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Abstract

In this thesis, inhomogeneous phases with vanishing and finite current quark mass in the Nambu-Jona-
Lasino model are investigated. We consider space-dependent condensates in one dimension with included
vector interaction, by using finite Fourier expansions. The solutions in the thermodynamic equilibrium
are derived by using minimization routines. We investigate the thermodynamic potential in the space of
the relevant Fourier coefficients in the chiral limit for several vector interaction strengths to get a deeper
understanding of the findings of previous works. Ensuing, we study the influence of the vector interactions
on inhomogeneous phases in the presence of explicitly chiral-symmetry breaking terms.

Zusammenfassung

In dieser Thesis werden inhomogene Phasen mit verschwindender und endlicher Stromquarkmasse im
Nambu-Jona-Lasinio Modell untersucht. Unter Einbeziehung von Vektorwechselwirkungen werden Fouri-
erentwicklungen für eindimensional ortsabhängige Kondensate verwendet. Die Lösungen im thermody-
namischen Gleichgewicht werden mittels Minimierungsroutinen berechnet. Um ein tieferes Verständnis
für die Ergebnisse aus früheren Arbeiten zu bekommen, wird das thermodynamische Potential im chiralen
Limes für verschiedene Vektorwechselwirkungen im Raum der relevanten Fourierkoeffizienten untersucht.
Darauffolgend wird der Einfluss der Vektorwechselwirkungen auf inhomogene Phasen in Anwesenheit
explizit chiral symmetriebrechender Terme untersucht.
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1. Introduction

Figure 1.1 shows an educated guess of the phase diagram of quantum chromodynamics (QCD). It is subject
to theoretical and experimental research until now [1–5]. The phase diagram describes the different
states of QCD matter. It can be divided roughly into four regions [3]. At low chemical potential and
temperature, the quarks are confined to hadrons (hadronic phase) and the chiral symmetry is broken.
By increasing the temperature for fixed chemical potentials, a crossover transition from the confined to
the deconfined phase occurs, where the quarks and gluons appear as a quark-gluon plasma (QGP) and
the chiral symmetry is restored [4]. In the high density and intermediate temperature regime, a rich
phase structure is expected which is called color superconducting phase [5]. For low temperatures and
intermediate densities, inhomogeneous phases with crystalline structures are suggested, characterized by a
spatial dependence of the system properties [6]. While most regions of the diagram remain still unknown
the high temperature and low-density regime is explored by lattice QCD and heavy ion collisions. Lattice
QCD is limited to a zero chemical potential. For non-vanishing chemical potential the ’sign problem’ lets
the method fail [7] and it is necessary to use methods like Dyson-Schwinger equations (DSE) [8–10],
functional renormalization group (FRG) [11–13] or effective models, e.g. Nambu-Jona-Lasinio model (NJL
model) [14, 15] or the quark-meson model [16, 17], which share important properties with the QCD.

Figure 1.1.: The QCD phase diagram, taken from [18].

In 1960 Overhauser introduced the idea of inhomogeneous ground states for nuclear matter as large static
density waves [19]. Fulde and Ferrell investigated inhomogeneous phases in the solid-state physics with a
single plane wave in 1964 [20] and Larkin and Ochinnikov discussed them with sinusoidal modulations in
the same year [21].
In this thesis inhomogeneous phases are studied in the NJL model. We extend it by vector interactions and
apply the mean-field approximation. It is built on the results of the master’s theses of Eduard Alert [22]
and Marco Schramm [23] as well as the work of Stefano Carignano, Dominik Nickel and Michael Buballa
[24]. Alert investigated the properties of the NJL model in the chiral limit as well as for explicitly broken
chiral symmetry. Carignano, Nickel and Buballa studied chiral inhomogeneous phases with a constant
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vector condensate and Schramm included space-depending vector condensates. In the inhomogeneous
phases, a chiral density wave (CDW) was considered, which is a complex modulation for the effective mass
and several real ansätze such as a sinusoidal ansatz or Fourier expansions with higher coefficients. The
CDW and sinusoidal ansätze have already been investigated in detail in the NJL model without vector
interactions, e.g. [6, 25], where the CDW emerged as being a self-consistent but least favored solution. A
rising number of coefficients led to a gain in free energy. Thereby, all even coefficients vanished. In the
chiral limit without vector interactions, the most favored solution so far is the so-called solitonic solution or
’real kink crystal’ [26, 27]. They are described by the Jacobi-elliptic functions. Breaking the chiral symmetry
explicitly delivered partially different results, the CDW turned out to be not self-consistent anymore and all
real mass-ansätze resulted in exhibiting a constant shift that vanishes in the chiral limit. Furthermore, the
even Fourier coefficients had a non-vanishing contribution.
Extending the NJL model by vector condensates at homogeneous phases led to an effective shift of the
chemical potential. At inhomogeneous phases, the effective chemical potential becomes inhomogeneous
which is much harder to deal with. As a first approach, in [24] the shifted chemical potential was consid-
ered as being constant. This approach is called ’average density approximation’ (ADA) since it implies a
homogeneous density. In [23] and [28], additionally, the shifted chemical potential was extended by a
cosine which gave rise to a density amplitude. For the CDW the ADA turned out to be self-consistent. This
was consistent since the CDW is known to have a homogeneous density. In contrast, the sinusoidal mass
ansatz yielded a non-vanishing density amplitude. The inclusion of explicitly modulated densities had a
significant effect on the phase diagram but also revealed contradictions between the two works. In [23],
for vector-coupling strengths above a certain value, the CDW solution turned out to be energetically more
favored compared to the sinusoidal modulation with space-depending density. Consequently, there was a
border at a certain coupling strength where both solutions coexist. But Ginzburg-Landau (GL) analyses in
[28] showed that the CDW is already favored for arbitrary small vector-coupling strengths in the proximity
of the Lifshitz point (LP).
In this work, the aim is to get a better understanding of the stated results by investigating the thermody-
namic potential with and without space-dependent vector interactions in the chiral limit. Furthermore, we
will investigate the consequences of the vector interactions on inhomogeneous phases in the presence of
explicitly chiral-symmetry breaking terms.
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2. Nambu-Jona-Lasinio model

The Nambu-Jona-Lasinio (NJL) model [14, 15] came up in 1961, before the introduction of QCD and the
existence of quark models. The model provided a field-theoretical description of nucleons, which included
a mechanism for dynamical mass generation in analogy with the gap-energy in the microscopic theory of
superconductivity. Later the fermionic fields in the Lagrangian have been reinterpreted as quarks. This
incorporates additional quantum numbers, such as color degrees of freedom. The NJL model shares global
symmetries of QCD but contains no gluons and confinement. Instead, the quark interaction is described by
four-point vertices. Therefore, the model is not renormalizable and needs to be regularized.
We extend the standard two-flavor NJL-Lagrangian to describe vector interactions. Thus, the Lagrangian
reads:

LNJL = ψ̄(iγµ∂µ −m)ψ⏞ ⏟⏟ ⏞
≡Lfree

+ gs
[︁
(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)

2
]︁
− gv(ψ̄γ

µψ)2⏞ ⏟⏟ ⏞
≡Lint

(2.1)

where Lfree is the free Dirac part and Lint describes the four-point interactions. ψ are the two-flavor and
three-color quark fields, γ are the Dirac matrices, τ the Pauli matrices acting on the two-dimensional
isospin space and m is the current quark mass. Here the up- and down quark masses are assumed to
fulfill mu = md (isospin limit). The interaction term contains a scalar (ψ̄ψ) and pseudoscalar (ψ̄iγ5τ⃗ψ)
interaction term, which are characterized by the same coupling constant gs and describe an attractive
interaction. The vector interaction term with coupling constant gv gives rise to a repulsive interaction. The
standard form of the NJL-Lagrangian can be obtained by setting gv = 0.

Symmetries

The symmetries of the Lagrangian lead to conservation laws by the Noether Theorem. The global phase
transformation UV (1)

ψ → exp(−iα)ψ and ψ̄ → exp(iα)ψ̄ with α ∈ R (2.2)
gives rise to baryon number conservation. In the isospin limit, where the masses of the up- and down
quarks are assumed to fulfill mu = md, the Lagrangian is invariant under SUV (2) symmetry

ψ → exp

(︃
− i

2
τ⃗ · ω⃗

)︃
ψ and ψ̄ → ψ̄ exp

(︃
i

2
τ⃗ · ω⃗

)︃
with ω⃗ ∈ R3 (2.3)

which corresponds to a rotation in isospin space. For a vanishing quark mass (chiral limit) the Lagrangian
is invariant under the axial symmetry SUA(2)

ψ → exp

(︃
− i

2
γ5τ⃗ · θ⃗

)︃
ψ and ψ̄ → ψ̄ exp

(︃
− i

2
γ5τ⃗ · θ⃗

)︃
with θ⃗ ∈ R3. (2.4)
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The combination SUV (2)⊗ SUA(2) is called chiral symmetry and is only fulfilled for a vanishing current
massm. The chiral symmetry is spontaneously broken by non-vanishing condensates. So in the chiral limit,
the quark condensate is an order parameter for chiral symmetry breaking. In this thesis the chiral limit,
m = 0, as well as explicitly broken chiral symmetry, m ̸= 0, will be considered.

2.0.1. Mean-Field Approximation

To calculate thermodynamic properties, the mean-field approximation (or equivalently Hartree) will be
applied [29]. We label the expectation values of the field bilinears as

φS(x∼) ≡
⟨︁
ψ̄ψ
⟩︁ (2.5)

φaP (x∼) ≡
⟨︁
ψ̄iγ5τ

aψ
⟩︁ (2.6)

nµ(x∼) ≡
⟨︁
ψ̄γµψ

⟩︁ (2.7)

and expand the interaction terms around their expectation values plus small fluctuations

ψ̄ψ = φS(x∼) + δφS (2.8)
ψ̄iγ5τ

aψ = φaP (x∼) + δφaP (2.9)
ψ̄γµψ = nµ(x∼) + δnµ. (2.10)

Here x∼ represents the four-position in Minkowski space. The fluctuations are assumed to be small, so only
linear contributions of the δ-terms are considered. Then, squaring equation (2.8)–equation (2.10) reads

(ψ̄ψ)2 ≈ − (φS)
2 (x∼) + 2φS(x∼)ψ̄ψ (2.11)

(ψ̄iγ5τ
aψ)2 ≈ − (φaP )

2 (x∼) + 2φaP (x∼)ψ̄iγ5τaψ (2.12)
(ψ̄γµψ)2 ≈ − (nµ)2 (x∼) + 2nµ(x∼)ψ̄γµψ. (2.13)

The expectation values could, in principle, be both time and space-dependent, but here, only static
condensates are considered. Hence, the condensates only depend on the three-position x in Euclidean
space. The pseudo-scalar condensate will be considered only in 3-direction φaP (x) = φP (x)δa,3, so a
diagonal structure in flavor space is obtained. Furthermore, for the vector condensate in equation (2.13)
only the time component is taken into account, that is nµ(x) = n(x)gµ,0. In [23] it is shown that this is
reasonable. The time component n(x) can be identified with the density of the system and induces an
effective shift in the chemical potential of the quarks. By applying the expressions above to equation (2.1),
the mean-field Lagrangian is obtained:

LMF + µψ̄γ0ψ = ψ̄S−1ψ − V (2.14)

with the inverse quark-propagator in coordinate-space

S−1(x) = iγµ∂µ −m+ γ0µ+ 2gs
(︁
φS(x) + iγ5τ

3φP (x)
)︁
− 2γ0gvn(x) (2.15)

and the contribution of the condensates

V(x) = gs
(︁
φ2S(x) + φ2P (x)

