Dual and dressed quantities in QCD

Falk Bruckmann (Univ. Regensburg)

Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar, March 2011

Motivation

phase transition/crossover at finite temperature

- Deconfinement: Polyakov loop probes center symmetry for infinitely heavy quarks order parameter: 0 → finite / small → large
- Chiral restoration: Quark condensate ρ(0) probes chiral symmetry for massless quarks order parameter: finite → 0 / large → small

Motivation

phase transition/crossover at finite temperature

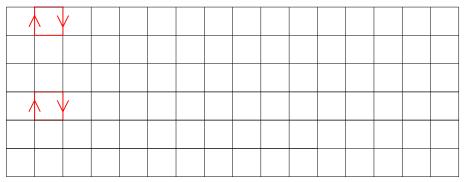
- Deconfinement: Polyakov loop probes center symmetry for infinitely heavy quarks order parameter: 0 → finite / small → large
- Chiral restoration: Quark condensate ρ(0) probes chiral symmetry for massless quarks order parameter: finite → 0 / large → small

related? Dual quantities

- Dressed Polyakov loop from phase boundary conditions
 - idea and definition Bilgici, FB, Gattringer, Hagen 08
 - lattice results: quenched and dynamical
 Zhang, FB, Fodor, Gattringer, Szabo 1012.2314 + Borsanyi
- Dressed Wilson loops from magnetic fields
 FB, Endrödi in prep.

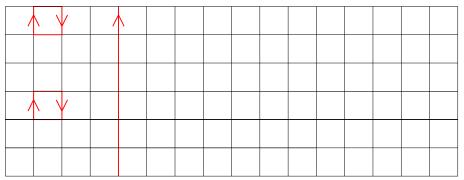
lattice: gauge invariant quantities \Rightarrow link products along closed loops

lattice: gauge invariant quantities \Rightarrow link products along closed loops



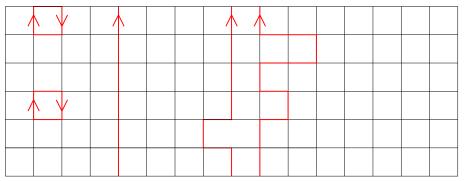
plaquettes

lattice: gauge invariant quantities \Rightarrow link products along closed loops



plaquettes Polyakov loop

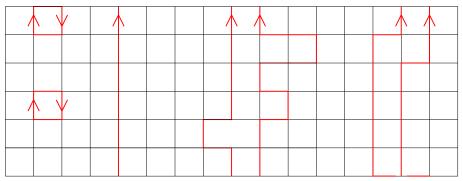
lattice: gauge invariant quantities \Rightarrow link products along closed loops



plaquettes Polyakov loop

"Polyakov loops with detours"

lattice: gauge invariant quantities \Rightarrow link products along closed loops



plaquettes Polyakov loop

"Polyakov loops with detours"

loops winding twice

lattice: gauge invariant quantities \Rightarrow link products along closed loops



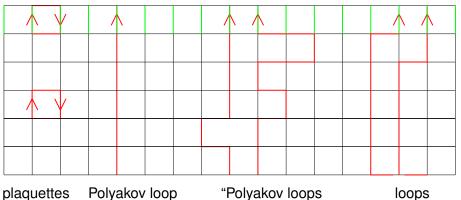
plaquettes Polyakov loop

"Polyakov loops with detours" loops winding twice

how to distinguish these classes of loops?

Gattringer 06

lattice: gauge invariant quantities \Rightarrow link products along closed loops



with detours"

winding twice

how to distinguish these classes of loops?

Gattringer 06

 \Rightarrow phase factor $e^{i\varphi}$ multiplying U_0 at fixed x_0 -slice & Fourier component

phase factor $e^{i\varphi}$ multiplying U_0 at fixed x_0 -slice

 \equiv quarks with general boundary conditions

$$\psi(\mathbf{x}_0 + \beta) = \mathbf{e}^{i\varphi}\psi(\mathbf{x}_0)$$

- physical quarks are antiperiodic: $\varphi = \pi$
- boundary angle φ: tool on the level of observables (valence quarks)
- formally an imaginary chemical potential

various dual quantities possible

general quark propagator:

$$\frac{1}{D_{\varphi}+m}$$

general quark condensate:

$$\left\langle \operatorname{tr} \frac{1}{D_{\varphi} + m} \right\rangle \equiv \Sigma_{\varphi}$$

