
Thermalization in high energy heavy ion
collisions
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The problem

The theoretical description of high energy heavy ion collisions
requires massive entropy production at early stages (� 1 fm/c)

But QCD is time-reversal invariant. Entropy is typically
produced by measurements⇒ Coarse-graining.

How can entropy be produced at all ?
How can it be produced so fast ?
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Coarse graining
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Under time evolution the phase space volume is conserved
The finite resolution of any measurement implies an
increase in phase space volume
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This is a rather generic problem

still a fundamental problem for the rigorous formulation of
quantum mechanics
black hole physics – the information problem
decoherence is the main problem for the development of
quantum computing
etc.

There exists a very large literature, much of which is
contradictory
⇒ many papers must be wrong
⇒ what I am going to tell has a fair chance of being wrong in
some respects
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The information problem of black-hole physics

T=0   S=0
BHH

BHH

T   = 0   S       = 0

T   = 0   S       = 0

If the S-Matrix is unitary Sinital = Sfinal .
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Different stages of entropy production in a HIC

τ τ τ t

s

deco therm hadro

1/Q 0.5−2 fm/c ?!

pQCD+HTL
pQCD+CGC hydrodynamics

AdS/QCD 
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Earlier work:

B. Müller, AS; Phys. Rev. C73(2006)054905
R. Fries, B. Müller, AS; Phys. Rev. C79 (2009)034904
pQCD & CGC⇒ entropy production from decoherence is very
fast τ ∼ 1/Qs ∼ 0.2 fm/c
One gets at most 1/3 of the entropy needed
bottom-up mechanism: thermalization by soft gluon production

R. Fries, B. Müller, AS; Phys. Rev. C78 (2008) 034913
Viscous hydrodynamics can only produce a small amount of
entropy

⇒ A large part of the entropy must come from the
thermalization phase
Can this happen fast enough ?

7 / 46



1. approach: Kolmogorov Sinai entropy etc.

Hamilton Dynamics of classical YM fields

The Lyapunov exponents are determine numerically. The
Kolmogorov-Sinai entropy is defined as

hKS =
∑

i,λi>0

λi

The “Kolmogorov-Sinai entropy” is no entropy, but an entropy
growth rate.
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a generic (??) picture

S

S thermal

initial linear equilibrium phase

 = h KS

d S

d t

In the linear phase: dS
dt = hKS

This can be calculated in classical field theory !
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Husimi function and Wehrl entropy

with T.Kunihiro, A. Ohnishi, T. Takahashi, A. Yammoto

The Husimi function takes into account that the uncertainty
principle implies coarse graining independent of the actual
measurement.

It is easiest explained for a simple example: The inverse 1-dim
oscillator.

Ĥ =
1
2

p̂2 − 1
2
λ2x̂2

Initial state: Gaussian wave packet of width
√

~/ω:

〈x |ψ0〉 =
( ω
π~

)1/4
e−ωx2/2~
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The Wigner function associated with the density matrix ρ̂ is
defined as

W (p, x ; t) =

∫
du e

i
~ pu〈x − u

2
| ρ̂(t) |x +

u
2
〉

∫
dp dx
2π~

W (p, x ; t) = Tr [ρ̂] = 1

∫
dp dx
2π~

[W (p, x ; t)]2 = Tr [ρ̂2] ≤ 1
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The Wigner function is constant along the classical path.

x = x0 coshλt +
p0

λ
sinhλt , p = λx0 sinhλt + p0 coshλt ,

Thus there is only one positive Lyapunov exponent, namely λ
and hKS = λ
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The Husimi function

H∆(p, x ; t) =

∫
dp′ dx ′

π~
exp

(
− 1

~∆
(p − p′)2 − ∆

~
(x − x ′)2

)
W (p′, x ′; t)

is non-negative, in contrast to the Wigner function. ∆ is an
arbitrary parameter corresponding to the actual measurement.