)︁
− gvn

2(x). (2.16)
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2.1. Thermodynamic potential

The preferred ground state of the system, for temperatures T and chemical potentials µ, can be extracted
by minimizing the grand canonical potential per volume V of the model. It characterizes an open system,
which allows the exchange of energy and particles with a heat bath for a specified temperature and chemical
potential. The grand canonical potential1 per volume is defined by

Ω = −T
V

logZ(T, µ) (2.17)

with the grand canonical partition functionZ. In mean-field approximation, it can be written in path-integral
formalism [6]

ZMF =
∫︂

Dψ̄Dψ exp

(︄∫︂ 1/T

0
dτ

∫︂
V
d3x

(︁
LMF + µψ̄γ0ψ

)︁)︄ (2.18)

with the imaginary time τ = it and the chemical potential µ. The resulting mean-field thermodynamic
potential reads

ΩMF = −T
V

log

∫︂
Dψ̄Dψ exp

[︄∫︂ 1/T

0
dτ

∫︂
V
d3x

(︁
ψ̄S−1ψ − V

)︁]︄ . (2.19)

which is bilinear in the quark fields so the path integral can be performed and the resulting expression is
given by

ΩMF = −T
V

Tr log

(︃
S−1(x)

T

)︃
+

1

V

∫︂
V
d3xV(x) ≡ Ωkin +Ωcond (2.20)

where the two terms were identified as a kinetic and condensate contribution. The trace runs over color,
flavor, Dirac and euclidean 4-volume space. The inverse propagator is diagonal in color space which will
simply result in a factor Nc = 3. Before tracing over the other spaces, further steps are taken. Since the
condensates are static, the temporal and spatial dependence of the inverse propagator can be isolated

S−1(x) = −i∂t − (H(x)− µ) (2.21)

with the effective Hamiltonian

H(x)− µ = γ0
[︁
−iγγγ · ∇∇∇+m− 2gs

(︁
φS(x) + iγ5τ3φP (x)

)︁]︁
− (µ− 2gvn(x)). (2.22)

Since τ3 is diagonal, the effective Hamiltonian can be written as a product in isospin space

H(x)− µ =
(︁
H+(x)− µ

)︁
⊗
(︁
H−(x)− µ

)︁ (2.23)

1For simplicity, it will be referred to as ’thermodynamic potential’.
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with

H±(x)− µ = γ0
[︁
−iγγγ · ∇∇∇+m− 2gs

(︁
φS(x)± iγ5φP (x)

)︁]︁
− µ̃(x) =

(︃
iσσσ · ∇∇∇− µ̃(x) M±(x)
M∓(x) −iσσσ · ∇∇∇− µ̃(x)

)︃
.

(2.24)

In the last step, we used the Weyl representation of the γ-matrices. σσσ is the Pauli vector in spin space and
M±(x) and µ̃(x) are the shifted mass and chemical potential, respectively, which are defined by

M±(x) = m− 2gs (φS(x)± iφP (x)) , (2.25)
M+(x) ≡M(x) and M−(x) ≡M∗(x), (2.26)
µ̃(x) = µ− 2gvn(x). (2.27)

H+ and H− are isospectral, so it is sufficient only to consider e.g. H+ ≡ H and multiply by a degeneracy
factor Nf = 2.
In order to calculate the trace in Dirac and 4-volume space in equation (2.20) it is useful to switch to
momentum space, where the quark fields, equation (2.25) and equation (2.27) can be expanded in Fourier
series

ψ(x) =
1√
V

∑︂
pn

ψpn e
−ipnx =

1√
V

∑︂
ωn

∑︂
pn

ψpn e
−i(ωnτ−pnx) (2.28)

ψ̄(x) =
1√
V

∑︂
pn

ψpn e
+ipnx (2.29)

M±(x) =
∑︂
qk

M±
qk

e±iqkx µ̃(x) =
∑︂
qk

µ̃qk
e±i2qkx . (2.30)

Thereby, the condensates are assumed to be periodic in space. Here qk are the discrete modulation momenta
from the reciprocal lattice (R.L.). For the shifted potential, twice the wavenumber is expected, since the
density from the solitonic solutions is known to oscillate with twice the frequency of the mass modulation.
This is shown in figure 2.1. The factor 2 also occurred in the GL-analysis in the vicinity of the LP in [28].
The quark-fields satisfy the anti-periodic boundary condition ψ(0,x) = −ψ( 1

T ,x) which is imposed on the
imaginary time direction. Hence, the Matsubara frequencies have the form ωn = (2n+ 1)πT . The effective
Hamiltonian in momentum space becomes

Hpm,pn − µ =

(︃
−σσσ · pmδpm,pn +

∑︁
qk
µ̃qk

δ2qk,pm−pn

∑︁
qk
Mqk

δpm,pn+qk∑︁
qk
M∗

qk
δpm,pn−qk

σσσ · pmδpm,pn +
∑︁

qk
µ̃qk

δ2qk,pm−pn

)︃
(2.31)

with the in- and outgoing quark momenta pn and pm, respectively.
Since quarks can exchange momenta by scattering off the condensate, the Hamiltonian is, in general, not
diagonal in momentum space. This is reflected by the terms of equation (2.31) where the Kronecker-deltas
contribute if the in- and outgoing momenta differ by qk or 2qk, respectively. Because the momentum
space is infinite-dimensional, the diagonalization is highly non-trivial. But since H is hermitian, it can, in
principle, be diagonalized. Therefore, further simplifications will be performed later. If the condensates are
homogeneous (M(x) = const., µ̃(x) = const.) the quarks carry the same momenta and the Hamiltonian
becomes diagonal in momentum space.
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Figure 2.1.: Shape of the mass modulation (left) and corresponding quark number density (right) for the
solitonic solutions at µ = 308MeV. The density has been normalized to the density in the
restored phase at the given value of the chemical potential. The oscillation of the density is
twice the mass modulation. Taken from [24]. Further details about the solitons are
discussed in section 4.2.

By performing the trace in color and flavor space, the kinetic part of the thermodynamic potential becomes

Ωkin = −T
V
NfNc

∑︂
n

TrDirac,p log
(︃
1

T
(iωn − (H − µ))

)︃
(2.32)

= −T
V
NfNc

∑︂
n

∑︂
Eλ

log

(︃
1

T
(iωn − Eλ)

)︃
(2.33)

where Eλ are the eigenvalues of H − µ in Dirac and momentum space. S−1 is diagonal in frequency space,
so the trace turned into a sum over ωn. Performing the Matsubara sum yields

Ωkin = − 1

V
NfNc

∑︂
Eλ

[︃
Eλ

2
+ T log

(︃
1 + exp

(︃
−Eλ

T

)︃)︃]︃
. (2.34)

Using the definitions equation (2.25) and equation (2.27), the condensate part of the mean-field potential
equation (2.20) leads to

Ωcond =
1

V

∫︂
V
d3x

(︃
|M(x)−m|2

4gs
− |µ̃(x)− µ|2

4gv

)︃
=
∑︂
qk

(︄
|Mqk

−mδqk,0|2

4gs
−

|µ̃qk
− µδqk,0|2

4gv

)︄
. (2.35)
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2.2. Regularization

Due to the four-point interaction, the NJL model is not renormalizable. So to render diverging terms finite,
it is necessary to apply a regularization scheme to the model. A detailed review of regularization schemes
is stated in [30]. One possibility would be to use a 3-momentum cutoff. But this method is not suitable in
inhomogeneous cases since the cutoff would restrict the maximal momentum and the maximum number of
coupled momenta – it breaks Lorentz invariance. We therefore apply Pauli-Villars-regularization [31]. In
this regularization-scheme Eλ is replaced by

Eλ −→
3∑︂

j=0

cjEλ,j =
3∑︂

j=0

cj

√︂
E2

λ + jΛ2 (2.36)

with c0 = 1, c1 = −3, c2 = 3, c3 = −1 and a regulator Λ. The choice of parameters for deriving Λ and gs,
as well as their results, are shown in table 2.1. The coupling constant gv will be treated as a variable.

Mvac = 300MeV

fπ = 88MeV

T, µ,m = 0MeV

−→ Λ = 757.048MeV

gsΛ
2 = 6.002

Table 2.1.: The regulator Λ and coupling constant gs are fixed for vanishing temperature T , chemical
potential µ, and bare quark massm. The vacuum quark massMvac and the pion decay
constant fπ [33] are chosen as shown above.

The regularization scheme in equation (2.36) is standardly used in the case without vector interaction,
where Eλ are defined as the eigenvalues of H. In our case, with included vector interaction, we defined
Eλ as the eigenvalues of H − µ to include the vector condensate in the matrix. This leads to the problem
that the Silver-blaze property [34] is not fulfilled. The Silver-blaze property states that M0 should be
independent of µ until particle excitation is possible, that is at µ ≥ Mvac = 300MeV with the vacuum
quark mass Mvac. The blue dotted lines in figure 2.2 show the results of the mass function and density
in the homogeneous case in the chiral limit with gv/gs = 0.5 and T = 0MeV with the regularization of
equation (2.36). As we can see, M0 starts to decrease long before µ = 300MeV and additionally, we
get negative densities. To solve this issue we need to exclude the 0th component of µ̃ from the matrix.
Therefore, we use equation (2.27) to redefine the Hamiltonian matrix,

H − µ = H̃ − µ̃0, (2.37)

and define Ẽλ as the eigenvalues of H̃. Applying the Pauli-Villar-regularization to Ẽλ,

Ẽλ −→
3∑︂

j=0

cjẼλ,j =
3∑︂

j=0

cj

√︂
Ẽ

2
λ + jΛ2, (2.38)

yields correct results, as the red dotted lines in figure 2.2 show. In the case without vector interactions, the
matrices H̃ and H coincide.
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Figure 2.2.: Effective mass and density for the homogeneous case over µ, with the chemical potential
still in the Pauli-Villars regularized terms (blue dotted) and the ’correct’ solution (red dotted)
for gv/gs = 0.5 and T = 0MeV in the chiral limit. The blue dotted line in the l.h.s. does not
fulfill the Silver-blaze property. Furthermore, the wrong regularization yields a negative
density.

Applying the redefinition of the Hamiltonian matrix and the regularization scheme to equation (2.34)
yields

Ωkin = − 1

V
NfNc

∑︂
Ẽλ

3∑︂
j=0

cj

{︄
Ẽλ,j − sgn(Ẽλ)µ̃0

2
+ T log

[︄
1 + exp

(︄
−
Ẽλ,j − sgn(Ẽλ)µ̃0

T

)︄]︄}︄
(2.39)

−→⏞⏟⏟⏞
T−→0

− 1

V
NfNc

∑︂
Ẽλ

3∑︂
j=0

cj

{︄
Ẽλ,j − sgn(Ẽλ)µ̃0

2
+
(︂
sgn(Ẽλ)µ̃0 − Ẽλ,j

)︂
·Θ
[︂
sgn(Ẽλ)µ̃0 − Ẽλ,j

]︂}︄
.

