Aspects of Yang-Mills Green functions in the infrared Markus Q. Huber¹, Kai Schwenzer², Reinhard Alkofer³

¹Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

²Department of Physics, Washington University, St. Louis, MO 63130, USA

³Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz 5, 8010 Graz, Austria

Summary

Green functions give access to the properties of the QCD phase diagram (\rightarrow see contributions by Alkofer, Fischer, Fister, Haas, Lücker, Maas, Müller-Preussker, Pawlowski, Reinhardt, Schaefer, and others). A prerequisite for the current developments has been the growing understanding of Green functions in the vacuum. Here we show results in the so-called **maximally Abelian gauge** that support the hypothesis of Abelian infrared dominance. Furthermore, details of the **three-point vertices in the Landau gauge**, which are, for example, required for calculations of glueballs and a next-generation truncation, are presented.

Maximally Abelian gauge (MAG)

Abelian infrared dominance

Dual superconductor picture of confinement (Mandelstam, 't Hooft): Confinement caused by chromomagnetic monopoles which squeeze chromoelectric flux into flux tubes.

Infrared solution of the MAG [2]

Propagators in the IR characterized by power laws:

 $D_{\mathbf{A}}(p^2) = d_{\mathbf{A}}(p^2)^{-\kappa_{\mathbf{A}}-1}, \ D_{\mathbf{B}}(p^2) = d_{\mathbf{B}}(p^2)^{-\kappa_{\mathbf{B}}-1},$

Scaling exponent κ_{MAG} is independent of gauge fixing parameter α :

Monopoles \in Abelian subalgebra \Rightarrow hypothesis of Abelian infrared (IR) dominance [1]

Investigate Abelian IR dominance with functional RG equations and Dyson-Schwinger equations.

Gauge fixing

Split the gauge field into \rightarrow diagonal and \rightarrow off-diagonal parts:

 $D_{\boldsymbol{a}}(p^{2}) = a_{\boldsymbol{A}}(p^{2}) \quad , \quad D_{\boldsymbol{B}}(p^{2}) = a_{\boldsymbol{B}}(p^{2})$ $D_{\boldsymbol{c}}(p^{2}) = d_{\boldsymbol{c}}(p^{2})^{-\kappa_{\boldsymbol{c}}-1}$

- analysis of the *complete* towers of equations (DSEs and RGEs)
- diagonal gluon propagator D_A(p²) IR enhanced
 ⇒ Abelian degrees of freedom dominate in the IR
- off-diagonal propagators IR suppressed
- unique scaling relation between IR exponents: κ_{MAG} = κ_A = -κ_B = -κ_c

All calculations used *DoFun* [3].

Three-point vertices in the Landau gauge [4]

Truncated DSEs of the three-gluon and the ghost-gluon vertices:

$$A_{\mu} = \mathbf{A}_{\mu}^{\boldsymbol{\nu}} T^{\boldsymbol{\nu}} + \mathbf{B}_{\mu}^{\boldsymbol{\alpha}} T^{\boldsymbol{\alpha}}$$

Minimize $||\mathbf{B}|| \Rightarrow$ maximally Abelian gauge with gauge fixing parameter α :

 $D^{ab}_{\mu} \boldsymbol{B^a_{\mu}} = 0$

Ghosts: quartic interactions with gluons and among themselves

Functional equations

DSE of the ghost two-point function:

DSE of the diagonal gluon two-point function:

The IR solution for the three-gluon vertex has ten dressing functions $E_i(p_1, p_2, p_3)$:

$$\Gamma^{gh-\Delta}_{\mu\nu\rho}(p_1, p_2, p_3) = \sum_{i=1}^{10} E_i(p_1, p_2, p_3) \tau^i_{\mu\nu\rho}(p_1, p_2, p_3).$$

Complete momentum dependence of dressing functions expressed by Appell's functions F_4 , e. g. the two scalar functions E_5 and E_{10} of the three-gluon vertex with $p_3^2 = 1$:

0.025

0.020

0.015

0.010

0.005

0.0

1.0

 E_{10}

Kinematic singularities (e. g. $p_3^2 = p_2^2$, $p_1^2 \to 0$) going like $(p^2)^{1-2\kappa}$ found only in longitudinal parts [4], cf. also ref. [5]. Three-point functions may have a quantitative but not a qualitative impact on propagators.

References

 Z. F. Ezawa and A. Iwazaki, Phys. Rev. D 25 (1982) 2681.
 M. Q. Huber, K. Schwenzer, R. Alkofer, Eur. Phys. J. C68 (2010) 581-600. arXiv:0904.1873 [hep-th].
 M. Q. Huber, J. Braun, arXiv:1102.5307 [hep-th].

 [4] R. Alkofer, M. Q. Huber, K. Schwenzer, Eur. Phys. J. C62 (2009) 761-781. arXiv:0812.4045 [hep-ph].

[5] C. S. Fischer, J. M. Pawlowski, Phys. Rev. D80 (2009) 025023. arXiv:0903.2193 [hep-th].