Exploring center symmetry with electrically charged quarks

<u>Sam Edwards</u>¹, Lorenz von Smekal¹ & André Sternbeck²

¹ Institut für Kernphysik, TU-Darmstadt ² Institut für Theoretische Physik, Regensburg HIC for FAIR Helmholtz International Center

PoS (Lat2010) 275

THE GIST

Could the fractional electric charge of quarks relevant be to the phase diagram? (esp. deconfinement)

o We think 'Yes, there might be a way'

This talk – finite temperature only

OUTLINE

 Lattice based – lean heavily on analogy of Polyakov loops as spins

- Standard picture of (de)confinement
- Inclusion of electromagnetism
- Results from our 2-color model

```
(DE)CONFINEMENT FOR PURE GLUE
```

• Center symmetry

... glue is blind to phases $z = e^{in2\pi/3} \in \mathbb{Z}_3$

gauge group

$$SU(3)/\mathbb{Z}_3$$

• Polyakov loop - order parameter for Z₃ breaking transition

• Center symmetry

... glue is blind to phases $z = e^{in2\pi/3} \in \mathbb{Z}_3$

c.f. spontaneous magnetization of a spin system

• plaquette-like terms terms don't affect symmetry

in partition fⁿ $e^{-S_{eff}}$

• Polyakov loop terms pick center sector

$$\propto -\kappa^{N_t} \sum_{\vec{x}} \operatorname{Re} \operatorname{Tr} P(\vec{x})$$

favors P = 1

in partition fⁿ $e^{-S_{eff}}$

favors

P = 1

o plaquette-like terms don't affect symmetry

• Polyakov loop terms pick center sector

 $\propto -\kappa^{N_t} \sum_{\vec{x}} \operatorname{Re} \, \operatorname{Tr} P(\vec{x})$

Like coupling spins to an ext. magnetic field

Effect of fermions - ordering external field

DYNAMICAL FERMIONS – SU(2)

24³ x 4, κ = 0.15, 2 flavors

6

...BUT QUARKS HAVE ELECTRIC CHARGE

• What if we include electromagnetism?

$$q_u = +\frac{2}{3}e, \quad q_d = -\frac{1}{3}e$$

• Exactly compensate color center phase by U(1) phase

$$(e^{i2\pi/3}, e^{i2\pi Q/e}), (e^{-i2\pi/3}, e^{-i2\pi Q/e})$$

o Symmetry
 $SU(3) \times U(1)_{em}/\mathbb{Z}_3$

HIDDEN SYMMETRY

• 'True' Standard Model symmetry group

$$SU(3) \times SU(2) \times U(1)/\mathbb{Z}_6$$

before electroweak trans.

• Importance

- unification, e.g. SU(5), SO(10) GUT
- topological objects color-EM monopoles/vortices

A global center symmetry with fermions!

• What can it do for us?

electroweak trans. – Zubhov, Veselov, Bakker TOY MODEL FOR SIMPLICITY

• 2 colors, 2 flavors of dynamical Wilson fermions, gauge group

 $SU(2) \times U(1)_{em}/\mathbb{Z}_2$

u/d quarks with ± ½ charge relative to U(1)_{em} gauge action

$$S = -\sum_{\Box} \left(\frac{\beta_{col}}{2} \operatorname{Re} \operatorname{Tr} \Box_{SU(2)} + \beta_{em} \cos \Box_{\theta} \right) + S_{f,W}$$

 $U_{\mu} \exp i \frac{\theta}{2}$

parallel transporters give both color and electromagnetic contribution to quarks – e.g. -1 x -1 = 1 HMC

Color disorder through U(1) disorder

Quark loops get additional U(1) factor
e.g. Polyakov loop terms from Hopping expansion

o if U(1) disordered - c.f. spin model in a random external field

$$\mathcal{H} = -J\sum_{\langle i,j\rangle} s_i s_j - h\sum_i h_i s_i$$

ref. Spin glasses and random fields, 1997

RESTORATION OF PURE GAUGE BEHAVIOR FOR $P_{SU(2)}$ $SU(2) \times U(1)/Z_2$

12

CRANK UP U(1) COUPLING BEYOND THE U(1) TRANSITION

 $8^3 \times 4$, $\kappa = 0.15$, random start

...AND ON BIGGER LATTICES

phase for unit charges...

• See phases that integer charged particles and the gauge action do not

• π for our quarks - 2π in U(1) action

• Quarks have *fractional* charge

 $e^{i\pi} = -1$ VS $e^{i2\pi} = 1$

- β_{em} > 1, order w.r.t. U(1) action links ~ 1 for int. particles
- BUT there is still room for Z₂ disorder in the links as seen by quarks

+1 link w.r.t. the gauge action could be a -1 link for the quarks

frozen in

So...

- A center symmetry recovered when U(1) is added to QCD with dynamical quarks
- **Disordering** effect of U(1)
 - How much can the quarks' **fractional** electric charge influence color dynamics?

a lot in our model!

TO THINK ABOUT

• Initial conditions – source of Z₂ disorder

• Quark mass dependence, lines of constant physics

Speculation for SU(3)xU(1) / Z_3

?

first order transition persists for lighter quarks?

sharpen crossover if it doesn't reach physical quark masses?

... and if you like vortices...

't Hooft's twisted boundary conditions!

- in presence of dynamical fermions
- combined **vortices** carrying both color and EM flux

SU(2) x U(1)/Z₂

twist simultaneously

Hot vs Cold start - P_{SU(2)}

HOT VS COLD START - P_{SU(2)}

CHECKING U(1) POLYAKOV LOOPS - COLD START

PLAQ-PLAQ COMPETITION

$\begin{array}{c} \propto -\kappa^4 \ \mathrm{Re} \ \mathrm{Tr} \ \square \ \mathrm{Re} \ \square_{\theta/2} \\ \mathbf{color} \ \mathbf{\mathsf{EM}} \end{array}$

 $\propto -\kappa^4 \operatorname{Re} \operatorname{Tr} \square \operatorname{Re} \square_{\theta/2}$ color EM