 $\lim_{m\to 0} \Sigma_{\pi} : \text{chiral condensate}$

• dual condensate:

$$ilde{\Sigma}_{m{n}}\equiv rac{1}{2\pi}\int_{0}^{2\pi}\!darphi\,e\,e^{-inarphi}\Sigma_{arphi}$$

Fourier component picks out all contributions that wind *n* times

cf. Synatschke, Wipf, Wozar 07

various dual quantities possible

general quark propagator:

$$\frac{1}{D_{\varphi}+m}$$

general quark condensate:

$$\left\langle \operatorname{tr} \frac{1}{D_{\varphi} + m} \right\rangle \equiv \Sigma_{\varphi}$$

 $\lim_{m \to 0} \Sigma_{\pi} : \text{chiral condensate}$

• dual condensate:

$$ilde{\Sigma}_{1}\equivrac{1}{2\pi}\int_{0}^{2\pi}darphi\,m{e}^{-iarphi}\Sigma_{arphi}$$

Fourier component picks out all contributions that wind once

cf. Synatschke, Wipf, Wozar 07

various dual quantities possible

• general quark propagator:

cf. Synatschke, Wipf, Wozar 07

$$rac{1}{D_{arphi}+m}$$

general quark condensate:

$$\left\langle \operatorname{tr} \frac{1}{D_{\varphi} + m} \right\rangle \equiv \Sigma_{\varphi} \qquad \lim_{m \to 0} \Sigma_{\varphi}$$

$$\lim_{m\to 0} \Sigma_{\pi} : \text{chiral condensate}$$

• dual condensate:

$$ilde{\Sigma}_1 \equiv rac{1}{2\pi} \int_0^{2\pi} darphi \; m{e}^{-iarphi} \Sigma_arphi$$

Fourier component picks out all contributions that wind once

= dressed Polyakov loop: chiral symmetry connected to confinement

various dual quantities possible

general quark propagator:

 $\frac{1}{D_{co}+m}$

general quark condensate:

$$\left< \operatorname{tr} \frac{1}{D_{\varphi} + m} \right> \equiv \Sigma_{\varphi}$$

$$\lim_{m\to 0} \Sigma_{\pi} : \text{chiral condensate}$$

• dual condensate:

$$ilde{\Sigma}_1 \equiv rac{1}{2\pi} \int_0^{2\pi} darphi \, e^{-iarphi} \Sigma_arphi$$

Fourier component picks out all contributions that wind once

dressed Polyakov loop: chiral symmetry connected to confinement

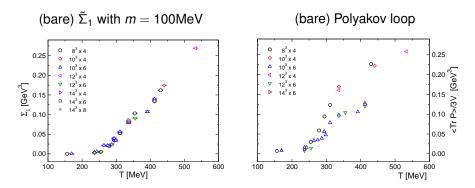
dual quantities: same behavior under center symmetry (\leftarrow special φ 's) \Rightarrow order parameter

cf. Synatschke, Wipf, Wozar 07

Dressed Polyakov loops: order parameter I

• SU(3) quenched

on lattices with different resolution and volume:

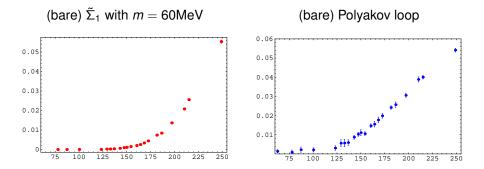


less UV renormalisation in $a \sim \frac{1}{N_t} \leftarrow$ 'detours'

Dressed Polyakov loops: order parameter II

• SU(3) with dynamical quarks

2 + 1 flavors of improved staggered fermions on $24^3 \cdot 8$ Aoki et al. 06 \Rightarrow crossover with $T_c^{\text{chiral}} = 157(4)$ MeV, $T_c^{\text{deconf}} = 170(5)$ MeV



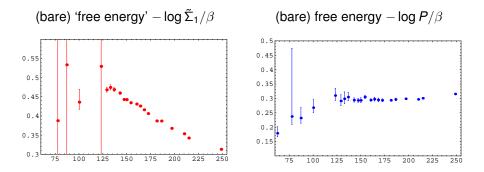
similar behaviour (center symmetry not an exact symmetry anymore) mass dependence of $\tilde{\Sigma}_1$?