(2.40)

In equation (2.40) the limit for vanishing temperatures has been taken. In the case without vector interaction,
it is common to split the thermodynamic potential into a divergent vacuum term and convergent medium
term and sum only over the positive eigenvalues since the eigenvalue spectrum is symmetric around zero.
In our case we have to regularize the complete kinetic part of the potential since in equation (2.34) the
part with the logarithm which we would identify as the medium contribution is unbounded for negative
eigenvalues. Since with vector interaction, the eigenvalue spectrum is shifted by the included µ̃i in the
Hamiltonian matrix, it is necessary to sum over all eigenvalues. In addition, the sgn-function between the
round brackets in the ’medium part’ in equation (2.40) can be omitted in the following steps: To obtain
positive densities µ̃0 has to be positive and due to equation (2.38) Ẽλ,j is always positive. As a result the
Heaviside function only contributes for positive Ẽλ.
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3. General preparations for numerical calculations

3.0.1. Lattice structure

As mentioned in section 2.1, the Hamiltonian is infinite-dimensional and thus cannot be diagonalized
numerically without more ado. However, since the spatially modified condensates form a periodic structure
in coordinate space, the Bloch theorem [35] can be used. The theorem says that the eigenstates, which
belong to different vectors of the first Brillouin zone (B.Z.), are orthogonal. The periodic structure can be
identified with a Bravais-lattice (B.L.) which forms a unit cell spanned by linear independent vectors ai,
i = 1, 2, 3. The set of vectors qk generate a reciprocal lattice (R.L.) which satisfy the condition ai·qk

2π ∈ Z.
The B.Z. is the Wigner-Seitz (W.S.) primitive cell in the reciprocal lattice, which can be defined as the
region of space that is closer to a single lattice point than to any other point. The in- and outgoing quark
momenta can be written as

pn = kn + qn (3.1)
pm = km + qm (3.2)

for kn,km ∈ B.Z. and qn,qm ∈ R.L.. Considering the Hamiltonian equation (2.31) different momenta are
coupled byMqk

and µ̃qk
that differ by integer multiples of qk of the R.L.. From the momentum difference

pm − pn = km − kn⏞ ⏟⏟ ⏞
∈B.Z.

+qm − qn⏞ ⏟⏟ ⏞
∈R.L.

(3.3)

it follows that this is the case if kn = km is satisfied. An example of the lattices and coupled in- and
outgoing momenta in one-dimensions is shown in figure 3.1.

Figure 3.1.: One-dimensional lattice (blue) and generated reciprocal lattice (green) [36]. The R.L.
elements are separated by q and the B.Z. is located in the red-marked area which is the
Wigner-Seitz primitive cell. As an example, an ingoing momentum pn, which is located in the
B.Z., is coupled with an outgoing momentum pm which differs by q.
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As a consequence, the Hamiltonian can be decomposed into a sum of Hamiltonian blocks in the first
Brillouin zone

H̃ =
∑︂

kn∈B.Z.
H̃(kn) (3.4)

with each block characterized by a momentum of the B.Z.. So the momenta in the matrix H̃(kn) can be
mapped in a grid structure, where each element is separated from the others by a R.L. element. From this,
the eigenvalues of H̃ are obtained by computing the eigenvalues of H̃(kn) and summing over the B.Z..
Performing the infinite volume limit

1

V

∑︂
kn∈B.Z.

−→
∫︂

B.Z.

d3k

(2π)3
(3.5)

the thermodynamic potential can be written as

Ωkin = −NfNc

∫︂
B.Z.

d3k

(2π)3

∑︂
Ẽλ

3∑︂
j=0

cj

{︄
Ẽλ,j(k)− sgn(Ẽλ)µ̃0

2
+
(︂
µ̃0 − Ẽλ,j(k)

)︂
·Θ
[︂
sgn(Ẽλ)µ̃0 − Ẽλ,j(k)

]︂}︄
.

(3.6)

3.0.2. Boosted eigenvalues and lower-dimensional modulations

If the condensate varies only in d dimensions the quark momenta p can be split into longitudinal p∥ and
transversal p⊥ components with respect to the direction of quark condensate modulation

p = p∥ + p⊥. (3.7)

In the case without vector interactions, one takes advantage of the Lorentz-symmetry of the system to
simplify the matrix structure of H. This method was invented by Dominik Nickel [25]. In this case,
the system is translationally invariant in the transversal directions. Thus, the corresponding operator
P⊥ commutes with H and exhibits simultaneous eigenstates ΨEλ,p⊥ , for which the 3 + 1 dimensional
eigenvalue problem

HΨEλ,p⊥ = EλΨEλ,p⊥ (3.8)
P⊥ΨEλ,p⊥ = p⊥ΨEλ,p⊥ (3.9)

is satisfied. Now take Ψλ,0 to be the eigenvector in the rest-frame of p⊥ with
HΨλ,0 = λΨλ,0 and (3.10)
P⊥Ψλ,0 = 0 (3.11)

with the reduced eigenvalues λ. Take Λµ
ν to be the Lorentz transformation that boosts the reduced

eigenvector to the full 3 + 1 eigenvector to receive the full-dimensional eigenvalues Eλ:

Λµ
ν

(︃
λ
0

)︃ν

=

(︄
λ

√︂
1 +

p2
⊥

λ2

p⊥

)︄µ

=

(︃
Eλ

p⊥

)︃µ

(3.12)

=⇒ Eλ = sgn(λ)
√︂
λ2 + p2

⊥ (3.13)
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With included vector interactions Nickel’s method is, in general, not applicable. This is discussed in detail
in appendix A.2. A derivation of equation (3.13) based on the corresponding Hamiltonian can be found
there, too.
So following expression for a d-dimensional modulation can be obtained:

Ωkin(µ) = −NfNc

∫︂
d3−dp⊥
(2π)3−d

∫︂
B.Z.

ddk

(2π)d

∑︂
Ẽλ

3∑︂
j=0

cj

{︄
Ẽλ,j(k,p⊥)− sgn(Ẽλ)µ̃0

2

+
(︂
µ̃0 − Ẽλ,j(k,p⊥)

)︂
·Θ
[︂
sgn(Ẽλ)µ̃0 − Ẽλ,j(k,p⊥)

]︂}︂
(3.14)

with

Ẽλ,j(k,p⊥) =

√︂
Ẽ

2
λ(k,p⊥) + jΛ2. (3.15)

In the case of constant vector condensates, that is for µ̃n = 0 with n > 0, the perpendicular momenta
can be excluded from the Hamiltonian matrix, so the matrix structure and equation (3.14) can further
be simplified drastically. This is discussed in appendix A.5. Thus, the computation time can be reduced
significantly.

3.1. Deriving solutions in thermodynamic equilibrium

The solutions in thermodynamic equilibrium are given by the stationary points w.r.t. Mn and µ̃n and the
minimum w.r.t. q. One option to find these solutions is to derive gap equations, which are a coupled
equation system, by the stationary conditions

∂Ω

∂Mn
= 0 and ∂Ω

∂µ̃n
= 0 (3.16)

and solve them via fix-point iteration. There, derivatives of the eigenvalues appear which are related to
the eigenvectors of the system. Every Fourier coefficient leads to a gap-equation that depends on all other
coefficients. So a rising number of included coefficients increases the size of the gap equation system and
moreover the size of the matrix bandwidth, leading to numerically even more complicated eigenvector
derivations. In total it impairs the computation time drastically. Since the numerical derivation of the
eigenvalues is a lot faster than deriving the eigenvectors, in this thesis, we forgo the use of gap equations
and derive the solutions by a minimizing algorithm instead. The potential will be minimized w.r.t. Mn

and q and maximized w.r.t. µ̃n – latter is equivalent to minimizing Ω w.r.t. −µ̃n. The maximization of
µ̃n is necessary since the potential only provides a maximum in µ̃n-direction, see figure 5.4. For the
minimizations the Nelder-Mead method [37], also known as downhill simplex method, of GSL was used.
The numerical diagonalization of the Hamiltonian matrix was performed with the ZHBEV routine of the
LAPACK library [38].
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4. One-dimensional modulations

4.1. General

The condensates will be considered to vary in one dimension. Without loss of generality, the modulation
momentum is restricted to the third direction, q = nqe⃗z. So the ansätze of equation (2.30) become

M(z) =
∑︂
n∈Z

Mn e
inqz µ̃(z) =

∑︂
n∈Z

µ̃n e
2inqz . (4.1)

Then the effective Hamiltonian in momentum space reads

Hpm,pn =

⎛⎜⎜⎝
−(k +mq)δpm,pn −

∑︁
qk
µ̃qkδpm,pn+2qk −p⊥δpm,pn

−p⊥δpm,pn (k +mq)δpm,pn −
∑︁

qk
µ̃qkδpm,pn+2qk∑︁

qk
M∗

qk
δpm,pn−q 0

0
∑︁

qk
M∗

qk
δpm,pn−q

∑︁
qk
Mqkδpm,pn+q 0

0
∑︁

qk
Mqkδpm,pn+q

(k +mq)δpm,pn −
∑︁

qk
µ̃qkδpm,pn+2q −p⊥δpm,pn

−p⊥δpm,pn −(k +mq)δpm,pn −
∑︁

qk
µ̃qkδpm,pn+2qk

⎞⎟⎟⎠ (4.2)

As discussed in section 3.0.1, the R.L. contains an infinite number of W.S. cells, so the modulated momenta
have to be restricted to obtain a finite Hamiltonian matrix. Therefor, the modulated momenta get restricted
to a numerical cutoff ΛM

|Nq + kz| ≤ ΛM (4.3)

so the maximal size N of the Hamiltonian matrix is
N = ⌊|ΛM − kz|/q⌋ (4.4)

where ⌊x⌋ is the floor function, which means that for N the greatest integer smaller as or equal to x has to
be taken. In the one-dimensional case, d = 1, equation (3.14) reads

Ωkin = −
NfNc

(2π)2

q∫︂
0

dkz

∞∫︂
0

dp⊥ p⊥
∑︂
Ẽλ

3∑︂
j=0

cj

{︄
Ẽλ,j(kz, p⊥)− sgn(Ẽλ)µ̃0

2

+
(︂
µ̃0 − Ẽλ,j(kz, p⊥)

)︂
·Θ
[︂
sgn(Ẽλ)µ̃0 − Ẽλ,j(kz, p⊥)

]︂}︂
. (4.5)
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To simplify the numerical calculations, for high energies the eigenvalues are approximated by the homo-
geneous eigenvalues which is discussed in appendix A.3. Additionally, the asymptotic behavior of the
integrand will be taken into advantage, see appendix A.4.

4.2. Ansätze and Hamiltonian matrix

We will consider the homogeneous case (HOM) and one-dimensional modulations for inhomogeneous
condensates as follows: the chiral density wave (CDW), the cosine in average density approximation (ADA),
the cosine with spatially modulated density and the solitonic solutions in ADA. The ansätze for the mass
and chemical potential functions are shown in the table below:

non-vanishing Fourier coefficients M(z) µ̃(z)

HOM M0, µ̃0 M0 µ̃0
CDW M1, µ̃0 M1 e

iqz µ̃0
cosine, ADA M±1, µ̃0;M−1 =M1, 2M1 cos(qz) µ̃0

cosine, spat. mod. density M±1, µ̃0 , µ̃±1;M−1 =M1, µ̃−1 = µ̃1 2M1 cos(qz) µ̃0 + µ̃1 cos(2qz)

Table 4.1.: Non-vanishing Fourier coefficients and resulting functions of the mass and chemical
potential ansätze for the homogeneous case, chiral density wave, cosine with ’average
density approximation’ and cosine with spatially modulated density (from top to bottom) in
the chiral limit.

The factor 2 at the cosines comes from the definition of equation (2.30). The mass ansatz for the solitonic
solutions in the chiral limit [39] is given by

M(z) = ∆ν
sn(∆z|ν)cn(∆z|ν)

dn(∆z|ν) . (4.6)

sn(∆z|ν), cn(∆z|ν) and dn(∆z|ν) are the Jacobi elliptic functions, the parameter ∆ relates to the mass
amplitude and √

ν is the elliptic modulus with ν ∈ [0, 1]. Latter describes the shape of the modulation. The
mass function of equation (4.6) and the corresponding density profile is shown in figure 2.1 exemplarily.
From equation (2.27) the space-dependent density n(z) can be derived as

n(z) =
µ− µ̃0
2gv

− µ̃1
2gv

cos(2qz) = ⟨n⟩ − nA cos(2qz) (4.7)

where the average density ⟨n⟩ and the density amplitude nA can be identified.
For one-dimensional modulations with an arbitrary number of Fourier coefficients, the Hamiltonian matrix
takes the form

H(kz) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

D−N (M0) O(M1,M−1) N(M2,M−2, µ̃1) O(M3,M−3) . . .

