INFN



SFB TR9

• Lattice QCD with  $N_f = 2$  Wilson fermions modified with twisted mass term  $ia\mu_0\overline{\psi}\gamma_5\tau^3\psi$  and tree-level Symanzik improved gauge action is studied.

$$S_{f}[U,\psi,\overline{\psi}] = \sum_{x} \overline{\chi}(x) \left(1 - \kappa H[U] + 2i\kappa a\mu_{0}\gamma_{5}\tau^{3}\right) \chi(x)$$

$$\psi = \frac{1}{\sqrt{2}}(1 + i\gamma_{5}\tau^{3})\chi \quad \text{and} \quad \overline{\psi} = \overline{\chi}\frac{1}{\sqrt{2}}(1 + i\gamma_{5}\tau^{3})$$

$$S_{g}^{\text{tlSym}}[U] = \beta \left(c_{0}\sum_{P}[1 - \frac{1}{3}\text{ReTr}(U_{P})]\right)$$
(2)

$$+c_1 \sum_{\mathbf{R}} \left[1 - \frac{1}{3} \operatorname{ReTr}\left(U_R\right)\right] \right)$$
(2)

• Hopping parameter  $\kappa$  and twisted mass  $\mu_0$  are connected with the bare quark mass:

$$m_q = \sqrt{\frac{1}{4} \left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right)^2 + \mu_0^2} \tag{3}$$

- For maximal twist, i. e.  $\kappa = \kappa_c(\beta; T = 0)$ , automatic  $\mathcal{O}(a)$  improvement is expected. See e.g. [3, 4].
- In order to explore the phase diagram HMC simulations were performed in a wide range  $\beta \equiv 6/g_0^2 = 1.80, \dots, 3.90$ on linear lattice sizes  $N_s = 16$ , 24 and  $N_{\tau} = 8$ .
- Phase diagram for  $\mu_0 = 0$  and fixed  $N_{\tau}$  divides into three regions: - the Aoki-Phase [5] for strong coupling, i.e. at small  $\beta$ , - a bulk 1st order transition region [6, 8] at intermediate  $\beta$ ,
- and the thermal transition and scaling region at larger  $\beta$ .
- Acc. to Eq. (3) for  $\mu_0 \neq 0$  the thermal transition line is part of a conical surface  $(\kappa_t(\beta), \mu_t(\beta))$ .

# Setup for locating $T_c$ (see [2])

- Scans in  $\beta$  at maximal twist.
- Keep pion mass  $m_{\pi}$  fixed while varying  $T = 1/(N_{\tau}a(\beta))$ .
- $a(\beta), r_0/a(\beta), \kappa_c(\beta)$  and  $\mu_0(m_{\pi}, \beta)$  from **ETMC** data[9] (interpolations necessary).
- Typical Statistics:  $N_{\tau} = 10$ : O(4k) measurements per  $\beta$ -value  $N_{\tau} = 12$ : O(3k-10k) measurements per  $\beta$ -value
- Have scanned *T*-range  $\approx [0.9 \dots 1.05] T_c$ For EoS:  $\rightarrow$  wider range needed:  $T \in [0.8 \dots 1.7] T_c$ (partly available at  $m_{\pi} = 400 \text{ MeV}$ )
- Need also further T = 0 points (preliminary data available at  $\beta = 4.35$ , only one mass yet)

Interpolation of  $\kappa_c$ :



stituto Nazionale

di Fisica Nucleare

F. Burger<sup>1</sup>, E.-M. Ilgenfritz<sup>1,2</sup>, M. Kirchner<sup>1</sup>, M.-P. Lombardo<sup>3</sup>, M. Müller-Preussker<sup>1</sup>,  $O. Philipsen^4$ ,  $C. Urbach^5$ ,  $L. Zeidlewicz^4 - [tmfT Collaboration]$ <sup>1</sup>Humboldt-University Berlin, <sup>2</sup>Bielefeld University, <sup>3</sup>INFN Frascati (Roma), <sup>4</sup>University Frankfurt / Main, <sup>5</sup>Bonn University.



 $\beta \propto$ 

thermal transition/crossover

 $\kappa_c(\beta, T=0)$ 

deconfinement

Older view of the phase structure for

standard Wilson fermions in the  $\beta$ - $\kappa$  plane.