Falk Bruckmann

Dressed Polyakov loops: order parameter II

• SU(3) with dynamical quarks

2 + 1 flavors of improved staggered fermions on $24^3 \cdot 8$ Aoki et al. 06 \Rightarrow crossover with $T_c^{\text{chiral}} = 157(4)$ MeV, $T_c^{\text{deconf}} = 170(5)$ MeV



similar behaviour (center symmetry not an exact symmetry anymore) mass dependence of $\tilde{\Sigma}_1$?

Falk Bruckmann

Dressed Polyakov loops: mechanism I

$$\tilde{\Sigma}_{1} = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi \ e^{-i\varphi} \cdot \left\langle \operatorname{tr} \frac{1}{D_{\varphi} + m} \right\rangle$$

Fourier integrand $\langle ... \rangle$ as a function of φ and *T*: 0.45 0.8 0.40 0.6 0.4 <u>9</u> 0.35 50 0.30 'T[MeV] 0.25 0.20 $\pi/2$ π $3\pi/2$ 2π 2π Ø

quenched [real Polyakov loops chosen] dynamical, m=1MeV

 \Rightarrow depends on φ only at high temperatures $\Rightarrow \tilde{\Sigma}_1 \neq 0 \checkmark$ in particular: chiral condensate survives at high *T* for periodic bc.s

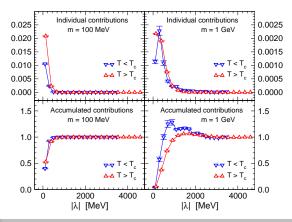
several lattice works, class. dyons FB 09

Dressed Polyakov loops: mechanism II

spectral representation (tr means sum over all eigenmodes):

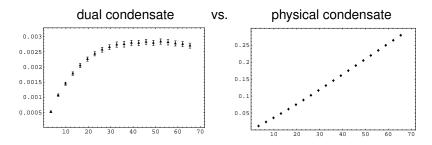
$$\Sigma_{\varphi} = \left\langle \operatorname{tr} \frac{1}{D_{\varphi} + m} \right\rangle = \left\langle \sum_{\lambda_{\varphi} > 0} \frac{2m}{\lambda_{\varphi}^2 + m^2} \right\rangle \qquad \tilde{\Sigma}_1 = \int_0^{2\pi} \frac{d\varphi}{2\pi} \, e^{-i\varphi} \dots$$

smallest $\lambda_{\varphi} \lesssim m$ contribute (denominator): IR dominance



Dressed Polyakov loops: mechanism II

accumulated condensates as a function of $\boldsymbol{\lambda}$



⇒ dual condensate has converged at even higher masses, where the conventional one has not yet (at our resolution)

additional effect: high modes respond to bc.s only weakly, no contribution after Fourier transform in $\tilde{\Sigma}_1$

Dressed Polyakov loops: mechanism III

geometric series for lattice D hopping once (like staggered we use):

$$\tilde{\Sigma}_{1} \equiv \int_{0}^{2\pi} \frac{d\varphi}{2\pi} \, e^{-i\varphi} \Big\langle \operatorname{tr} \frac{1}{D_{\varphi} + m} \Big\rangle \rightsquigarrow \operatorname{tr} \sum_{k=0}^{\infty} (-1)^{k} \frac{(D_{\varphi})^{k}}{m^{k}} \rightsquigarrow \operatorname{tr} \Big(\frac{U - U^{\dagger}}{2am} \Big)^{k}$$

k =length of loop

 \Rightarrow large mass suppresses long loops (many *U*'s \Rightarrow many 1/*m*'s)

 $m \rightarrow \infty$: conventional Polyakov loop reproduced since shortest

but less IR dominated FB, Gattringer, Hagen 06

 \Rightarrow mass gives inv. width of dressed Polyakov loops

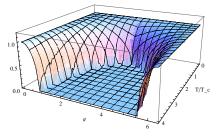
Dressed Polyakov loops: other applications

- through Schwinger-Dyson equations
- from Random matrix models

Gaussian integrals replace QCD dynamics modified Matsubara frequencies: $\omega = \varphi T$

 $\omega = \pi T$ for physical bc.s $\omega = 0$ for periodic bc.s \leftarrow 'no twist'

 Σ_{φ} from saddle point method:



Fischer, Mueller 09

FB in prep.