O(M−1,M1) D−N+1(M0)
. . . . . . . . .

N(M−2,M2, µ̃1)
. . . . . . . . . N(M2,M−2, µ̃1)

O(M−3,M3)
. . . . . . DN−1(M0) O(M1,M−1)

... . . . N(M−2,M2, µ̃1) O(M−1,M1) DN (M0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.8)
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with the blocks

Dr(M0) = γ0γ3(kz + rq) + γ0γ1p⊥ + γ0M0 − µ̃0 (4.9)

=

⎛⎜⎜⎝
−(kz + rq)− µ̃0 −p⊥ M0 0

−p⊥ (kz + rq)− µ̃0 0 M0

M0 0 (kz + rq)− µ̃0 −p⊥
0 M0 −p⊥ −(kz + rq)− µ̃0

⎞⎟⎟⎠ , r ∈ Z

(4.10)

O(M±n,M∓n) = γ0
1

2
[M±n +M∓n + γ5M∓n − γ5M±n] (4.11)

=

⎛⎜⎜⎝
0 0 M∓n 0
0 0 0 M∓n

M±n 0 0 0
0 M±n 0 0

⎞⎟⎟⎠ , n odd (4.12)

N(M±n,M∓n, µ̃n/2) = γ0
1

2
[M±n +M∓n + γ5M∓n − γ5M±n]− µ̃n/2 (4.13)

=

⎛⎜⎜⎝
−µ̃n/2 0 M∓n 0

0 −µ̃n/2 0 M∓n

M±n 0 −µ̃n/2 0

0 M±n 0 −µ̃n/2

⎞⎟⎟⎠ , n even. (4.14)
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5. Chiral limit

Here, we will briefly discuss the findings of [22–24] with regard of the homogeneous solution, the CDW
and the cosine with spatially modulated density based on the free energies at gv/gs = 0.0, gv/gs = 0.3 and
gv/gs = 0.5 in the chiral limit. Thereafter, we study these findings in terms of the thermodynamic potential
at gv/gs = 0.0 and gv/gs = 0.3.

5.1. Free energies

In figure 5.1, the free energies for the homogeneous case (blue dashed-dotted), the CDW (black dashed),
the cosine (red dashed) and the solitonic solutions (green dot-dashed) are shown for gv/gs = 0.0 in the
upper panel. In the lower panels the free energies for the same ansätze are shown for gv/gs = 0.3 and
gv/gs = 0.5, except of the solitonic solutions. The CDW has a homogeneous density, so for gv/gs ̸= 0.0
we consider the ADA which is an exact approximation for the CDW. This is not the case for the cosine, so
for gv/gs ̸= 0.0 we consider the cosine with spatially modulated density. The free energy plots exhibit a
homogeneous phase where the homogeneous solution is the most favored. On the left phase boundary
the CDW, cosine perform a first order transition (not shown in the plots) into the inhomogeneous phase.
The solitons arise by a second order transition. A first order transition is characterized by a crossing of
the free energies of two solutions between which the system swaps. At a second order transition the free
energy of the next favored solution merges from the previously favored one. With rising µ the free energies
of the solutions merge into the chirally restored phase by a second order transition where all solutions
coincide. For gv/gs = 0.0 the solitonic and sinusoidal solutions almost degenerate so the cosine is a good
approximation.
The more favored solution is manifested by a lower free energy. At gv/gs = 0.0 the CDW is disfavored
against the real modulations in the whole inhomogeneous window. Turning on the vector interaction
strength to gv/gs = 0.3 yields a region in the beginning of the inhomogeneous phase where the CDW is
favored against the cosine, up to a specific chemical potential where the cosine is favored against the CDW.
At even higher vector couplings, e.g. gv/gs = 0.5, the CDW is favored against the cosine in the whole
inhomogeneous window. For gv/gs = 0.0 the solitonic solution is a self-consistent solution and the most
favored solution so far, for gv/gs ̸= 0.0 the solitonic solution is not self-consistent.
Due to the small modulation momentum q and consequently very large matrix size in the beginning of the
inhomogeneous phase, it was not possible to perform calculations there for the CDW and cosine. Thus, the
plots show gaps in the vicinity of the first order transition. For the corresponding diagrams where q and
the Fourier coefficients of the mass function and the density are plotted against µ we refer to the stated
literature.
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Figure 5.1.: Free energies for the homogeneous case, the CDW and the cosine at gv/gs = 0.0 (top),
gv/gs = 0.3 (bottom left) and gv/gs = 0.5 (bottom right). Additionally, the free energy of the
solitons are shown at gv/gs = 0.0. For gv/gs ̸= 0.0 the CDW was considered in ADA and the
cosine with spatially modulated density.

5.2. Homogeneous case

To get a deeper understanding of the discussed findings, we can plot the thermodynamic potential in the
space of the relevant coefficients. This has been done for the homogeneous case quite extensively, for
example in [30, 32], so we will restrict the discussions to the inhomogeneous case.
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5.3. CDW and cosine

5.3.1. Vanishing vector interactions

For the investigations of the CDW and the cosine, at first for gv/gs = 0.0, we plot the thermodynamic
potential in the space of the coefficients M1 and M−1. This is shown in the left picture of figure 5.2
where for each value ofM1 andM−1 the thermodynamic potential was minimized with respect to q. In
the chiral limit, the CDW is a self-consistent solution, but as we can see it is not a stable solution but
only a saddle point, that is at (M1,M−1) ≈ (72, 0)MeV. The global minimum in the M1-M−1-plane at
(M1,M−1) ≈ (74, 74)MeV is occupied by the cosine since in this point it is M1 = M−1. Since the global
minimum is energetically more favored than the saddle point the cosine is more favored. TheM0 coefficient
is trivially zero in both cases. In the right picture of figure 5.2 the thermodynamic potential was minimized
w.r.t. q andM1 for each value ofM−1. Here, the CDW occupies the maximum atM−1 = 0MeV and the
cosine the minimum atM−1 ≈ 74MeV which reflects the results from the left picture consistently.
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Figure 5.2.: Left: Thermodynamic potential plotted in theM1-M−1-plane, minimized with respect to q.
Right: Thermodynamic potential plotted inM−1-direction, minimized with respect to q and
M1. Both are in the chiral limit at µ = 325MeV and for gv/gs = 0.0.

5.3.2. Non-vanishing vector interactions

In figure 5.3 the thermodynamic potential is shown for gv/gs = 0.3 in the beginning, middle and more to the
end of the inhomogeneous phase: at µ = 335MeV (top left), µ = 341MeV (top right) and µ = 360MeV
(bottom) respectively. For each value of M−1 the thermodynamic potential was minimized w.r.t. both
q and M1 and maximized w.r.t. both µ̃0 and µ̃1. At µ = 335MeV both the CDW and the cosine with
spatially dependent density occupy minima, at (M1, M−1) ≈ (145, 0)MeV and (M1, M−1) ≈ (95, 95)MeV
respectively. Since the CDW is favored here, its minimum lies below the one of the cosine. It is quite special
that the potential exhibit two minima in the inhomogeneous phase, but the former investigations showed
that both the cosine and the favored solution occupy minima w.r.t. the corresponding Fourier coefficients,
so it is not an unexpected result. Shortly after the first order transition to the region where the cosine is
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favored, at µ = 341MeV, both solutions again occupy a minimum but now the minimum of the cosine
lies slightly below since it is more favored. At higher chemical potentials, e.g. µ = 360MeV, the kind of
extremum of the CDW changes into a maximum. The picture at µ = 335MeV indicates a third minimum
of the thermodynamic potential at largerM−1. There, we would find a minimum of the CDW withM1 = 0
andM−1 ̸= 0. We should also find those extrema in the other two plots, but due to the computationally
challenging calculations, we had to restrict the range inM−1-direction as shown.
The fact that both CDW and cosine with spatially modulated density occupy minima in the beginning and
middle of the inhomogeneous phase has an important impact on finding the energetically favored solution.
As minima both are stable solutions, so starting the minimizing routine with ’wrong’ initial values will
likely lead to a solution that is not energetically favored. Especially, this becomes critical in the region
where the free energies lie close to each other, e.g. at µ ≈ 341MeV. So it is not ensured to find the cosine
if the initial values are close to the CDW and vice versa. Consequently, it is not recommended to trust the
result of the minimization solely but it highly reasons the analysis of the thermodynamic potential.
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Figure 5.3.: Thermodynamic potential in the chiral limit inM−1-direction at µ = 335MeV (top left),
µ = 341MeV (top right) and µ = 360MeV (bottom) for gv/gs = 0.3, minimized with respect
to q andM1 and maximized with respect to µ̃0 and µ̃1.
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Density

For the calculations with non-vanishing vector condensates, we had to apply an ansatz for the density to
the CDW and cosine. The CDW is known to have a homogeneous density so the ADA was applied. The
homogeneity of the density becomes evident by finding a vanishing density amplitude nA, see figure 5.4
left. In contrast, the density of the cosine is space-depending. This is reflected by finding the maxima with
respect to both ⟨n⟩ and nA at non-zero values, figure 5.4 right. There, we observe that the thermodynamic
potential only provides maxima w.r.t. µ̃n which was already discussed in section 3.1.
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Figure 5.4.: Thermodynamic potential in nA-direction for the CDW (left) and in the ⟨n⟩-nA-plane for the
cosine. Both are in the chiral limit at µ = 345MeV for gv/gs = 0.3. For each point in the r.h.s.
plane the thermodynamic potential was minimized with respect to q andM1 and for each
point in the l.h.s. plot it was additionally maximized with respect to µ̃0.
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6. Explicitly broken chiral symmetry

In this section we introduce a non-vanishing bare quark mass of m = 5MeV. The consequences regarding
the homogeneous case, CDW and cosine ansatz without vector interaction, that is for gv/gs = 0.0, was
already discussed in [22]. Here, we will investigate the thermodynamic potential for gv/gs = 0.3, compare
it with the case of gv/gs = 0.0 and discuss the implications that emerge from the results. Additionally,
we compare the µ-q,M -diagrams as well as the densities for the CDW and cosine for gv/gs = 0.0 and
gv/gs = 0.3. Due to the numerical challenges that occur if we include µ̃1 we will restrict the calculations to
the ADA.

6.1. Homogeneous case
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Figure 6.1.: Thermodynamic potential for several µ plotted againstM0. Chemical potentials on the left:
100MeV (red), 280MeV (blue), 322MeV (dark yellow), 327MeV (cyan), 380MeV (black).
Chemical potentials on the right: 100MeV (red), 280MeV (blue), 345MeV (dark yellow),
380MeV (black).

