Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Jens Braun

Friedrich-Schiller-University Jena

Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011

RESEARCH TRAINING GROUP

J. Braun, A. Janot, arxiv:1102.4841

QCD phase diagram

Many ways to learn something about QCD ...

• λ_{ψ} -deformed QCD (here two massless flavors and $N_{\rm c}$ colors)

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + ig A \!\!\!/ \right) \psi + \frac{\lambda_{\psi}}{(\bar{\psi}\mathcal{O}\psi)^2}$$

•two parameters: $\lambda_{\psi}(m_{\tau})$ and $\alpha_s(m_{\tau}) \iff \Lambda_{\rm QCD}$

• λ_{ψ} -deformed QCD (here two massless flavors and $N_{\rm c}$ colors)

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(\mathrm{i}\partial \!\!\!/ + \mathrm{i}g A \!\!\!/ \right) \psi + \frac{\lambda_{\psi}}{\sqrt{\psi}} (\bar{\psi} \mathcal{O} \psi)^2$$

•two parameters: $\lambda_{\psi}(m_{\tau})$ and $\alpha_s(m_{\tau}) \iff \Lambda_{\rm QCD})$

•real QCD: only one parameter, namely $\alpha_s(m_{\tau}) ~(\Leftrightarrow \Lambda_{\rm QCD})$

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + ig A \!\!\!/ \right) \psi$$

integrate out fluctuations
$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + ig A \!\!\!/ \right) \psi + \lambda_{\psi} (\bar{\psi} \mathcal{O} \psi)^2 + \dots$$

quark self-interactions are induced by
the gauge degrees of freedom

• λ_{ψ} -deformed QCD (here two massless flavors and $N_{\rm c}$ colors)

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(\mathrm{i}\partial \!\!\!/ + \mathrm{i}g A \!\!\!/ \right) \psi + \frac{\lambda_{\psi}}{\sqrt{\psi}} (\bar{\psi} \mathcal{O} \psi)^2$$

•two parameters: $\lambda_{\psi}(m_{\tau})$ and $\alpha_s(m_{\tau})$ ($\Leftrightarrow \Lambda_{\rm QCD}$)

•real QCD: only one parameter, namely $\alpha_s(m_{\tau}) ~(\Leftrightarrow \Lambda_{\rm QCD})$

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + igA \!\!\!/ \right) \psi$$

integrate out fluctuations
$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + igA \!\!\!/ \right) \psi + \lambda_{\psi} (\bar{\psi} \mathcal{O} \psi)^2 + \dots$$
$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + igA \!\!\!/ \right) \psi + \lambda_{\psi} (\bar{\psi} \mathcal{O} \psi)^2 + \dots$$
quark self-interactions are induced by
the gauge degrees of freedom:
onset of chiral symmetry breaking is signaled
by strong quark-self interactions (λ_{ψ} 's become IR-relevant)

• λ_{ψ} -deformed QCD (here two massless flavors and $N_{\rm c}$ colors)

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + ig A \!\!\!/ \right) \psi + \frac{\lambda_{\psi}}{(\bar{\psi}\mathcal{O}\psi)^2}$$

•two parameters: $\lambda_{\psi}(m_{\tau})$ and $\alpha_s(m_{\tau}) \iff \Lambda_{\rm QCD}$

•scales?

• λ_{ψ} -deformed QCD (here two massless flavors and $N_{\rm c}$ colors)

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(\mathrm{i}\partial \!\!\!/ + \mathrm{i}g A \!\!\!/ \right) \psi + \frac{\lambda_{\psi}}{(\bar{\psi}\mathcal{O}\psi)^2}$$

•two parameters: $\lambda_{\psi}(m_{\tau})$ and $\alpha_s(m_{\tau})$ ($\Leftrightarrow \Lambda_{\rm QCD}$)

•scale dependence of chiral observables in the chiral limit in **real QCD**:

$$T_{\chi SB}, f_{\pi}, |\langle \bar{\psi}\psi \rangle|^{\frac{1}{3}}, \dots \sim \Lambda_{QCD}(\alpha_s)$$

•scale dependence of chiral observables in the chiral limit in λ_{ψ} -deformed QCD:

 $T_{\chi \text{SB}}(\alpha_s, \lambda_{\psi}), f_{\pi}(\alpha_s, \lambda_{\psi}), |\langle \bar{\psi}\psi \rangle|^{\frac{1}{3}}(\alpha_s, \lambda_{\psi}), \dots$

 α_s directly related to **gluo**dynamics λ_{ψ} directly related to **chiral** observables

• λ_{ψ} -deformed QCD (here two massless flavors and $N_{\rm c}$ colors)

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + ig A \!\!\!/ \right) \psi + \lambda_{\psi} (\bar{\psi} \mathcal{O} \psi)^2$$

•two parameters: $\lambda_{\psi}(m_{\tau})$ and $\alpha_s(m_{\tau})$ ($\Leftrightarrow \Lambda_{
m QCD}$)

•phase diagrams ...