Dressed Polyakov loops: other applications

- at imag. μ through functional RG Braun, Haas, Marhauser, Pawlowski 09
- in Polyakov loop extended NJL model

Kashiwa, Kouno, Yahiro 09, Mukherjee, Chen, Huang 09 incl. magnetic field Gatto, Ruggieri 10

in gauge group G₂ (no center)

Danzer, Gattringer, Maas 08

• in SU(2) with adjoint quarks ($T_{chiral} \simeq 4T_{deconf}$)

Bilgici, Gattringer, Ilgenfritz, Maas 09

canonical determinants

Bilgici et al. 11, Nagata, Nakamura 10

'Wilson Xloop 800'

Dressed Wilson loops: idea and definition

Wilson loops of fixed area (in some plane)

 \Rightarrow phase factor e^{ifS} according to area S

Dressed Wilson loops: idea and definition

Wilson loops of fixed area (in some plane)

 \Rightarrow phase factor e^{ifS} according to area S

• magnetic / electric field: constant and abelian $f = d\bar{a}$ (charge=1)

$$U_{\mu} o U_{\mu} e^{i a ar{a}_{\mu}} \qquad W o W e^{i \oint_C ar{a}} = W e^{i \iint f} = W e^{i fS}$$
 [Stokes]

Dressed Wilson loops: idea and definition

Wilson loops of fixed area (in some plane)

 \Rightarrow phase factor e^{ifS} according to area S

• magnetic / electric field: constant and abelian $f = d\bar{a}$ (charge=1)

$$U_{\mu}
ightarrow U_{\mu} e^{i a ar{a}_{\mu}} \qquad W
ightarrow W e^{i \oint_{C} ar{a}} = W e^{i \iint f} = W e^{i fS}$$
 [Stokes]

• again in quark condensate (or other observables):

$$\left\langle \operatorname{tr} \frac{1}{D_f + m} \right\rangle \equiv \Sigma_f = \# \cdot \operatorname{tr} 1 \cdot e^0 + \# \cdot \operatorname{tr} W_{1 \times 1} \cdot e^{if} + \dots$$

• dual condensate:

$$\tilde{\Sigma}_{S} \equiv \sum_{f} e^{-iSf} \Sigma_{f}$$

picks out all Wilson loops of area S and any circumference

- \equiv dressed Wilson loops
- constant magn. fields ⇒ Wilson loops ← beyond lattice!?

Dressed Wilson loops: details

- Dirac operator restricted to some 2D plane (cheap) e.g. magn. field in z: $\Rightarrow D$ in (x, y)-plane, for different z and t (many)
 - \Rightarrow Wilson loops in (*x*, *y*)-plane = spatial (area law, too)
- finite volume:

magn. flux quantised: $f = 2\pi \frac{n}{\text{Vol}_2}$ $n \in \mathbb{Z}$ (like momentum) area bounded, i.e. periodic \Rightarrow Fourier series

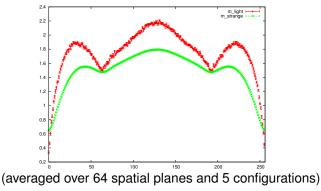
o discrete lattice:

flux bounded: $f \le 2\pi \frac{1}{a^2}$ (like momentum) area quantised

- \Rightarrow discrete Fourier transform (both variables discrete)
- for Wilson loops: need all magn. fields

Dressed Wilson loops: results

- 2 + 1 staggered fermions on a $16^3 \cdot 4$ lattice (T = 146 MeV)
 - condensate Σ_f over magn. field $f = 2\pi \frac{n}{256}$, n = 0, 1, ..., 256



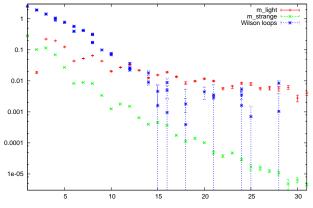
grows with magn. field \checkmark shoulders?

heavy quarks: effect washed out \checkmark

not flat $\stackrel{\text{Fourier components}}{\Rightarrow}$ dual condensate = dressed Wilson loop

Dressed Wilson loops: results

• dressed Wilson loop $\tilde{\Sigma}_{\mathcal{S}}$ ($S_{max} = 256$)



together with conventional Wilson loops

decays with area \checkmark

pattern for small sizes? geometry of lattice loops?