The thermodynamic potentials for gv/gs = 0.0 and gv/gs = 0.3 for several µ are shown in figure 6.1. In
both pictures we see the broken symmetry of the thermodynamic potential due the non-vanishing m,
with the consequence that the negative solutions forM0 are always disfavored. Initially (red, blue) the
global minimum is located atM0 ≈ 307MeV and the maximum is slightly shifted from 0MeV. The left
picture suggests a first order transition, this is familiar with the chiral limit for small and vanishing vector
interactions. In the region of µ = 322MeV (dark yellow) and µ = 327MeV (cyan) the thermodynamic
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potential exhibit two minima for M0 > 0, at M0 ≈ 20MeV and M0 ≈ 300MeV, from which the latter
(first) one is energetically favored at µ = 322MeV (µ = 327MeV). In the right picture the initial minimum
smoothly shifts to smaller values which corresponds to a crossover.
In figure 6.2 the µ-M0-diagrams and self-consistent densities for the homogeneous case are shown for
gv/gs = {0.0, 0.1, 0.3}. As we have seen before, theM0 coefficient starts at ≈ 307MeV while the density
vanishes at this point. From a slightly larger value than µ =Mvac they start to fall/rise smoothly. In our
case1, due to the Silver-Blaze-property, the parameters cannot change at µ < Mvac. For gv/gs = {0.0, 0.1}
we findM0 and n to be discontinuous at µ ≈ 320MeV and µ ≈ 330MeV, respectively. At larger gv/gs we
do not find a discontinuous behavior anymore but a crossover where the quantities are continuous. So the
vector interaction weakens the first order transition until it becomes a crossover. This behavior is familiar
from the chiral limit case, with the exception that we would find a second order transition there. In contrast
to the chiral limit, there is no chirally restored phase since a non-vanishing m breaks the chiral symmetry
explicitly. This is reflected inM0 not converging to 0 after the first order transition or the crossover with
rising µ. It just converges to small values but never reaches 0. This indicates that the chiral symmetry is
only approximately fulfilled. As we can see, rising the vector interaction strength retards the transitions
to higher µ and suppresses the density after the phase transitions. This is intuitively clear since it is a
repulsive interaction, so the quarks are forced to be uniformly distributed farther away from each other.

gv= 0.0 gs

gv= 0.1 gs

gv= 0.3 gs

300 350 400 450
0

50

100

150

200

250

300

μ [MeV]

M
0
[M

eV
]

gv= 0.0 gs

gv= 0.1 gs

gv= 0.3 gs

300 350 400 450
0.0

0.5

1.0

1.5

2.0

μ [MeV]

n
[f
m

-
3
]

Figure 6.2.: Effective masses (left) and self-consistent densities (right) plotted against µ with
m = 5MeV.

6.2. CDW

As we already discussed, the CDW is a self-consistent solution in the chiral limit and has a homogeneous
density, so the ADA is an exact approximation. Things change as soon as a non-vanishingm or non-vanishing
vector interactions are introduced as we will discuss in the following. In figure 6.3 (left) theM−1-M0-plane
of the thermodynamic potential is shown for gv/gs = 0.3 at µ = 360MeV in ADA, that is for µ̃1 = 0.
1The parameters could change at smaller chemical potentials if there was a phase transition to a solution with a smaller mass
than our Mvac.
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For each point in the plane we minimized w.r.t. both M1 and q and maximized w.r.t. µ̃0. The CDW has
a maximum w.r.t. M−1 at (M−1, M0) ≈ (0, 0)MeV but this does not correspond to a minimum, nor a
maximum, w.r.t. M0, so it is not an extremal point in this plane. Then, it would be intuitive to extend the
CDW by a constant shiftM0 and move in its minimum: (M−1, M0) ≈ (0, 66)MeV. But here we find that
the CDW has no maximum inM−1 anymore. This becomes evident by the r.h.s. of figure 6.3, where the
thermodynamic potential is plotted inM−1-direction – there, for each point the potential was additionally
minimized w.r.t. M0. So neither the ’standard’ CDW nor the ’extended’ CDW is a self-consistent solution.
In the minimum of both plots in figure 6.3 the Fourier coefficients of the mass function have the values
(M−1, M0, M1) ≈ (66, 77, 66)MeV, this corresponds to a cosine with a constant shift.
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Figure 6.3.:M−1-M0-plane (left) andM−1-direction (right) of the thermodynamic potential at
µ = 360MeV for gv/gs = 0.3 and withm = 5MeV. For each point in the l.h.s. plane the
thermodynamic potential was minimized w.r.t. bothM1 and q and maximized w.r.t. µ̃0. For
each point in the r.h.s. plot it was additionally minimized w.r.t. M0.

Furthermore, by comparing the free energies of the standard CDW and homogeneous solution for gv/gs =
0.0 and gv/gs = 0.3 for several m, see figure 6.4, it follows that there is a critical bare mass above which
the CDW is disfavored against the homogeneous solution. This appears at m ≳ 3MeV and is just little
affected by the vector interactions. So in our case of m = 5MeV it is not useful to consider the CDW any
longer. Instead, we will extend the CDW by the constant shiftM0 and label it ’CDW+’. Also, the cosine
will be extended byM0 which we will label with ’cosine+’.

6.2.1. Extended CDW

In figure 6.5 the modulation momentum q, the Fourier coefficients M0 and M1 (top) and the average
density (bottom) of the CDW+ ansatz against µ are shown for gv/gs = 0.0 (left) and gv/gs = 0.3 (right).
We can identify the homogeneous broken phases whereM1 is zero and an inhomogeneous phase whereM1

differs from 0. At the left phase boundary the phase transition occurs by a first order transition. This kind
of phase transition is characterized by a discontinuity of the Fourier coefficients. Without vector interaction,
the coefficients decline with a rising modulation momentum andM1 takes slightly larger values thanM0,
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Figure 6.4.: Free energies for the homogeneous solution (colored) and the standard CDW (black) for
gv/gs = 0.0 (left) and gv/gs = 0.3 (right) form = {1, 2, 3, 4, 5}MeV. The CDW is just listed
once since its free energy is not affected bym.

the modulation momentum q is located in the range of 400–500MeV. At a specific chemical potential the
inhomogeneous phase becomes disfavored against the homogeneous phase,M1 drops to zero by a second
order transition whileM0 remains non-zero. In the chiral limit, we would find a chirally restored phase
here, but due to the non-vanishing m an exact order parameter does not exist for the distinction between
the homogeneous broken and the chirally restored phase where the condensates would vanish.
For gv/gs = 0.3 right after the phase transition at the left phase boundaryM0 is twice as large asM1 and
q starts with ∼ 130MeV. Consequently, the vector interaction drastically reduces the oscillations of the
mass function. The density is strongly suppressed in the beginning of the inhomogeneous phase by the
vector interaction. This is analogous to the investigations of the homogeneous case, where the vector
interactions suppressed the quark number density right after the transitions. With rising chemical potential
M0 begins to decline whileM1 slightly rises until both coefficients cross each other and decline together
just as we observed for gv/gs = 0.0. In the beginning of the inhomogeneous phase, between µ = 341MeV
and 343MeV, q exhibits a very large slope. But afterward, its slope is massively reduced and q again rises
up to 500MeV. Just as it was found in the chiral limit the vector interaction enlarges the inhomogeneous
phase. The r.h.s. of figure 6.5 exhibit a gap at µ = 340MeV since q becomes so small that the derivations
at this chemical potential were not possible. It is reasonable to ask if the vector interactions can weaken
the first order transition to the inhomogeneous phase so it almost becomes a second order transition.
Unfortunately, this would require calculations in the region of q = 0 which would lead to a diverging size
of the Hamiltonian matrix so at the moment it is not possible to examine this suggestion.
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Figure 6.5.:Mi, q (top) and average density (bottom) plotted against µ for theM0-shifted chiral density
wave (CDW+) in ADA for gv/gs = 0.0 (left) and gv/gs = 0.3 (right) withm = 5MeV.

6.2.2. Density

Up to now, we performed the calculations with non-vanishing m in ADA. Now we include the space-
dependent part of the density to investigate if the density of the CDW is still homogeneous as in the
chiral limit. In figure 6.6 the thermodynamic potential in the direction of the density amplitude nA is
shown for gv/gs = 0.3. To reduce the computation time we derived each point by fixing q,M1 and µ̃0 to
the solution in ADA. We immediately see that breaking the chiral symmetry explicitly leads to a small
but non-vanishing space-depending contribution. If we had minimized and maximized w.r.t. the stated
parameters the maximum would be somehow shifted from the current position but it would nevertheless
differ from zero.
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Figure 6.6.: Thermodynamic potential in nA-direction for gv/gs = 0.3 andm = 5MeV at µ = 345MeV.
The values for q,M0,M1 and µ̃0 were fixed to the solution in ADA.

6.3. Cosine

For the cosine+ in ADA, a similar behavior as for the CDW+ can be observed, see figure 6.7. The modulation
momentum and the average density in the beginning of the inhomogeneous phase are strongly suppressed
by the vector interaction and the first order transition is weakened. Due to numerical difficulties we have a
gap between µ = 340MeV and µ = 341MeV. In the beginning of the inhomogeneous phase,M0 is twice
as large asM1 and the latter one increases slightly until they cross each other and decline together until
M1 drops to zero by a second order transition.

6.4. Higher coefficients

Now we include higher coefficients, M±2 and M±3. The ’minus’ coefficients are set to M−2 = M2 and
M−3 =M3 to obtain real solutions:

M7(z) =M0 + 2M1 cos(qz) + 2M2 cos(2qz) + 2M3 cos(3qz). (6.1)

In the chiral limit, all even Fourier coefficients vanish since the Jacobi elliptic functions are the most favored
solutions and can be expressed as

Msoli(z) =
∑︂

n>0, odd
Mn sin(nqz). (6.2)

With explicitly broken chiral symmetry the even coefficients generally do not vanish, as we can see in
figure 6.8 (left). Comparing the left and right picture of figure 6.8 we see immediately thatM2 has an even
larger contribution thanM3. In contrast toM0 andM1 the higher coefficients only have negative solutions.
In figure 6.9 the Fourier coefficients and q are plotted against the chemical potential for gv/gs = 0.0 (left)
and gv/gs = 0.3 (right). For gv/gs = 0.0 the M2 adds a negative minor contribution just at the vicinity
of the first order transition and M3 is practically zero. For gv/gs = 0.3 they have a stronger and longer
contribution. M3 becomes negligible quite prompt and M2 contributes nearly up to the middle of the
inhomogeneous phase until it vanishes approximately. The modulation momentum is suppressed by the
vector interactions but its slope in the beginning of the inhomogeneous phase is not as strong as for the
CDW+ and cosine+.
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Figure 6.7.:Mi, q (top) and homogeneous density (bottom) plotted against µ for the cosine with
constant shift for gv/gs = 0.0 (left) and gv/gs = 0.3 (right) withm = 5MeV.