• λ_{ψ} -deformed QCD (here two massless flavors and $N_{\rm c}$ colors)

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(\mathrm{i}\partial \!\!\!/ + \mathrm{i}g A \!\!\!/ \right) \psi + \lambda_{\psi} (\bar{\psi} \mathcal{O} \psi)^2$$

•two parameters: $\lambda_{\psi}(m_{\tau})$ and $\alpha_s(m_{\tau}) \iff \Lambda_{\rm QCD})$

•phase diagrams ...

λ_{ψ} -deformed QCD: our model

• λ_{ψ} -deformed QCD (model) with two massless flavors and $N_{\rm c}$ colors:

$$\mathcal{L} = \bar{\psi} \left(\mathrm{i}\partial \!\!\!/ + \mathrm{i}\gamma_0 \bar{g} \langle A_0 \rangle \right) \psi + \frac{\lambda_{\psi}}{2} \left[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5 \vec{\tau}\psi)^2 \right]$$

(cf. matter part of QCD in Landau-DeWitt gauge, e. g. JB, Haas, Marhauser, Pawlowski '09)

•here, the **two** parameters are $\lambda_{\psi}(\Lambda)$ and $\langle A_0 \rangle \iff \alpha_s$

• Order parameter for deconfinement: (JB, Gies, Pawlowski '07; Pawlowski, Marhauser '08)

$$L[\langle A_0 \rangle] = \operatorname{tr}_{\mathrm{F}} \mathrm{e}^{\mathrm{i}\beta \overline{g} \langle A_0 \rangle} \ge \left\langle \operatorname{tr}_{\mathrm{F}} \mathrm{e}^{\mathrm{i} \int_0^\beta \overline{g} A_0} \right\rangle$$

• confer underlying assumption in PNJL/PQM-type models: (e. g. Meisinger, Ogilvie '96; Fukushima '03; Ratti, Thaler, Weise '05; Schaefer, Pawlowski, Wambach '08; ...)

$$L[\langle A_0 \rangle] = \operatorname{tr}_{\mathrm{F}} \mathrm{e}^{\mathrm{i}\beta \bar{g} \langle A_0 \rangle} \stackrel{!}{=} \left\langle \operatorname{tr}_{\mathrm{F}} \mathrm{e}^{\mathrm{i} \int_0^\beta \bar{g} A_0} \right\rangle$$

(JB, A. Janot '11)

• λ_{ψ} -deformed QCD (model) with two massless flavors and $N_{\rm c}$ colors:

$$\mathcal{L} = \bar{\psi} \left(\mathrm{i}\partial \!\!\!/ + \mathrm{i}\gamma_0 \bar{g} \langle A_0 \rangle \right) \psi + \frac{\lambda_{\psi}}{\lambda_{\psi}} \left[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5 \vec{\tau}\psi)^2 \right]$$

•two parameters: $\lambda_{\psi}(\Lambda)$ and $\langle A_0 \rangle$ ($\Leftrightarrow \Lambda_{\rm QCD}$)

• data for $L[\langle A_0 \rangle] \neq \langle L[A_0] \rangle$ is available from non-perturbative RG studies: (JB, Gies, Pawlowski '07; JB, Eichhorn, Gies, Pawlowski '10)

• for our numerical study we employ the RG data: the confinement temperature T_d is **fixed**, the chiral transition temperature $T_{\chi}(\lambda_{\psi}, \langle A_0 \rangle)$ is a prediction from our model

λ_{ψ} -deformed QCD: RG fixed-point analysis I

(JB, A. Janot '11)

• λ_{ψ} -deformed QCD (model) with two massless flavors and $N_{\rm c}$ colors:

 $\mathcal{L} = \bar{\psi} \left(\mathrm{i} \partial \!\!\!/ \psi \right) \psi + \frac{\lambda_{\psi}}{2} \left[(\bar{\psi} \psi)^2 - (\bar{\psi} \gamma_5 \vec{\tau} \psi)^2 \right]$

 $\begin{array}{c} \beta \text{-function (RG flow equation):} \\ \beta_{\lambda_{\psi}} \equiv k \partial_k \lambda_{\psi} = 2\lambda_{\psi} - \lambda_{\psi} C \lambda_{\psi} \\ \text{RG scale } k \sim \text{momentum scale} \end{array}$

• 'critical' coupling λ_{ψ}^{*} :

choose $\lambda_{\psi}(\Lambda) > \lambda_{\psi}^{*} \longrightarrow \lambda_{\psi}$ increases rapidly $\longrightarrow \chi SB$ $\frac{1}{m^{2}} \propto \lambda_{\psi} \to \infty$

