PROBING THE QGP: HEAVY QUARKONIUM ON THE LATTICE

Gert Aarts

Swansea University

FASTSUM collaboration

FASTSUM COLLABORATION

PRL 106 (2011) 061602 [HEP-LAT:1010.3725]

FASTSUM COLLABORATION

PRL 106 (2011) 061602 [HEP-LAT:1010.3725]

FASTSUM COLLABORATION

PRL 106 (2011) 061602 [HEP-LAT:1010.3725]

QUARKONIA AND THE QGP

MATSUI & SATZ 86

quarkonia as a thermometer for the quark-gluon plasma

- tightly bound states $(J/\psi, \Upsilon)$ survive to higher temperatures
- broader states melt at lower temperatures

melting pattern informs about temperature of the QGP

- relevant for heavy-ion collisions
- quantitative predictions required

OUTLINE

- reminder: hierarchy of scales and EFTs
- complex potentials

this talk: lattice QCD

- thermal boundary conditions / constant contribution
- how they are avoided here

results:

- S and P waves in two-flavour QGP, $0.4 < T/T_c < 2.1$ outlook:
 - repeated lattices
 - spectral functions

QUARKONIA AND THE QGP

PREDICTIONS

how to find the response of quarkonia to the QGP?

- potential models
- Iattice QCD

at T > 0:

- plethora of potential models: (seemingly) conflicting results
- interpretation of lattice correlators hindered by thermal (periodic) boundary conditions

re-addressed recently using first-principle approach:

effective field theories (EFTs) and separation of scales

QUARKONIA AND EFTS

 $M \gg T > \dots$

hierarchy of scales:

- heavy quark mass M
- temperature T
- \checkmark inverse size g^2M
- Debye mass gT

. . .

• binding energy g^4M

ightarrow weak coupling

corresponding EFTs:

- NRQCD
- NRQCD + HTL
- pNRQCD
- pNRQCD + HTL

Laine, Philipsen, (Romatschke) & Tassler 07 Laine 07-08 Burnier, Laine & Vepsäläinen 08-09 Beraudo, Blaizot & Ratti 08 Escobedo & Soto 08 Brambilla, Ghiglieri, Vairo & Petreczky 08 Brambilla, Escobedo, Ghiglieri, Soto & Vairo 10

QUARKONIA AND EFTS

 $M \gg T > \dots$

some results:

potential obtains an imaginary part

Laine, Philipsen, Romatschke & Tassler

thermal corrections to energy and width

Brambilla, Escobedo, Ghiglieri, Soto & Vairo

use complex potential models

Laine et al, Strickland et al, Miao, Mocsy & Petreczky, ...

nonperturbative:

determine imaginary part of potential in classical limit

Laine, Philipsen & Tassler

extract potential from Wilson loop in lattice QCD

Rothkopf, Hatsuda & Sasaki

NON-RELATIVISTIC QCD

THIS TALK

- use NRQCD, one of the EFTs, nonperturbatively
- no potential model / no weak coupling

lattice QCD:

- heavy quarks with NRQCD
 requirement $M \gg T$ bottomonium: $M \simeq 4.2$ GeV \gg a few T_c
- two-flavour QGP with $0.4 < T/T_c < 2.1$

QUARKONIA AT FINITE TEMPERATURE

WELL-KNOWN OBSTACLES

- in equilibrium: thermal boundary conditions
- euclidean correlators periodic
- spectral relation

$$G(\tau) = \int d\omega \, K(\tau, \omega) \rho(\omega)$$

$$K(\tau, \omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

problematic small ω region: constant contribution transport, susceptibilities

G.A. & Martinez Resco 02, Petreczky & Teaney 05

QUARKONIA AT FINITE TEMPERATURE

BENEFITS OF NRQCD

relativistic formulation:

melting of quarkonia obscured by constant contribution

Umeda 07, Petreczky et al 07-09

NRQCD:

- constant contribution absent
- no thermal boundary condition
- simple spectral relation $G(\tau) = \int d\omega e^{-\omega \tau} \rho(\omega)$

why?

- factor out heavy quark mass scale: $\omega = 2M + \omega'$
- $M \gg T$: thermal effects exponentially suppressed

QUARKONIA AT FINITE TEMPERATURE

BENEFITS OF NRQCD

- no thermal boundary conditions
- **simple spectral relation** $G(\tau) = \int d\omega \, e^{-\omega \tau} \rho(\omega)$

example:

correlators for free quarks with kinetic energy $E_{\mathbf{p}} = \frac{\mathbf{p}^2}{2M}$

$$G_{S}(\tau) \sim \int d^{3}p \exp\left(-2E_{\mathbf{p}}\tau\right) \qquad \rho_{S}(\omega) \sim \int d^{3}p \,\delta(\omega - 2E_{\mathbf{p}})$$
$$G_{P}(\tau) \sim \int d^{3}p \,\mathbf{p}^{2} \exp\left(-2E_{\mathbf{p}}\tau\right) \qquad \rho_{P}(\omega) \sim \int d^{3}p \,\mathbf{p}^{2} \delta(\omega - 2E_{\mathbf{p}})$$

Burnier, Laine & Vepsäläinen 08

temperature dependence only enters via medium !

