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Motivation



Something we would like to understand in detail ...



Lattice QCD with chemical potential

• Grand canonical partition sum

Z =

∫
D[U ] e−SG[U ] detD(µ)Nf

• For non-zero chemical potential µ the fermion determinant is complex

detD(µ) ∈ C

and thus cannot be used as a weight factor in a MC calculation.

• For further progress in the analysis of the QCD phase diagram new
approaches would be highly welcome.

• In this project we explore new strategies in simpler models.



An effective theory for QCD with chemical potential



Center symmetry and Svetitsky-Yaffe conjecture

• For pure gauge theory deconfinement can be understood as the sponta-
neous breaking of center symmetry. An influential idea for understanding
this phase transition is the Svetistky-Yaffe conjecture (1981):

• At Tc the critical behavior of SU(3) gauge theory in d + 1 dimensions
can be described by a d - dimensional spin system with a Z3 - invariant
effective action for the local Polyakov loop P (x) ∈ SU(3).

• Leading term of the effective action from a strong coupling expansion

Sc[P ] = − τ
∑
〈x,y〉

[
TrP (x) TrP (y)† + TrP (y) TrP (x)†

]



Center breaking terms from the fermion determinant

• The fermion determinant breaks the center symmetry explicitly.

• The leading center symmetry breaking can be calculated using hopping
expansion, including the chemical potential µ.

S[P ] = − τ
∑
〈x,y〉

[
TrP (x) TrP (y)† + TrP (y) TrP (x)†

]
−κ

∑
x

[
eµ TrP (x) + e−µ TrP (x)†

]

• For non-vanishing chemical potential µ the action is complex and the
model has a complex phase problem.



Reduction to the center degrees of freedom

• The distribution of TrP (x) is dominated by the center.
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• Reduction to the center elements: TrP (x)→ L(x) ∈ {1, e±i2π/3}

S = − τ
∑
〈x,y〉

[
L(x)L(y)? + L(y)L(x)?

]
− κ

∑
x

[
eµL(x) + e−µL(x)?

]
Contains leading center symmetric and center symmetry breaking terms.



Flux representation for the effective theory



Flux representation - I

• Identity for the nearest neighbor term:

e τ [L(x)L(x+ν̂)∗+c.c.] = C

+1∑
bx,ν=−1

B|bx,ν | (L(x)L(x+ν̂) )bx,ν

• Identity for the magnetic term:

eκ[e
µ L(x) + e−µ L(x)∗] =

+1∑
sx=−1

Msx L(x)sx

• C,B and Ms are real and positive functions of τ, κ and µ.

• Remaining sums over the center elements at each site:∑
L∈{1,e±i2π/3}

Ln = 3T (n) with T (n) = δ 0 , nmod 3



Flux representation - II

• Representation with dimers bx,ν ∈ {−1, 0, 1} and monomers sx ∈ {−1, 0, 1}

Z =
∑
{b,s}

W (b, s)
∏
x

T

(∑
ν

[bx,ν − bx−ν̂,ν] + sx

)
with W (b, s) > 0

Monomers: Dimers:

x

ν = 2

ν = 1



Update with a Prokof’ev – Svistunov worm algorithm

• We start the worm at some point (Position 1).

• The worm may decide to change dimers (Pos. 2) or insert monomers (3).

• Insertion of a monomer is followed by a random hop (4) and another
monomer insertion (5).

• The worm closes when it reaches its starting point (6).
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Numerical analysis

• The worm algorithm is ergodic and efficient also for large κ and µ.

• As observables we consider the internal energy E, the heat capacity C,
the expectation value of the Polyakov loop 〈P 〉 and the corresponding
susceptibility χP .

• All our observables can be expressed in terms of the dimer- and monomer
occupation numbers and their fluctuations.

• We work on lattice with sizes 163 to 723 with statistics of 105 to 106

worms.

• Comparison of the results for small τ with low temperature expansion.



Results
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Exploring the phase diagram
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Volume scaling

For all values of κ we studied, no volume scaling of the second derivatives of
the free energy C and χP was observed ⇒ Crossover.
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Strips of crossover behavior
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If QCD is reduced to center degrees of freedom ⇒ Crossover transitions.



Developments and perspectives



More realistic models:

• Action for effective theory with SU(3)-valued Polykov loops:

S[P ] = − τ
∑
〈x,y〉

[
TrP (x) TrP (y)† + TrP (y) TrP (x)†

]
−κ

∑
x

[
eµ TrP (x) + e−µ TrP (x)†

]
• Flux representation:

Z =
∑
{l,l,s,s}

W [l, l, s, s]
∏
x

T
(∑

ν

[(lx,ν − lx,ν)− (lx−ν̂,ν − lx−ν̂,ν)] + (sx − sx)
)

W [l, l, s, s] real and positive ; lx,ν , lx,ν , sx , sx ∈ N0



Examples of admissible flux and monomer vertices
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Generalized PS worm algorithms can be applied for a Monte Carlo calculation.



Summary

• We study QCD reduced to the leading center symmetric and center
symmetry breaking terms.

• The complex phase problem is solved by using a flux representation with
dimers and monomers, which is suitable for a PS worm algorithm.

• We map out the phase diagram using E, 〈P 〉, C and χP .

• If QCD is reduced to the center degrees of freedom only crossover
transitions remain.

• Work in progress: Generalizations to theories closer to QCD.

• The new models can and should be used for testing various approaches
to finite µ (expansions, complex Langevin, reweighting ...).