6.5. Solitonic solution

6.5.1. General

Here, we will investigate the solitonic solution only for gv/gs = 0.0. In the chiral limit, it is the most favored
solution so far. This is not known for the case of a non-vanishing m. The solitons with finite current quark
mass are given by [40]

M(z) = ∆

(︃
ν sn(b|ν)sn(∆z|ν)sn(∆z + b|ν) + cn(b|ν)dn(b|ν)

sn(b|ν)

)︃
(6.3)

where we get an additional parameter b, the parameters ∆ and ν were already introduced in section 4.2.
Due to periodicity the parameters b and ν can be limited to b ∈ [0, K(ν)], with the complete elliptic integral
of the first kind K. Only the first term gives a space-dependency to the ansatz while the second term gives
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Figure 6.8.: Thermodynamic potential inM2- (left) andM3-direction (right) for gv/gs = 0.3,m = 5MeV
and µ = 345MeV. For each point the thermodynamic potential was minimized w.r.t. q,M0

andM1 and maximized w.r.t. µ̃0.
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Figure 6.9.:Mi and q plotted for the 7-coefficient ansatz, for gv/gs = 0.0 (left) and gv/gs = 0.3 (right)
both withm = 5MeV. The ’minus’ coefficients of the spatially dependent part of
equation (6.1) were set toM−i =Mi.

a constant shift. The chiral limit corresponds to b = K(ν). The distribution of the eigenvalues λ gets shifted
by

λ −→ sgn(λ)
√︁
λ2 + δ∆2 (6.4)

with δ =
1

sn2(b|ν) − 1 ≥ 0. (6.5)

For numerical reasons, it is practical to express the mass ansatz as a function of δ instead of b, so it can be
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rewritten into

M(z) =
∆√
1 + δ

(ν sn(∆z|ν)sn(∆z + b(δ)|ν) + (1 + δ) cn(b(δ)|ν)dn(b(δ)|ν)) (6.6)

with

b = sn−1

(︃
1√
1 + δ

⃓⃓⃓⃓
ν

)︃
. (6.7)

For an elliptic modulus of ν = 1 equation (6.6) results in

M(z) =
∆√
1 + δ

(︃
ν δ + tanh(z∆) tanh

(︃
z∆+ artanh

(︃
1√
1 + δ

)︃)︃)︃
. (6.8)

and therefore forms a ’single kink’ (single soliton). Compared to the chiral limit, the single kink is deformed
and shifted. If the elliptic modulus is set to ν = 0 equation (6.6) results in a constant function

M(z) = ∆
√
δ. (6.9)

Both cases are shown in figure 6.10.
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Figure 6.10.: Solitonic solutions for µ = 320MeV (left) and µ = 350MeV (right), for gv/gs = 0.0 and
m = 5MeV. The values for the parameters ∆, ν and δ in the thermodynamic equilibrium at
the corresponding chemical potentials are given by (∆, ν, δ) = (293.0, 1.0, 0.028) (left)
and (∆, ν, δ) = (87.8, 0.0, 0.008) (right).

The thermodynamic potential [25] for T = 0 can be expressed as

Ω(µ;∆, ν, δ) = −NfNc

∞∫︂
0

dE ρ̃(E)f̃
(︂√︁

E2 + δ∆2
)︂
+

1

l(∆, ν)

l(∆,ν)∫︂
0

dz
|M(z)−m|2

4gs
(6.10)
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where the density of states ρ̃(E) can be derived analytically and is given by [25]

ρ̃(E) =
E∆

π2

{︃
Θ
[︂√

ν̃∆− E
]︂(︃

E(Θ̃|ν̃) +
(︃
E(ν)

K(ν)
− 1

)︃
F(Θ̃|ν̃)

)︃
+ Θ

[︂
E −

√
ν̃∆
]︂
Θ [∆− E]

(︃
E(ν̃) +

(︃
E(ν)

K(ν)
− 1

)︃
F(Θ̃|ν̃)

)︃
+ Θ [E −∆]

(︃
E(Θ|ν̃) +

(︃
E(ν)

K(ν)
− 1

)︃
F(Θ|ν̃) +

√︁
(E2 −∆2)(E2 − ν̃∆2)/(E∆)

)︃}︃
.

(6.11)

l(∆, ν) =
2K(ν)

∆
is the period of the modulation, F, E and K are the elliptic integrals of the first and

second kind. We defined ν̃ = 1− ν, Θ̃ = arcsin
(︂
E/(

√
ν̃∆)

)︂
, Θ = arcsin(∆/E) as well as

f̃(x) = f̃vac(x) + f̃med(x) (6.12)
f̃vac(x) = x (6.13)
f̃med(x) = (µ− x)Θ [µ− x] . (6.14)

The vacuum term is the only divergent part and gets Pauli-Villars regularized. With the expression of the
thermodynamic potential as a function of ∆, ν and δ we can perform our investigations by minimizing the
potential with respect to these parameters.

6.5.2. Numerical results

The results of the numerical calculations for the parameters ∆, ν and δ against µ are shown in figure 6.11.
The lower right panel shows the amplitudes of the constantMconst, the prefactorM of the space-dependent
part and the totalMtotal of the mass function as well as the wavenumber q given by

Mconst = ∆
√
1 + δ cn(b(δ)|ν)dn(b(δ)|ν) (6.15)

M =
∆ν√
1 + δ

(6.16)

Mtotal =Mconst +M (6.17)

q =
2π

l(∆, ν)
=

π∆

K(ν)
. (6.18)

The first homogeneous phase is characterized by ν = 1, and due to equation (6.18) by a vanishing q, just
as in the chiral limit. As a result, the solitons have an infinite periodicity causing the single kink as in
figure 6.10. The distinction betweenM andMconst becomes meaningless since both terms of equation (6.6)
become constant, so only Mtotal is considered. Mtotal exhibits constant progress initially and starts to
decrease slightly from a certain chemical potential. At the left phase boundary, the inhomogeneous phase
is initialized by a second order transition of ν. This leads to a second order transition of q from zero to
non-zero values. ∆ and δ are not shown in the homogeneous phases, this will be discussed shortly. Mtotal
exhibits a second order transition to the inhomogeneous phase, too. In the inhomogeneous window, ∆
only varies in a small region between 275–290MeV while δ decreases by a factor of 5. The corresponding
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Figure 6.11.: ∆, ν , δ,Mi and q against µ for gv/gs = 0.0 andm = 5MeV.

curves in figure 6.11 show little kinks which is due to the numerics. At the right phase boundary, the
second homogeneous phase starts by a second order transition of ν. The second homogeneous phase is
characterized by a vanishing ν. As a result,M vanishes by a second order transition. q is not shown here
since it is an unphysical quantity whenM vanishes. Mconst remains non-zero but it rises to a slightly higher
value from about 24MeV to 27MeV, actually we expectMconst to be smooth.
The results for ∆ and δ in the homogeneous phases are ambiguous since the thermodynamic potentials in
the ∆-δ-plane exhibit degenerated minima. So the parameters are not shown in the homogeneous phases
in figure 6.11. The thermodynamic potential in both the first and second homogeneous phase are shown in
figure 6.12 for µ = 320MeV and µ = 345MeV, respectively, where the degenerated minima are marked by
the black lines. The parameters adjust themselves appropriately so that the values forMtotal in figure 6.11
stay the same for the respective µ. The ∆-δ-plane for µ = 320MeV exhibits degenerated minima at smaller
values of ∆ too, but these solutions are not energetically favored.
The thermodynamic potentials in ∆, ν and δ-direction, respectively, in the inhomogeneous phase for µ =
325MeV and µ = 340MeV are shown in figure 6.13. For each point, the thermodynamic potentials were
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Figure 6.12.: ∆-δ-plane for µ = 320MeV and ν = 1.0 (left) and for µ = 345MeV and ν = 0.0 (right) for
gv/gs = 0.0 andm = 5MeV.

minimized w.r.t. the remaining parameters. ∆ exhibits two minima in the beginning of the inhomogeneous
phase. The energetically higher minimum dissipates with rising µ. The thermodynamic potential in
ν-direction shows two extrema in the whole inhomogeneous window from which the global minimum
shifts to smaller values of ν. At both µ = 325MeV and µ = 345MeV the extrema at ν = 0 seem to be
weakly pronounced minima, but due to the numerics is cannot be excluded that they are maxima. The
thermodynamic potential in δ-direction exhibits only one extremum which is the global minimum. As
figure 6.11 already indicated, the global minimum in ∆-direction just changes slightly. In contrast, the
global minima of ν and δ shifts to smaller values significantly.
With the solutions in the thermodynamic equilibrium, we can compare the mass ansatz of the solitons with
the 7-coefficient Fourier ansatz given by equation (6.1). Afterward, we will derive the first lower Fourier
coefficients of the solitonic solution explicitly. For the comparison of the mass ansätze of equation (6.3)
and equation (6.1) the functions are shown in figure 6.14 for µ = {325, 335, 342}MeV. The values of the
corresponding parameters of both ansätze in the thermodynamic equilibrium are given by:

Solitons 7-coefficient Fourier ansatz
µ [MeV] ∆ [MeV] ν δ q [MeV] M0 [MeV] M1 [MeV] M2 [MeV] M3 [MeV]

325 289.26 0.81055 0.03760 398.504 65.029 79.364 −4.578 −0.527

335 286.05 0.56639 0.01631 469.152 38.196 48.118 −0.787 −0.127

342 276.73 0.32668 0.01164 502.032 30.121 25.053 −0.116 −0.019

Table 6.1.: Results of the parameters ∆, ν and δ of the solitonic solution and q as well as the Fourier
coefficients of the 7-coefficient Fourier ansatz for several chemical potentials in the
thermodynamic equilibrium. The values for q andMn are given by the results of figure 6.9.

As we can see in figure 6.14, the solitonic modulation coincides well with the 7-coefficient Fourier ansatz in
the whole inhomogeneous region. Only in the beginning, e.g. at µ = 325MeV, they show slight differences.
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Figure 6.13.: Thermodynamic potentials in ∆, ν and δ-direction (from top to bottom) for gv/gs = 0.0 and
m = 5MeV, for µ = 325MeV (left) and µ = 340MeV (right). For each point the
thermodynamic potentials were minimized w.r.t. the remaining parameters.
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Figure 6.14.: Comparison of the solitonic and the 7-coefficient Fourier modulation with the parameters
of table 6.1 for µ = 325MeV (top left), 335MeV (top right) and 342MeV (bottom) for
gv/gs = 0.0 andm = 5MeV.

The next step is to derive the first lower coefficients of the solitonic solutions explicitly. Therefor, we
compose them in a Fourier series. The Fourier coefficientsMn can be derived by

Mn =
1

l(∆, ν)

l(∆,ν)∫︂
0

M(z) exp

(︃
in

2π

l(∆, ν)
z

)︃
. (6.19)

The results of the first nine coefficients are listed in table 6.2.

As we can see the Fourier coefficients, except M0, are complex-valued but the M±n-pairs are complex
conjugated to each other. In total, this gives a real solution, a sum of sines and cosines

M(z) =
∑︂
n≥0

(Mn cos(nqz) +Nn sin(nqz)) (6.20)

with

Mn = 2ℜ(Mn) (6.21)
Nn = 2ℑ(M∗

n). (6.22)
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µ M0 M1 M−1 M2 M−2

325 65.264601 −11.498071− 37.762443i M∗
1 1.937254− 1.300276i M∗

2

335 38.095494 −3.797482− 23.884291i M∗
1 0.374718− 0.122247i M∗

2

342 30.544021 −1.480971− 12.242472i M∗
1 0.071010− 0.017435i M∗

2

M3 M−3 M4 M−4

−0.210202− 0.171412i M∗
3 0.015426− 0.037687 M∗

4

−0.026820− 0.052406i M∗
3 0.001639− 0.001197i M∗

4

−0.002504− 0.006629i M∗
3 0.000077− 0.000040i M∗

4

Table 6.2.: First nine coefficients of the Fourier decomposition of equation (6.6) for several chemical
potentials. All quantities are given in MeV.

The coefficients Mn and Nn of equation (6.20) from n = 1 to n = 4 are given by:

µ M1 N1 M2 N2 M3 N3 M4 N4

325 −22.996142 75.524885 3.874507 2.600552 −0.420403 0.342824 0.0308538 0.075374

335 −7.594965 47.768582 0.749437 0.244494 −0.053640 0.104811 0.003278 0.002393

342 −2.961942 24.484945 0.142019 0.034870 −0.005008 0.013257 0.000154 0.000080

Table 6.3.: First coefficients, from n = 1 to n = 4 of equation (6.20) for several chemical potentials. All
quantities are given in MeV.

The signs of Mn alternate with rising n while Nn are positive. N1 has the largest contribution, so the sine
with n = 1 provides the dominating term. This domination increases with rising chemical potential and
becomes clear by comparing the coefficients with N1. This comparison is shown in table 6.4. As a result,
the solitons can be well approximated by the sine from the middle of the inhomogeneous phase.