LATTICE DETAILS

- two light flavours of Wilson-like quarks
- many time slices: highly anisotropic lattices ($a_s/a_{\tau} = 6$)
- **s** lattice size: $12^3 \times N_{\tau}$, $N_{\tau} = 80, 32, 24, 16$
- Iattice spacing: $a_{\tau}^{-1} = 7.06$ GeV, 500 configurations

N_{τ}	T(MeV)	T/T_c	
80	90	0.42	Morrin et al 00
32	221	1.05	G.A. et al 07
24	294	1.40	[charmonium]
16	441	2.09	

NRQCD: mean-field improved action with tree-level coefficients, including up to $\mathcal{O}(v^4)$ terms Davies et al 94

SPECTRUM

ZERO TEMPERATURE

euclidean correlators not periodic

 Υ (S wave) and χ_{b1} (P wave)

SPECTRUM

ZERO TEMPERATURE

exponential decay: effective mass plot

 Υ (S wave) and χ_{b1} (P wave)

SPECTRUM

GROUND AND FIRST EXCITED STATES

state	$a_{\tau}\Delta E$	Mass (MeV)	Exp. (MeV)
$1^1S_0(\eta_b)$	0.118(1)	9438(7)	9390.9(2.8)
$2^1S_0(\eta_b(2S))$	0.197(2)	10009(14)	-
$1^3S_1(\Upsilon)$	0.121(1)	9460*	9460.30(26)
$2^3S_1(\Upsilon')$	0.198(2)	10017(14)	10023.26(31)
$1^1 P_1(h_b)$	0.178(2)	9872(14)	-
$1^3 P_0(\chi_{b0})$	0.175(4)	9850(28)	9859.44(42)(31)
$1^3 P_1(\chi_{b1})$	0.176(3)	9858(21)	9892.78(26)(31)
$1^3 P_2(\chi_{b2})$	0.182(3)	9901(21)	9912.21(26)(31)

 Υ used to set the scale

combination of point and extended sources

EFFECTIVE MASSES

 $T/T_c = 0.42$

EFFECTIVE MASSES

P wave

 χ_{b1}

 $T/T_{c} = 1.05$

EFFECTIVE MASSES

 χ_{b1} P wave

 $T/T_c = 1.40$

EFFECTIVE MASSES

 $T/T_{c} = 2.09$

very little T dependence

Υ

substantial T dependence no exponential decay

P wave

St. Goar, March 2011 – p. 14

RATIO PLOT

 χ_{b1} P wave

 $G(\tau;T)/G(\tau;T=0.42T_c)$

- ratio is source dependent: here point sources
- can be compared with potential model results

P WAVES

IN THE QUARK-GLUON PLASMA

- no exponential decay at high temperature, what else?
- consider free quarks with kinetic energy $E_{\mathbf{p}} = \frac{p^2}{2M}$

$$G_S(\tau) \sim \int d^3 p \, e^{-2E_{\mathbf{p}}\tau} \sim \frac{1}{\tau^{3/2}}$$
$$G_P(\tau) \sim \int d^3 p \, \mathbf{p}^2 e^{-2E_{\mathbf{p}}\tau} \sim \frac{1}{\tau^{5/2}}$$

power decay at large euclidean times

IN THE QUARK-GLUON PLASMA

- no exponential decay at high temperature, what else?
- power decay at large euclidean times

• fit: $G(\tau) \sim 1/\tau^{\gamma}$, $\gamma = 2.605(1)$ without interactions: $\gamma = 5/2$

IN THE QUARK-GLUON PLASMA

power decay: effective power plot

$$\gamma_{\text{eff}}(\tau) = -\tau \frac{G'(\tau)}{G(\tau)} \to \gamma$$

REPEATED LATTICES

INITIAL-VALUE PROBLEM

- NRQCD is solved as an initial-value problem
- why stop when reaching the end of the lattice?
- without interactions: no dependence on N_{τ}

• time extent: $2 \times 80 = 160$

REPEATED LATTICES

INITIAL-VALUE PROBLEM

- NRQCD is solved as an initial-value problem
- periodic gauge field configurations
- periodicity shows up as a kink at $n_{\tau} = 80$!

reproduced using simple model, under investigation

SPECTRAL FUNCTIONS

MAXIMUM ENTROPY METHOD

groundstate and first excited state

in progress

CONCLUSIONS

NRQCD avoids a number of obstacles encountered earlier:

no thermal boundary conditions / constant contribution

 \Rightarrow quarkonia as a probe of the QGP

results:

- S waves: very little *T* dependence
- P waves: substantial T dependence, quickly after T_c power decay at large euclidean times

outlook:

- repeated lattices, spectral functions
- compare with potential models and EFT predictions