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CENTER SYMMETRY OF GLUODYNAMICS

@ Local Polyakov loop:

Ni—1

L(X) = Tr[ I1 u4(>?,t)]

t=0

SU(3) gauge theory: Center elements z¢ {1,e27/3 e~i27/3}

@ Center transformation: Acts on temporal links at time slice t = tg

U4()_('7 to) —Z U4()?, to)

Action and gauge measue are invariant

Polyakov loop transforms non-trivially under a center transformation

L(X) — z L(X)

Non-vanishing (L(X)) signals spontaneous breaking of center symmetry
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INCLUSION OF DYNAMICAL FERMIONS

@ When quarks are included the fermion determinant acts as an additional
weight factor

@ Fermions play the role of an external magnetic field which break the
center symmetry explicitly

@ Although the Polyakov loop P is no true order parameter anymore it
signals the crossover to deconfinement

Pure Gauge Theory Full Theory
04 T T T T T T T T
06~ 4 F 4
T=069T, (Y T=123T, T =100 MeV T =1000 MeV
04 +4 F -
02 4 F g
02 +4 F -
o e 1L ®- o @ || @ -
02} 4 L 4
02F 4 F B oal 1L ]
'
o8k 4 L 4
04 I | . I I I T R R E R R TR R E B
0.4 -0.2 0.0 0.2 0.4 -04 -0.2 0.0 02 0.4 06 -04 -02 00 02 04 06 -06 -04 -02 00 02 04 06

3/18



EFFECTIVE SPIN SYSTEM FOR THE QCD TRANSITION

@ At T, the critical behavior of SU(N) gauge theory in d + 1 dimensions
can be described by a d - dimensional spin system with a Zy - invariant
effective action (Svetitsky-Yaffe Conjecture, 1981)

@ The spins are related to the local loops L(X)

@ In spin systems one can define clusters of parallel spins (e.g.
Fortuin-Kasteleyn clusters in Ising systems)

@ At T, these clusters start to percolate

@ Can we identify characteristic properties of such clusters directly in
QCD?

@ Here we focus on clusters with coherent phases of the Polyakov loop
and their percolation properties near T..
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SETTING AND GOAL OF OUR ANALYSIS

@ We study clusters and critical percolation directly in quenched and
dynamical SU(3) gauge theory

@ For that purpose we analyze properties of the local loops L(X)

@ Technicalities — Quenched case:

Lischer-Weisz gauge action

Lattice sizes: 20% x 6 ... 40° x 12
Temperatures: T € [0.63T¢, 1.32T¢]

C. Gattringer, Phys.Lett.B690:179-182,2010

vV vyVvYy

@ Technicalities — Dynamical case:

Symanzik improved gauge and stout-link improved staggered action
2 + 1 flavors with physical quark masses

Lattice sizes: 183 x 6,24% x 6,36° x 6,24° x 8,323 x 10
Temperatures: T € [50 MeV ..., 1000 MeV |

Y. Aoki et al., Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)

vV vy VY VvYy
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THE LOCAL PoLYAKOV LooP L(X)

@ For the analysis of local properties of L(X) we define:
L(X) = p(x)e')

@ We analyze properties of the modulus p(X) and the phase »(X)

The following plots are taken from:

C. Gattringer, Phys.Lett.B690:179-182,2010

C. Gattringer and A. Schmidt, JHEP 1101:051,2011

J. Danzer, C. Gattringer, S. Borsanyi, Z. Fodor; PoS LATTICE2010:176,2010
and work in preparation
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PROPERTIES OF THE LOCAL POLYAKOV LOOP

MoDuULUS p(X):

(full curve = Haar measure distribution)
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Ve .
PHASE p(X):

(full curve = Haar measure distribution)
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CENTER SECTORS ACROSS THE PHASE TRANSITION

guenched
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CONSTRUCTION OF CLUSTERS

We assign the sector numbers —1, 0, 1 according to the phase of the
Polyakov loop

@ We also introduce a cut for sites far from center elements

@ A similar cut is necessary for percolating clusters in spin systems, e.g.

Bonds for Fortuin-Kasteleyn clusters with pg = 1 — e =2/

@ Neighboring sites with same sector number are put in the same cluster
@ In 3 dimensions the critical site percolation probability p. = 0.3116
@ Without cut we thus always find percolating clusters below T,

-1 0 +1

F cut cut cut cut 1
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CLUSTER AND PERCOLATION PROPERTIES OF CENTER DOMAINS

LARGEST CLUSTER
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PERCOLATION PROBABILITY

Percolation probability , quenched Percolation probability , dynamical
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PHYSICAL DIAMETER OF THE CLUSTERS

@ We study 2-point correlation functions C(r) within a cluster of a fixed
center sector

@ Clusters decay exponentially with distance r:

C(r) xe™»

@ Physical diameter is given by:

dphyszz'p'a
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PHYSICAL DIAMETER - QUENCHED
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CLUSTER SIZE AND CONTINUUM LIMIT

PHYSICAL DIAMETER - DYNAMICAL
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CONTINUUM LIMIT OF CENTER CLUSTERS

@ We determine the physical diameter dpnys = a - diyc Of the cluster
@ The diameter clearly depends on the value of the cut parameter

@ For a given value of d (e.g. 1.0 fm, 0.8 fm) we compare the cut
parameters on lattices with different lattice spacing a

@ The number of lattice points which are not cut and thus are available for
the clusters is
f 100% — cut%
=N
@ f scales linearly to a value very close to the critical percolation density
p. = 0.3116
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CONTINUUM LIMIT

SU(3) - Quenched SU(3) - Dynamical
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@ Same behaviour for SU(2)!
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SUMMARY AND OUTLOOK

@ We analyze the behavior of local Polyakov loops L(X)
@ We find that below T, they are distributed according to Haar measure

@ The phases always have preferred values near the center angles
0, £i2x/3

@ The phases form spatially localized clusters

@ For pure gauge theory the deconfinement transition can be
characterized by the onset of percolation of suitably defined clusters

@ For the full theory, due to the crossover, the transition is much smoother
@ We studied the physical diameter of the clusters

@ The clusters can be shown to have a continuum limit
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