Doubler region

Aoki phase bulk transition quenched limit

Present schematic view [1] of the phase diagram for tmQCD

in  $\beta$ - $\kappa$ - $\mu_0$  space, originally proposed by Creutz [7].

confinement

finement  $\infty$ 

### • Result

| $m_{\pi}[\text{MeV}]$                     | $\approx 320$ | $\approx 400$ | $\approx 470$ | $\approx 400$ |
|-------------------------------------------|---------------|---------------|---------------|---------------|
| $N_{\tau}$                                | 12            | 12            | 12            | 10            |
| $\beta_c(\langle \bar{\psi}\psi \rangle)$ | 3.9400(96)    | 4.0150(11)    | 4.0298(11)    | 3.8804(04)    |
| $T_c[\text{MeV}]$                         | 218(5)        | 245(4)        | 250(4)        | 239(7)        |
|                                           |               |               |               |               |

# **EoS: trace anomaly**



 $\approx 0$ 

where:

• Have to use inter

Simulated Pion Masses:



## Interpolation of $r_0/a$ :



# Conclusions

- scenarios.

# Acknowledgement:





# Locating the thermal transition or crossover (cf. talk by L. Zeidlewicz)

Polyakov-Loop, Plaquette,  $\langle \bar{\psi}\psi \rangle$ , Pionnorm, their variances and integrated autocorrelation times  $\tau_{\text{int}}$ . Mostly weak crossover signals as expected in intermediate mass range.

• Use the integral method (see e.g. [10]) to get p(T) and  $\epsilon(T)$  from trace anomaly

$$\frac{T}{V} \left\langle \frac{d \ln Z}{d \ln a} \right\rangle_{\text{sub}}$$
$$\left( a \frac{d\beta}{da} \right) \left( c_0 \left\langle \text{ReTr} U_P \right\rangle_{\text{sub}} + c_1 \left\langle \text{ReTr} U_R \right\rangle_{\text{sub}} \right)$$

$$\underbrace{\frac{\partial \kappa_c}{\partial \beta} \langle H \rangle_{\text{sub}}}_{\text{0 neglected so far}} + \left( 2a\mu_0 \frac{\partial \kappa_c}{\partial \beta} + \frac{\partial (a\mu_0)}{\partial \beta} \right) \left\langle \bar{\psi}\psi \right\rangle_{\text{sub}} \right)$$

$$\langle \ldots \rangle_{\text{sub}} \equiv \langle \ldots \rangle_{T>0} - \langle \ldots \rangle_{T=0}$$
  
repolation for  $\left(\frac{r_0}{a}\right)(\beta)$  to get:

$$\left(a\frac{d\beta}{da}\right) = -\left(\frac{r_0}{a}\right)\left(\frac{d\left(\frac{r_0}{a}\right)}{d\beta}\right)^{-1}$$

## **Example:** $\tau_{int}$ for $\langle \bar{\psi}\psi \rangle$ :







• The finite temperature transition has been located down to  $m_{\pi} = O(300 \text{MeV})$ . Our results at  $N_{\tau} = 10$ , 12 support a weak crossover behaviour.

• The chiral limit is consistent with O(4) universality, but does not exclude other

• Do not see a splitting of chiral and deconfinement transitions. • First (and preliminary) results for the trace anomaly presented.

We appreciate support by the ETM Collaboration. Large-scale computations were carried out at INFN and HLRN Berlin, Hannover. We thank Elena Garcia Ramos for providing new data for T = 0 prior to publication. F.B. and M.M.P. acknowledge support by DFG via GK 1504 and SFB/TR 9.

## References

- [1] E.-M. Ilgenfritz, K. Jansen, M.P. Lombardo, M. Müller-Preussker, M. Petschlies, O. Philipsen, L. Zeidlewicz [tmfT Collaboration], Phys. Rev. D80 (2009) 094502, arXiv:0905.3112 [hep-lat].
- [2] F. Burger, E.-M. Ilgenfritz, M. Kirchner, M.P. Lombardo, M. Müller-Preussker, O. Philipsen, C. Urbach, L. Zeidlewicz [tmfT Collaboration], arXiv:1102.4530 [heplat
- [3] F. Farchioni *et al.*, PoS LAT2005 (2006) 072, arXiv: hep-lat/0509131.
- [4] C. Urbach [ETM Collaboration], PoS LAT2007 (2007) 022, arXiv:0710.1517 [hep-lat]. [5] S. Aoki, Phys. Rev. D30 (1984) 2653.
- [6] G. Münster, JHEP 0409, 035 (2004), arXiv: hep-lat/0407006.
- [7] M. Creutz, Phys. Rev. D76 (2007) 054501, arXiv:0706.1207 [hep-lat].
- [8] S.R. Sharpe, J.M.S. Wu, Phys. Rev. D71 (2005) 074501, arXiv: hep-lat/0411021
- [9] ETM Collaboration (R. Baron et al.), arXiv:0911.5061 [hep-lat].
- [10] C. DeTar, U. M. Heller, Eur. Phys. J. A **41** (2009) 405, arXiv:0905.2949 [hep-lat].