Dressed Wilson loops: mechanism I

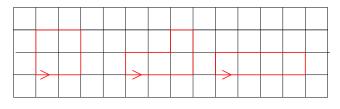
geometric series as before (on the lattice):

$$\tilde{\Sigma}_{\mathcal{S}} \equiv \sum_{f} e^{-iSf} \left\langle \operatorname{tr} \frac{1}{D_{f} + m} \right\rangle \rightsquigarrow \operatorname{tr} \sum_{k=0}^{\infty} (-1)^{k} \frac{(D_{f})^{k}}{m^{k}} \rightsquigarrow \operatorname{tr} \left(\frac{U - U^{\dagger}}{2am} \right)^{k}$$

k =length of loop

large mass suppresses long loops

e.g. loops with area S = 4:



circumference k = 8 circumference k = 10

Some geometry of lattice loops

ideal lattice loop

 \equiv max. area at fixed circumference:

rectangles, not circle-like

but entropy = number of loops of different shape !?

- no disconnected loops since $trD^k = D(x, y)D(y, z) \dots D(w, x)$
- extreme cases for area Σ_{S=p²}:
 - ideal loop = square: factor $\frac{4}{(2am)^{4p}}$
 - many plaquettes after each other: factor $\frac{4^{p^2}}{(2am)^{4p^2}}$
 - for large mass square loop favored

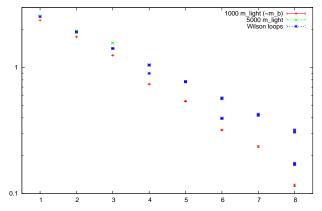
for large mass $\tilde{\Sigma}_{\mathcal{S}}$ contains mainly rectangular Wilson loops

how many such Wilson loops \leadsto combinatorical factor (for given area at miminal circumference)

Dressed Wilson loops: results

• again: dressed Wilson loop $\tilde{\Sigma}_{\mathcal{S}}$

now for large mass and incl. combinatorical factor



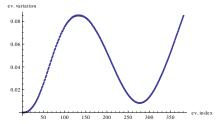
agrees with Wilson loops $\checkmark \leftarrow$ used for scale setting at large area *S* precision limited: tiny $\tilde{\Sigma}_S \times$ huge combin. factor

Dressed Wilson loops: mechanism II

IR dominance? only the lowest modes respond to the magnetic field? NO:

eigenvalue variation at fixed index

= standard deviation wrt. all magn. fields



high modes do respond to magnetic field

(in contrast to phase bc.s for dressed Polyakov loops)

 \Rightarrow dressed Wilson loops converge slowly in spectral representation, especially at large masses

Summary and Outlook

 $\begin{array}{ll} \text{dressed Polyakov loops} & \text{dressed Wilson loops} \\ \text{center symmetry } \tilde{\Sigma}_1 \neq 0 & \text{string tension } \tilde{\Sigma}_{\mathcal{S}} \sim e^{-\sigma \mathcal{S}} \\ \text{related to quark condensate: chiral symmetry} \end{array}$

winding from phase bc.s φ area from magn. field *f* loops with long circumference suppressed by large mass

IR dominance

no IR dominance mass range limited

$$\log \tilde{\Sigma}_{1,\text{bare}} \not \sim \frac{1}{a} + \ldots ?$$

mass: growing T_c ?

$$\log \tilde{\Sigma}_{\mathcal{S},\text{bare}} \not \sim \frac{c}{a} + \ldots ?$$

what is the meaning of $\log \tilde{\Sigma}_{S}(m < \infty)$? (sensitive to lattice geometry?)

beyond lattice!

beyond lattice?

dual condensates $\tilde{\Sigma}_1$ and its 'free energies' $-\log \tilde{\Sigma}_1/\beta$ as a function of temperature for masses m = 1 MeV, 10 MeV, 100 MeV (smeared)