λ_{ψ} -deformed QCD: RG fixed-point analysis II

(JB, A. Janot '11)

• λ_{ψ} -deformed QCD (model) with two massless flavors and $N_{\rm c}$ colors:

$$\mathcal{L} = \bar{\psi} \left(\mathrm{i} \partial \!\!\!/ \, \psi \right) \psi + \frac{\lambda_{\psi}}{\psi} \left[(\bar{\psi} \psi)^2 - (\bar{\psi} \gamma_5 \vec{\tau} \psi)^2 \right]$$

•fixed point coupling $\lambda_\psi^*(\frac{T}{k})\sim (\frac{T}{k})^3$

•for a fixed choice $\lambda_{\psi}(\Lambda) > \lambda_{\psi}^*(T=0)$, a critical temperature T_{χ} exists:

 $T > T_{\chi} \longrightarrow \lambda_{\psi}$ decreases \longrightarrow no χSB

λ_{ψ} -deformed QCD: RG fixed-point analysis III

(JB, A. Janot '11)

• λ_{ψ} -deformed QCD (model) with two massless flavors and $N_{\rm c}$ colors:

$$\mathcal{L} = \bar{\psi} \left(\mathrm{i} \partial \!\!\!/ + \mathrm{i} \gamma_0 \bar{g} \langle A_0 \rangle \right) \psi + \lambda_{\psi} \left[(\bar{\psi} \psi)^2 - (\bar{\psi} \gamma_5 \vec{\tau} \psi)^2 \right]$$

• for increasing $\langle A_0 \rangle$, the fixed point 'moves' to the left:

 $\lambda_{\psi}^*(\frac{T}{k}, \langle A_0 \rangle) \sim \lambda_{\psi}^*(T=0) + (\frac{T}{k})^3 L[\langle A_0 \rangle] + \mathcal{O}(1/N_c)$

λ_{ψ} -deformed QCD: RG fixed-point analysis III

(JB, A. Janot '11)

• λ_{ψ} -deformed QCD (model) with two massless flavors and $N_{\rm c}$ colors:

$$\mathcal{L} = \bar{\psi} \left(\mathrm{i} \partial \!\!\!/ + \mathrm{i} \gamma_0 \bar{g} \langle A_0 \rangle \right) \psi + \lambda_{\psi} \left[(\bar{\psi} \psi)^2 - (\bar{\psi} \gamma_5 \vec{\tau} \psi)^2 \right]$$

• for increasing $\langle A_0 \rangle$, the fixed point 'moves' to the left:

$$\lambda_{\psi}^*(\frac{T}{k}, \langle A_0 \rangle) \sim \lambda_{\psi}^*(T=0) + (\frac{T}{k})^3 L[\langle A_0 \rangle] + \mathcal{O}(1/N_c)$$

•fixed choice $\lambda_{\psi}(\Lambda) > \lambda_{\psi}^*(T=0)$:

confinement order parameter $L[\langle A_0 \rangle] \to 0 \implies \chi SB \implies T_{\chi} \gtrsim T_d$ (exact in the limit $N_c \to \infty$)

λ_{ψ} -deformed QCD: phase diagram

•window in which the chiral phase transition is **locked** to the deconfinement phase transition increases with increasing $N_{\rm c}$

- for finite $N_{\rm c}$, we have three regimes: $T_{\chi} < T_{\rm d}$, $T_{\chi} \approx T_{\rm d}$ and $T_{\chi} > T_{\rm d}$
- •below the locking window, we have $T_{\chi} \sim (\lambda_{\psi}(\Lambda) \lambda_{\psi}^*)^{1/2} \sim f_{\pi}$

λ_{ψ} -deformed QCD: phase diagram

•window in which the chiral phase transition is **locked** to the deconfinement phase transition increases with increasing $N_{\rm c}$

•for finite $N_{\rm c}$, we have three regimes: $T_{\chi} < T_{\rm d}$, $T_{\chi} \approx T_{\rm d}$ and $T_{\chi} > T_{\rm d}$

•below the locking window, we have $T_{\chi} \sim (\lambda_{\psi}(\Lambda) - \lambda_{\psi}^*)^{1/2} \sim f_{\pi}$

•window with a chiral phase transition of first order **may** open up due to a rapidly rising deconfinement order parameter

Conclusions

•locking mechanism for the phase boundary from a study of the (non-perturbative) fixed-point structure •chiral phase transition is locked to the deconfinement phase transition for $N_c \rightarrow \infty$: $T_{\chi} \gtrsim T_{conf.}$ •locking mechanism works also beyond the large N_c -limit

•testable prediction; does not suffer from problems present at finite quark chemical potential

Outlook

•more deformations: finite (current) quark masses, finite quark chemical potential, ...