µ [MeV] M1/N1 N2/N1 M2/N1 N3/N1 M3/N1 N4/N1 M4/N1

325 −0.304484 0.034433 0.051301 0.004539 −0.005566 0.000998 0.000409

335 −0.158995 0.005118 0.015689 0.002194 −0.001123 0.000048 0.000069

342 −0.120970 0.001424 0.005800 0.000542 −0.000205 0.000006 0.000003

Table 6.4.: Ratios of the coefficients of table 6.3 compared to N1.

6.6. Free energies

The free energies for the homogeneous solution, CDW+, cosine+ and 7-coefficients in ADA for gv/gs = 0.0
(left) and gv/gs = 0.3 (right) are shown in figure 6.15. Additionally, in the left panel, the free energy of the
solitonic solution is shown. The free energies are plotted with respect to a hypothetical restored phase. Just
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as in the chiral limit complex solutions are always disfavored against real modulations and including higher
Fourier coefficients leads to a gain in free energy. In both cases of gv/gs the 7-coefficient ansatz is almost
degenerate with the (shifted) cosine from the middle of the inhomogeneous phase while the (shifted) CDW
only coincides both solutions at the second order phase boundary at the upper end of the inhomogeneous
phase. For gv/gs = 0.0 the solitons are most favored and coincide with the 7-coefficient ansatz in the whole
inhomogeneous phase. It should be noted that it is not known if the solitons are the most favored solutions
in general. At the left phase boundary in both pictures of figure 6.15 the free energies of the cosine and
7-coefficient ansatz show strong kinks, this is due to numerical artifacts.
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Figure 6.15.: Free energies for the homogeneous solution, CDW+, cosine+ and 7-coefficient ansatz in
ADA for gv/gs = 0.0 (left) and gv/gs = 0.3 (right) form = 5MeV. Additionally, in the l.h.s.
the free energy of the solitons is shown.
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7. Conclusion and outlook

In this thesis, the inhomogeneous phases with vanishing and finite current quark mass in the vector
interaction extended Nambu-Jona-Lasinio model were investigated. The Lagrangian of the NJL model
with vector interactions was introduced and a mean-field approximation was performed, where periodic
modulations in space were allowed. The corresponding Hamiltonian was transformed into momentum space
by using a Fourier expansion for the condensates. Since the Hamiltonian matrix is infinite in momentum
space, a numerical cutoff was applied to restrict the momentum space. Furthermore, the Bloch theorem
was applied and for constant and vanishing vector condensates the Lorentz symmetry of the system was
taken into advantage to simplify the matrix structure. By doing this, a general expression for lower
d-dimensional modulations could be obtained, from which one-dimensional modulations with and without
vector interactions, that is for gv ̸= 0 or gv = 0 respectively, could be investigated. The occurring integrals
were rendered finite with the Pauli-Villars regularization. To further simplify the numerical calculations for
large momenta, the asymptotic behavior of the integrand of the thermodynamic potential was utilized and
the eigenvalues were approximated by the homogeneous eigenvalues which can be derived analytically.
For the calculations in thermodynamic equilibrium, we used a minimizing routine, by which the potential
was minimized with respect toMn and q and maximized with respect to µ̃n. In the chiral limit, we briefly
discussed the findings of previous works for several vector couplings by regarding the chiral density wave
and sinusoidal modulations and investigated the thermodynamic potential to get a deeper understanding
of these findings. For the investigations, the potential was plotted in the plane or direction of the relevant
coefficients and minimized with respect to q and the remaining coefficients of the mass and shifted chemical
potential ansatz. For vanishing vector interactions we found that the chiral density wave occupies a saddle
point in theM1-M−1-plane where it has a maximum inM−1-direction atM−1 = 0,M0 vanished trivially
for all one-dimensional modulations. So although the CDW is a self-consistent solution in the chiral limit,
it is not a stable solution. The cosine occupies the global minimum and thus, it is energetically favored.
With non-vanishing vector interactions we applied a homogeneous density ansatz and spatially modulated
density ansatz to the CDW and cosine, respectively. The CDW is known to have a homogeneous density,
we could confirm this by finding a vanishing density amplitude. The case of gv/gs = 0.3 was of particular
interest since there is a region where the CDW is favored, up to a certain chemical potential where the
cosine is favored. In the region where the CDW is favored the potential exhibits two minima, one of the
favored CDW at more favorable energies and one of the cosine with spatially modulated density. With
rising chemical potential the free-energy difference in the two minima changes until the minimum of the
cosine lies at more favorable energies and the minimum of the CDW turns into a maximum.
By breaking the chiral symmetry explicitly with a bare quark mass of m = 5MeV we found for the
homogeneous case that the vector interactions weaken the first order transitions, so the first order transition
turns into a crossover. The investigation of the thermodynamic potential in the M−1-M0-plane shows
that the CDW exhibits a maximum with respect to M−1 but not an extremum regarding M0. On the
other hand, moving into the minimum w.r.t. M0 shows the absence of an extremum regarding M−1.
These observations demonstrate the non-self-consistency of the CDW. Comparing the free energies of the
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homogeneous solution for several bare quark masses with the CDW exhibits a border of m ≈ 3MeV where
the homogeneous solution is favored against the CDW, so it is meaningful to extend the CDW by M0,
nevertheless. Also, the cosine was extended byM0 since the broken chiral symmetry yields a non-trivial
M0. For the one-dimensional modulations, the vector interactions weaken the first order transition too so
in the beginning of the inhomogeneous phase q drops to quite small values < 200MeV and exhibits a large
slope. Also, the quark number density gets suppressed. The suppression of the first order transition gives
rise to suggestions if the vector interactions could change the transition to a nearly second order transition.
Since the numerical derivations fail due to the large matrix size for q < 150MeV it should be examined if
the eigenvalues of the CDW, shifted by a constant, can be derived analytically which is, as least, possible in
the chiral limit. Including higher coefficients leads to a gain in the free energy, and the contribution of the
higher coefficients get amplified by vector interactions.
For the case of explicitly broken chiral symmetry, the solitonic solution was only considered with vanishing
vector interactions. In contrast to the chiral limit case, the mass ansatz is modified, including an additional
parameter b with respect to which the thermodynamic potential has to be minimized. As a result of the
modified mass ansatz, the single kink in the case of ν = 1 is shifted and deformed compared to the chiral
limit case. Also for ν = 0, where the mass function is constant, is shifted from zero. In both homogeneous
phases, we receive ambiguous solutions for the parameters ∆ and δ since the thermodynamic potentials
provide degenerated minima in the∆-δ-plane. At the left phase boundary, we find a second order transition
of ν and consequently of both the total of the mass functionMtotal and the wavenumber q, as we would
find it in the chiral limit. In the second homogeneous phase the prefactorM of the space-dependent part
vanishes so Mtotal coincides with the constant Mconst. But, contrary to expectations, at the right phase
boundaryMconst did not perform a smooth transition between the phases but changes from about 24MeV
to 27MeV. There was not enough time to examine the reason for this issue. One option would be to
calculate the thermodynamic potential in the ∆-δ-plane and minimize w.r.t. ν on the left and right of the
right phase boundary in order to check if the minimizing routine gave correct results. By comparing the
solitonic and the 7-coefficient Fourier modulation for several µ we find that the modulations coincide well
in the whole inhomogeneous window. The Fourier coefficients of the solitons are complex-valued where the
M±n-pairs are complex conjugated to each other. Due to that, the Fourier decomposition can be composed
into a sum of sines and cosines where the coefficients are related to the real and imaginary parts of the
Fourier coefficients. By comparing the coefficients of the sines and cosines we find the contribution of the
sine for n = 1 to be dominating. This domination rises with increasing chemical potential. As a result, the
solitons can be well approximated by the sine from the middle of the inhomogeneous phase.
The next step would be to consider explicitly broken chiral symmetry with spatially modulated vector
condensates. Especially since the density of the CDW turns out not to be homogeneous this would be
an interesting task. It should be investigated if the CDW is still favored against the cosine with spatially
modulated density at large gv/gs. To simplify the numerical calculations it would be helpful to find a
boosting procedure as it was not possible to derive an expression analogous to the gv/gs = 0 or ADA case.
Further work is necessary with regard to the solitonic solutions. Our investigations were restricted to
gv/gs = 0 and the next step should be to consider gv/gs ̸= 0 in ADA and thereafter with spatially modulated
vector condensates. Since the Fourier coefficients of the solitonic solution is complex-valued future works
could investigate lower Fourier ansätze with complex-valued coefficients. If theM±n-pairs are taken as
complex conjugated to each other the resulting Hamiltonian matrix is still hermitian.
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A. Appendix

A.1. Conventions

In this thesis natural units are used, that is

ℏ = kB = c = 1. (A.1)

To reconstruct the proper units of the thermodynamic potential, that is MeV fm−3, the result has to be
multiplied by (ℏc)−3 = (197MeV fm)−3.
The convention of the Minkowski metric is

(η)µ,ν = diag(1,−1,−1,−1). (A.2)

The gamma matrices are used in the chiral representation

γ0 =

(︃
0 12×2

12×2 0

)︃
, γk =

(︃
0 σk

−σk 0

)︃
, γ5 =

(︃
−12×2 0

0 12×2

)︃
(A.3)

γ0γk =

(︃
−σk 0
0 σk

)︃
, γ0γ5 =

(︃
0 12×2

−12×2 0

)︃
(A.4)

with the Pauli matrices

σ1 =

(︃
0 1
1 0

)︃
, σ2 =

(︃
0 −i
i 0

)︃
, σ3 =

(︃
1 0
0 −1

)︃
. (A.5)

We define the projectors

P± =
1

2

(︁
1± γ5

)︁ , (A.6)

in the chiral representation they are given by

P+ =

(︃
0 0
0 1

)︃
, P− =

(︃
1 0
0 0

)︃
. (A.7)
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A.2. Boosted eigenvalues with vector condensate

In the following the boosting procedure of Dominik Nickel is derived by the use of the Hamiltonian. Ensuing,
we show that it is not possible in the same way to separate the transverse momenta if vector fields are
included.
At first, we consider the effective Hamiltonian with scalar fields φs(x):

H = −iγ0γk∂k + γ0 [m− 2gsφs(x)] ≡ −iγ0γk∂k + γ0M(x). (A.8)

Squaring above Hamiltonian yields

H2 = −∇∇∇2 + iγk∂kM(x) +M2(x). (A.9)

Considering one-dimensional modulationsM(x) =M(z) the derivative in H2 – and therefore H2 itself –
can be decomposed into longitudinal and transversal components

H2 = −∂2z −∇∇∇2
⊥ + iγ3M ′(z) +M2(z) ≡ H2

0 −∇∇∇2
⊥ (A.10)

where H0 can be identified as the Hamiltonian in the rest-frame of p⊥. ∇∇∇⊥ is interpreted as the nabla
operator consisting of the partial derivatives in the perpendicular directions. Now let Ψ0(z) and λ be
the eigenvectors and eigenvalues, respectively, at p⊥ = 0 which satisfy the 1 + 1 dimensional eigenvalue
problem

H0Ψ0(z) = λΨ0(z) (A.11)

then for H2
0 holds

H2
0Ψ0(z) = λ2Ψ0(z). (A.12)

Equivalently for the full Hamiltonian H and eigenvectors Ψ(x) holds

HΨ(x) = EΨ(x) (A.13)
H2Ψ(x) = E2Ψ(x) (A.14)

where E are the full 3 + 1 dimensional eigenvalues. For the eigenvectors following separation approach is
chosen:

Ψ(x) = Ψ0(z)e
ip⊥·x⊥ . (A.15)