For this simple case the differential equation for W and the
integration can be done analytically
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The Wigner function for t = 0 and t = 2/λ
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The Husimi function for t = 0 and t = 2/λ for ∆ = λ. The phase
space volume increases due to smearing.
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For the Wehrl entropy

SH,∆(t) = −
∫

dp dx
2π~

H∆(p, x ; t) ln H∆(p, x ; t)

one finds

lim
t→∞

dSH,∆

dt
= λ = hKS

independent of ∆ !
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pre-/reheating after Big Bang inflation

A simple model: The inflaton field Φ coupled to another scalar
field χ

L(χ̂) =
1
2

(
gµν

∂χ̂

∂xµ
∂χ̂

∂xν
− g2Φ(t)2χ̂2

)
Φ(t) ≈ Φ0 cos(ωt)

Φ
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mode expansion

χ̂(x, t) =
1

R(t)

∫
d3k

(2π)3/2

(
X̂k (t)eik·x + X̂ †k (t)e−ik·x

)
R(t) is the cosmological scale factor

∂2X̂k

∂τ2 +

(
κ̄2 +

g2

2λ
cos(2ωτ)

)
X̂k (τ) = 0

Solutions: Mathieu sine and cosine functions S(a,q;ωτ) and
C(a,q;ωτ) with a = κ̄2 and q = −g2/4λ. We will henceforth
drop the parameters a and q. Asymptotically

C(ωτ) ≈ eµτ cos(ωτ+αc(τ)) , S(ωτ) ≈ eµτ cos(ωτ+αs(τ))
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For large times, the constancy of the Wronskian
(CṠ − SĊ)/ω = 1 implies

|αc(τ)− αs(τ)| −→ e−2µτ

This is similar to coherent light production in a laser: The larger
the amplitude the more coherent the light.

The number - phase uncertainty relation

(∆Nk )2(∆αk )2 = N2
k (∆αk )2 ≥ 1

4
Again the problem is simple enough to be solved analytically

H∆(α,n, τ) =

∫ π

−π

dα′

π

∑
n′

e−∆(α−α′)2− (n−n′)2

∆ W (α′,n′, τ)
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The Wigner function for τ = 0.5/µ and τ = 1/µ
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The Husimi function
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The Wehrl entropy is again given by the Lyapunov exponent for
an individual mode

SH,∆(τ) = −
∫

dα
2π

∑
n

H∆ ln H∆

τ→∞−→ 2µτ + const.

and by the Kolmogorov-Sinaı̈ entropy for all modes.

Numerical studies: Tobias Weindler
⇒ For typical chaotic inflation parameters thermalization
occures very fast, e.g., in one oscillation period.

22 / 46



Relation to Other Definitions of Entropy

one harmonic oscillator; occupation probability of eigenstate
|n〉:

wn = e−nβ~ω/Zβ

Zβ =
∞∑

n=0

e−nβ~ω = (1− e−β~ω)−1

von Neumann entropy

SvN ≡ −
∞∑

n=0

wn ln wn =
β~ω

eβ~ω − 1
− ln(1− e−β~ω)

= −n̄ ln n̄ + (n̄ + 1) ln(n̄ + 1)
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SvN (solid) versus SH (dashed)
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The general idea

Linear phase Late time phase 

The crucial point: the linear slope can be calculated in classical
gauge theory
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A quantitative study: 1008.1156, Kunihiro, Müller, Ohnishi, AS,
Takahashi, Yamamoto

H =
1
2

∑
x ,a,i

Ea
i (x)2 +

1
4

∑
x ,a,i,j

F a
ij (x)2

F a
ij (x) = ∂iAa

j (x)− ∂jAa
i (x) +

∑
b,c

f abcAb
i (x)Ac

j (x)

δẊ (t) = HδX (t)

Ȧa
i (x) = Ea

i (x)

Ėa
i (x) =

∑
j

∂jF a
ji (x) +

∑
b,c,j

f abcAb
j (x)F c

ji (x)
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Different distance measures give the same result.

