thermal where

Y = (flux tube creation operator) x (flux tube destruction operator)

for long flux tubes, e.g. winding through the periodic lattice in the z-direction,
such that only excited states containing at least one long flux tube would contribute
to the thermal average.

| don’t know of any operator which does exactly this.

Next best thing is the adjoint torelon operator L 4 .




where
La=Te[L"|Tr[L] -1
and

Lz
L =Tr Pexp [zg/ dzA,(0020)| = Tr
0

L transforms non-trivially under center transformations. If we (for
convenience) let “torelon” refer to a line of electric flux along the positive z-
direction, then

L createsa torelon, destroys an antitorelon

L creates an antitorelon, destroys a torelon




processes contributing to <LA>therma1 :

z=y=0 slice (schematic)

t="T/2

-

' A

strong-coupling diagrams:

t="T/2

=T

(contribute to <L,> ..)




Numerical Result, f=2.5115

Adjoint torelon in the z-direction, fixed L., L,, L. ,vary L;

1.0e-06
9.0e-07
8.0e-07
7.0e-07
6.0e-07
5.0e-07
4.0e-07
3.0e-07
2.0e-07
1.0e-07
0.0e+00

adjoint torelon

p=2.5115, L,=L =L =15

peak at T=T is
an order of
magnitude
higher than at
. low T.

([ &

Uses Luscher-Weisz noise reduction, one level, 3 spacings per level.




The peak suggests that the contribution of long flux tubes is enhanced, as T
increases, to a maximum at T=T., persists at T>T., and disappears for T > 3T,

or so.
Why disappear?

From the point of view of the gluon chain model, a flux tube seen in Coulomb
gauge is a chain of gluons, held together by the color-Coulombic potential

Vo) =~ S5V 5 )

lx—y|=R

Maybe the Coulombic force, which is confining at T=0, is non-confining at
high T?




Coulomb string tension at high-T

Define the time-like Wilson line of time-extentt (not a Polyakov line)

L(x,1) = Pexp [z /0 o Ao(x, xo)]

G(R,t) = <Tr [L(O,t)U(R, t)D

It is not hard to show that (also at finite temperature)

. d
Vo(R) = —lim = log|G(R, 1)

On the lattice

Vo(R) = — 10g<Tr [Uo(o, 0)Uo (R, 0)} >




zero-temperature result: the color-Coulomb potential is linearly confining,
with a string tension about three times larger than the asymptotic string
tension.

V(R,0)=-log[G(R,1)], B=2.5, 24°

—a— w'ith vortices |
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This is the result at finite temperatures, with the spatial string tension shown
for comparison:

B=2.74, N3 x N+ lattice
0.18 T T T T T T T T
0.16 Ogpatial (Balietal.) -~ =

B
L

Coulomb string tension

Like the spatial string tension, the Coulomb string tension 6.(T) increases with
temperature.




Conclusions at High T

The adjoint torelon observable has a pronounced peak at T=T., and runs to
zero around T = 3T or so.

The suggestion is that long electric flux tubes persist, in thermal ensembles,
beyond the critical temperature, and then disappear.

The color-Coulomb string tension, like the spacelike string tension, actually
increases with T>T.. So this does not explain flux tube disappearance.

Perhaps gluon chains “melt” into their constituent gluons at high T, as the
overall density of gluons becomes large. That means: many gluons, but the
organization of gluons into chains (i.e. correlation of color indices with
spatial position) is lost.




IFTT #1: color screening at strong coupling

‘Po has the dimensional reduction form at large scales
vl Al = NV P F2]
0 = exXp 9 9 X 1r ij

2D Yang-Mills --> Casimir scaling.

However, Casimir scaling in D=2+1 and 3+1 does not hold asymptotically for
all group representations. At large enough scales, the string tension should

depend only on the N-ality of the static color charges, due to color screening
by gluons.

So - what about color screening?



How is this problem solved at strong couplings, where we can solve for the ground
state analytically? (G, 1980)

The vacuum is

Wo[U] = PV

where, up to O(ﬂ')1

R[U] =

contours

+ larger contours



The 1X2 rectangle Cl screens adjoint loops.

It also gives the leading correction to
booooooodt boeeee ~—-—| dimensional reduction.

; | h ¥ g Expansion in powers of lattice spacing:

Uy [U] = exp [—% [ d%z (akoB? — a*kaB(—D?*)B + .. )]

where (Guo et al, 94)

1 | : :

Kg = =Cp+ 2(61 + ¢y + 03) Note! Leading correction comes from
2 the rectangle
1 (X ¢q)

kKo = —C1

4



IFTT #2: Probability distribution of Polyakov lines

Do the eigenvalues of Polyakov lines, in the confined phase, attract or repel? Some
extremes:

1. Center projected SU(N) gauge theory:
P(x) = a center element. <Tr[P]>=0 because of fluctuations among
center elements.

2. Dilute gas of dyons (Diakonov & Petrov), trace deformations (Unsal) :
Polyakov lines are mostly near Tr[P]=0 in each configuration.

In the actual vacuum state there is a broad probability distribution for P(x). But we can
ask whether that distribution is (slightly) peaked at zero - eigenvalues “repel” - or at
center elements - eigenvalues “attract”.

Let p(g) = prob density that P(x)=g . Then in SU(2)
plg) = <5[P(w) - g]>
= 06PN (9)

~ 14 (Tra|P(z)])Tralg] where Tr,[g] = x,[g]




Butif  p(g) = 1+ (Tra[P(z)])Tralg]

it means that:

1. probability is peaked at center elements if (Tra[P(x)]) > 0
2. probability is peaked at Tr[P]=0 if (Tra[P(z)]) <O

The numerical result is that (Tra[P(z)]) > 0, and therefore the first
alternative (“eigenvalues attract”) is the correct one.




llb. Abelian plane-wave configurations (same amplitude, different A)

Ul(m) (n1,n2) = +/1—a2,(n1,n2)I +iam(ni,n)os

U2(m) (nl ’ n2) = I

( ) K 2Tmns

Am(N1,N2) = COS

e L2 L

parameters k=1, f=6, L=48, m=1-10

wavelengths A =4.8 - 48 %
Z
o
&

the slopeis 1.1 £ 0.02.

4.5

35

25 |

1.5

1

abelian plane waves - same amplitude, different wavelengths
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Dimensional Reduction: Expand B(x) in eigenmodes of the covariant
Laplacian:

(=D*)*¢p(z) = A¢%(2)

B(z) = ) budn(a)
n=0

S badl(z)
n=>0

The cutoff mode sum defines the “slowly varying” B-field. Choosing n  such that

A -—)\0<<m2

Ba,slow (.’E)

Nmax

1 °
/d2:z:d2y Ba,sloxV(w) ( ) Bb,blow(y)
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So the part of the squared wavefunctional that involves B$°Y is
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which is the probability distribution of D=2 dimensional Yang-Mills (i.e. dimensional
reduction). The string tension o can be calculated analytically; in lattice units it is
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