Applying the approach to equation (A.14) yields

H2Ψ(x) =
(︁
H2

0 −∇∇∇2
⊥
)︁
Ψ0(z)e

ip⊥·x⊥ (A.16)
=
(︁
λ2 + p2

⊥
)︁
Ψ0(z)e

ip⊥·x⊥ (A.17)
=
(︁
λ2 + p2

⊥
)︁
Ψ(x) (A.18)

=⇒ E2 = λ2 + p2
⊥. (A.19)
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If vector fields are included, the Hamiltonian with one-dimensionally varying condensates reads

H = −iγ0γk∂k + γ0M(z) + V (z). (A.20)

Obviously, for V (z) = const. the eigenvalues are just shifted by V . In that case, the boosting procedure
can still be applied. But in the following, we will consider the general case of spatially depending vector
condensates. The squared Hamiltonian reads:

H2 = H2
0 −∇∇∇2

⊥ − 2iγ0γ⊥V (z)∂⊥ ≡ H2
0 +H2

⊥ with (A.21)
H2

0 = −∂2z + iγ3M ′(z) +M2(z)− 2iγ0γ3V (z)∂z − iγ0γ3V ′(z) + 2γ0M(z)V (z) + V 2(z) (A.22)

where γ⊥ and ∂⊥ denote the γ1- and γ2- matrices and the partial derivatives in the perpendicular directions,
respectively. To solve the eigenvalue problem one would analogously choose a separation approach such as:

Ψ(x) = Ψ0(z)Φ(x⊥) (A.23)

where (︁
H2

0 +H2
⊥
)︁
Ψ0(z)Φ(x⊥) = H2

0Ψ0(z)Φ(x⊥) + Ψ0(z)H
2
⊥Φ(x⊥) = E2Ψ0(z)Φ(x⊥) (A.24)

is satisfied.
As it is common in quantum mechanics the further procedure would be

1

Ψ0(z)
H2

0Ψ0(z) +
1

Φ(x⊥)
H2

⊥Φ(x⊥) ≡ λ2 + δE2
λ = E2 (A.25)

where

H2
0Ψ0(z) = λ2Ψ0(z) and (A.26)

H2
⊥Φ(x⊥) = δE2

λΦ(x⊥) (A.27)

holds and derive δEλ explicitly. But here, the eigenvectors exhibit Dirac structure due to the gamma-
matrices so this method does not work unless it is possible somehow to decouple the system from the Dirac
structure.

A.3. Asymptotic eigenvalues

One of the most time-demanding parts in the calculations is the diagonalization of the Hamiltonian matrix.
By restricting the matrix size with a cut-off, artifacts are expected which can only be reduced by choosing
very large cut-offs about 10GeV. In order to choose smaller cut-offs and reach higher precision in the
calculations, we will take advantage of the asymptotic behavior of the eigenvalues for large momenta
parallel to the modulation. This can be done since (kz + rq) is expected to be much larger thanMi and
µ̃i. The asymptotic behavior of the eigenvalues can be approximated by the homogeneous eigenvalues.
Another approach could be using standard quantum mechanics perturbation methods, see [41] for further
details, where the inhomogeneous condensates are respected. This has been done in [23]. But further
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analyses show that approximating the full eigenvalues only with the homogeneous eigenvalues is more
precise. To compare both methods the procedure of the perturbation method will be discussed briefly. The
Hamiltonian can be divided into H ≈ H0 +H1, with the unperturbed and perturbation part H0 and H1,
respectively, which are given by

(H0)p,p′ = γ0γ3(kz − nq)δp,p′ + γ0γ1p⊥δp,p′ + γ0M0δp,p′ (A.28)
(H1)p,p′ = γ0M1δp,p′+q + γ0M1δp,p′−q − µ̃1δp,p′−2q − µ̃1δp,p′+2q (A.29)

H0 is diagonal in momentum space so the eigenvalues can be calculated analytically

E(0)
n = ±

√︂
(kz − nq)2 +M2

0 + p2⊥. (A.30)

The corresponding eigenvectors w(0)
n of H0 satisfy the relation

w(0)†
m w(0)

n = δm,n. (A.31)

The perturbations up to second order are given by
E(1)

n = w(0)†
n H1w

(0)
n (A.32)

E(2)
n =

∑︂
m ̸=n

⃓⃓⃓
w

(0)†
m H1w

(0)
n

⃓⃓⃓2
E

(0)
n − E

(0)
m

(A.33)

Since the eigenvectors are non-vanishing just if p = p′ it is obvious that E(1)
n vanish as it contains only

off-diagonal entries in momentum space. In contrast E(2)
n contributes for the momenta which differ by the

corresponding multiples of q. E(2)
n yields

E(2)
n =

∑︂
m̸=n

|M1δm,n∓1 − µ̃1δm,n∓2|2

E
(0)
n − E

(0)
m

(A.34)

=
M2

1

E
(0)
n − E

(0)
n+1

+
M2

1

E
(0)
n − E

(0)
n−1

+
µ̃21

E
(0)
n − E

(0)
n+2

+
µ̃21

E
(0)
n − E

(0)
n−2

(A.35)

Due to the Kronecker delta, there are no mixed terms from the square in equation (A.34). The energy
correction up to second order is

E
(∞)
λ ≡ E

(0)
λ + E

(2)
λ , (A.36)

where, due to the degeneracy in Dirac space, each energy contributes two times. The relative differences
between the exact eigenvalues Eλ and the energies from the perturbation ansatz E(∞)

λ are plotted against
Eλ in figure A.1 left. In the right picture of figure A.1 the same is plotted for Eλ and the unperturbed
eigenvalues E(0)

λ . To find a feasible cutoff for the matrix the approximated eigenvalues are compared to
the exact ones using a large matrix cutoff ΛM . The relative difference for the energy-corrected eigenvalues
and for the unperturbed eigenvalues drops under 1‰ at about Eλ = 5GeV and Eλ = 4GeV, respectively.
This shows that the approximation with the unperturbed eigenvalues is preferable. Furthermore, it leads to
lesser computation times compared to using the corrected eigenvalues. This is true for all tested cases, so
the matrix will be cut at ΛM = 6.5GeV to get even better precision and use the unperturbed eigenvalues
for higher energies.
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Figure A.1.: Relative difference between the exact eigenvalues ofH and the energies from perturbation
theory (left), taken from [23], and the eigenvalues of the unperturbed HamiltonianH0 (right).
Both for exemplary values k = 200MeV, p⊥ = 500MeV, q = 200MeV,M0 = 0MeV,
M1 = 150MeV and µ̃1 = 50MeV. The matrix cutoff forH is ΛM = 10GeV.

A.4. Asymptotic behavior of the integrand of Ωkin

To further reduce the computation time, the asymptotic behavior of the integrand of Ωkin

ωkin ≡
3∑︂

j=0

cj

{︃
Eλ,j − sgn(Eλ)µ̃0

2
+ (µ̃0 − Eλ,j) ·Θ [sgn(Eλ)µ̃0 − Eλ,j ]

}︃
(A.37)

for large energies is used. The result is a Laurent series where the relevant terms are given by

ωkin −→ ω∞
kin ≡ Eλ

[︄
− 3

16

(︃
Λ

Eλ

)︃6

+
45

64

(︃
Λ

Eλ

)︃8

− 525

256

(︃
Λ

Eλ

)︃10
]︄
.

The relative difference between the exact integrand ωkin and the asymptotic integrand ω∞
kin is plotted

against Eλ in figure A.2. The relative difference drops under 0.01‰ at about Eλ = 9GeV. This is true
for all tested cases of µ. The asymptotic expression is used at energies Eλ ≥ 10GeV to get an even better
precision.
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Figure A.2.: Relative difference between the exact integrand ωkin and the asymptotic integrand ω∞
kin

plotted against Eλ for µ = 360MeV.

A.5. Simplifications of the kinetic part of the thermodynamic potential

In ADA, by using Nickel’s boosting procedure, the perpendicular momenta can be excluded from the
Hamiltonian matrix. So the matrix structure and equation (3.14) can further be simplified drastically.
Doing so, the effective Hamiltonian in momentum space equation (4.2) reads

Hpm,pn =

⎛⎜⎜⎝
−(k +mq)δpm,pn 0

∑︁
qk
Mqkδpm,pn+q 0

0 (k +mq)δpm,pn 0
∑︁

qk
Mqkδpm,pn+q∑︁

qk
M∗

qk
δpm,pn−q 0 (k +mq)δpm,pn 0

0
∑︁

qk
M∗

qk
δpm,pn−q 0 −(k +mq)δpm,pn

⎞⎟⎟⎠ (A.38)

Hpm,pn contains of positive and negative eigenvalue pairs. This allows us to sum only over the positive
eigenvalues. For positive eigenvalues, the Heaviside function is limited by the shifted chemical potential so
the medium part does not need to be regularized which gives us

Ωkin = −
NfNc

(2π)2

q∫︂
0

dkz

∞∫︂
0

dp⊥ p⊥
∑︂
Eλ>0

⎧⎨⎩
3∑︂

j=0

cj

√︂
λ2(kz) + p2⊥ + jΛ2

+

(︃
µ̃0 −

√︂
λ2(kz) + p2⊥

)︃
·Θ
[︃
µ̃0 −

√︂
λ2(kz) + p2⊥

]︃}︃
(A.39)

By unitary transformation in Dirac space

U =
1

2

[︁
−γ0P+

(︁
γ1 − iγ2

)︁
+ P−

(︁
γ1 + iγ2

)︁
+ (γ0P− + P+)

(︁
1 + γ3

)︁]︁
=

⎛⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞⎟⎟⎠ (A.40)
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the Hamiltonian can be recasted into the form

H̃
′
pm,pn =

⎛⎜⎜⎝
−(k +mq)δpm,pn

∑︁
qk
Mqkδpm,pn+q 0 0∑︁

qk
M∗

qk
δpm,pn−q (k +mq)δpm,pn 0 0

0 0 (k +mq)δpm,pn

∑︁
qk
M∗

qk
δpm,pn−q

0 0
∑︁

qk
Mqkδpm,pn+q −(k +mq)δpm,pn

⎞⎟⎟⎠ (A.41)

which can be block diagonalized

Hpm,pn = U † (︁H+
pm,pn ⊕H−

pm,pn

)︁
U . (A.42)

H±
pm,pn are the Bogoliubov-de Gennes (BdG) Hamiltonians

H̃
+
pm,pn =

(︃
−(k +mq)δpm,pn

∑︁
qk
Mqkδpm,pn+q∑︁

qk
M∗

qk
δpm,pn−q (k +mq)δpm,pn

)︃
(A.43)

H̃
−
pm,pn =

(︃
(k +mq)δpm,pn

∑︁
qk
M∗

qk
δpm,pn−q∑︁

qk
Mqkδpm,pn+q −(k +mq)δpm,pn

)︃
(A.44)

which contain the same absolute values of the eigenvalues, so only one of the two matrices needs to be
considered. Therefore, we have to sum over all eigenvalues of H̃+

pm,pn and take the absolute value of them.
This results in an additional factor of 2. In the following, we will denote the eigenvalues of H with λBdG.
Now the Hamiltonian matrix has a simpler structure since there are fewer off-diagonals and the integration
over the transversal momenta can be performed analytically:

Ωkin =
NfNc

(2π)2

q∫︂
0

dkz
∑︂
|λBdG|

⎧⎨⎩
3∑︂

j=0

cj
3

(︁
λ2BdG + jΛ2

)︁
−

∑︂
s∈{−1,1}

1

6
Θ [sµ̃0 − λBdG] ·

(︁
sµ̃0

(︁
µ̃20 − 3λ2BdG

)︁
+ 2λ3BdG

)︁⎫⎬⎭
(A.45)
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