DEE =

√∑
x

{
∑
a,i

Ea
i (x)2 −

∑
a,i

E ′ai (x)2}2

DFF =

√∑
x

{
∑
a,i,j

F a
ij (x)2 −

∑
a,i,j

F ′aij (x)2}2
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Time evolution in SU(2) simulation on 43,103, and 203 lattices
with the same energy density
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Time evolution in SU(3) simulation on a 43 lattice
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Classical YM theories are UV divergent
⇒ The lattice constant has the physical meaning of a screening
length

Scale setting can be done by different means:
equation the energy densities on the lattice

εcl(T ) =
εL

a4g2

εL = 2(N2
c − 1)

1
L3

∑
k

|k|T
L

|k|

ε(T ) = 2(N2
c − 1)

∫
d3k

(2π)3
|k|

e|k|/T − 1
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or choosing the damping length of SU(N) gauge theories

All approaches give

a =
θ

T
∼ ε−1/4

with θ of order unity

The thermalization time is estimated from

τeq =
∆s
sKS

+ τdelay

The delay time is found to be of the order

1
6(N2

c − 1)L3
eλmaxτdelay ≈ 1
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numerically we find

τeq ≈ 2 fm/c

with substantial theoretical uncertainties

a value below 1 fm/c is very unlikely
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This is rather a bottom-up mechanism
Fourier spectrum: the driving modes are infrared
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2. approach: Equilibration times from AdS/CFT ?

Idea: Probe black brane formation with a string or membrane.

event horizon

falling shell
probing string

fire ball

de Boer, Craps, Keski-Vakkuri, Bernamonti, Staessens,
Balasubramanian, Shigemori, Copland
results from 1012.4753 and 1103.2683
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Disclaimer: This is a very active field, there are many highly
relevant papers [Lin & Shuryak, Calabrese & Cardy, Albash &
Johnson, Abajo-Arrastia & Aparicio & Lopez, ...]. I will not cite
them for lack of time.
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The change in geodetic length is sensitive to equal time
correlators of high dimension gluonic operators.

〈O(tshell , x)O(tshell ,0)〉shell

〈O(tshell , x)O(tshell ,0)〉AdS
≈ e−∆δL(tshell ,x)

4 6 8 10
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0.010

0.015
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We solved analytically and numerically different cases:
AdS3 ∼ CFT (1 + 1), AdS4 ∼ CFT (1 + 2), AdS5 ∼ CFT (1 + 3)
and analysed how the length of the geodesic/the area of the
surface approaches its thermal value, as a function of ` and t0.
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Observations

Thermalization is approached as fast as compatible with
causality.
Note: spead of light (gluons), not speed of sound (density
fluctuations)
For heavy ion collisions this implies
τ ∼ 1/(2Qs) ∼ 0.1fm/c
Short distances thermalize first, top-down rather than
bottom-up thermalization
Unavoidable in the AdS dual theory. A fundamental
difference between strong and weak coupling ???
Finite time till complete thermalization
Probably an artefact of the treatment of UV divergencies
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Entanglement entropy, a candidate for thermal entropy ?
A quantum system X is composed of two subsystems A and B.
Definition of entanglement entropy:

S(A) = −TrA[ρA ln ρA]

Symmetry A⇔ B imposes S(A) ∼ surface A =∼ surface B.
toy model: one-dimensional CFT

S(`) =
c
3

ln(`/a),

c central charge, a short-distance cut-off.
Generalization for Finite T:

S(`) =
c
3

ln
(

1
πaT

sinh(π`T )

)
,

T `� 1⇒ S(`), T `� 1⇒ Sth = (c/3)πT `
the thermal entropy could be equal to the volume part of the
entanglement entropy
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But: The entanglement entropy does not show the expected
behaviour
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There are other candidates

Chesler and Yaffe 0812.2053
Thermalization of energy deposited in Minowski space
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geodesics and horizon formation
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horizon area ?
= entropy as function of time

But the growth rate of the apparent horizon depends on choice
of coordinates.
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Conclusions

Understanding entropy production during thermalization in
HICs is a problem of fundamental importance. HICs allow
to study this process experimentally.
Thermalization via non-linear dynamics and coarse
graining with ~ is closer to the bottom-up scenario and
needs τ ≈ 2fm/c.
Thermalization for strong coupling as described by
AdS/CFT is top-down and very fast τ ≈ 0.1fm/c. The time
evolution is different.
Time evolution might be a key to identify physical
candidates for non-equilibrium definitions of entropy.
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