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Abstract

In the scope of this Master’s thesis we will discuss the structure of slowly rotating neutron stars
(NS) with strong electro-magnetic fields. To compute NS deformed by electro-magnetic fields in
a relativistic framework, one needs to solve the Einstein-Maxwell equations. The Einstein-Maxwell
equations are a system of coupled partial differential equations (PDEs) and solving them is in general
a rather involved task.

We will solve the Einstein-Maxwell equations perturbatively by expanding the system in the mag-
netic field B and in the angular velocity Ω up to O

�

B2Ω1
�

. The resulting structure equations are
not a system of coupled PDEs but a set staggered ordinary differential equation (ODE) systems. In
O
�

B0Ω0
�

we recover the Tolman-Oppenheimer-Volkoff equations and in O
�

B1
�

we derive a relativis-
tic Grad-Shafranov equation and a related O

�

B1Ω1
�

induction equation. In O
�

Ω1
�

we recover an
equation governing the frame-dragging frequency. In O

�

B2Ω0
�

and O
�

B2Ω1
�

we find sets of ODEs
governing the electro-magnetic deformation of the NS. In our numerical computations we will only
consider magnetic fields with purely dipolar structure and the related induced electric fields. Defor-
mations resulting from this simple field geometry can be described up to O

�

B2Ω1
�

using methods
of the classical Hartle-Throne formalism, which was originally developed as a perturbative model for
rotationally deformed NS up to third-order in the angular velocity.

We discuss the structure of electro-magnetically deformed NS within our perturbative approach.
Furthermore we compare our perturbative solutions of O

�

B2Ω1
�

to numerically exact solutions of the
Einstein-Maxwell equations, which we computed using the magstar code from the LORENE software
library. In general we can report that for central magnetic fields below ∼ 1013 T results from both
methods are in good agreement.

In the scope of this work we furthermore discuss the possibility to model realistic NS with analytical
interior solutions. We will present novel analytic solutions of the O

�

B1Ω1
�

equations for those
analytic interior solutions in form of series in compactness. Throughout this work we will identify the
Tolman VII solution as a potent tool for effectively describing realistic NS.

After a summary of our key results we will conclude this thesis with an outlook on possible exten-
sions, improvements and applications of the approach used in this Master’s thesis.

Zusammenfassung

Im Rahmen dieser Master Thesis werden wir die Struktur von langsam rotierenden Neutronensternen
(NS) mit starken elektro-magnetischen Feldern diskutieren. Um durch elektro-magnetische Felder
deformierte NS in einem relativistischen Rahmen zu berechnen, müssen die Einstein-Maxwell Gle-
ichungen gelöst werden. Die Einstein-Maxwell Gleichungen sind ein System gekoppelter partieller
Differentialgleichungen (PDEs) und sie zu lösen ist im Allgemeinen eine ziemlich aufwendige Auf-
gabe.

Wir werden die Einstein-Maxwell Gleichungen perturbativ lösen, indem wir das System im mag-
netischen Feld B und der Winkelgeschwindigkeit Ω bis zur O

�

B2Ω1
�

entwickeln. Die aus dieser
Entwicklung resultierenden Strukturgleichungen sind kein System gekoppelter PDEs sondern ein
Satz von gestaffelten Systemen gewöhnlicher Differentialgleichungen (ODEs). In O

�

B0Ω0
�

finden
wir die Tolman-Oppenheimer-Volkoff Gleichungen und in O

�

B1
�

leiten wir eine relativistische Grad-
Shafranov Gleichung sowie eine dazugehörige O

�

B1Ω1
�

Induktions Gleichung ab. In O
�

Ω1
�

finden
wir eine Gleichung für die frame-dragging Frequenz. In O

�

B2Ω0
�

und O
�

B2Ω1
�

finden wir Sätze von
ODEs, welche die elektro-magnetischen Deformationen des NS beschreiben. In unseren numerischen
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Berechnungen werden wir nur reine Dipol Magnetfelder und die dazugehörigen induzierten elek-
trischen Felder betrachten. Deformationen basierend auf der einfachen Geometrie solcher Felder
können bis zur O

�

B2Ω1
�

mit Methoden des klassischen Hartle-Thorne Formalismuses behandelt wer-
den, welche ursprünglich zur störungstheoretischen Beschreibung von durch Rotation deformierten
NS bis zur dritten Ordnung in der Winkelgeschwindigkeit entwickelt wurden.

Wir diskutieren die Struktur elektro-magnetisch deformierter NS im Rahmen unseres perturbativen
Modells. Des Weiteren vergleichen wir unsere perturbativen Lösungen der O

�

B2Ω1
�

mit numerisch
exakten Lösungen der Einstein-Maxwell Gleichungen, welche wir mit dem magstar Code aus der
LORENE Softwarebibliothek berechnet haben. Im Allgemeinen können wir berichten, dass für zen-
trale Magnetfelder unter ∼ 1013 T die Ergebnisse beider Methoden gut übereinstimmen.

Im Rahmen dieser Arbeit diskutieren wir des Weiteren die Möglichkeit realistische NS mit analytis-
chen Innenraumlösungen zu beschreiben. Wir werden neuartige analytische Lösungen der O

�

B1Ω1
�

Gleichungen für diese analytischen Lösungen in Form von Reihen in der Kompaktheit präsentieren.
Im Verlauf dieser Arbeit werden wir die Tolman VII Lösung als mächtiges Werkzeug zur effektiven
Beschreibung realistischer NS identifizieren.

Nach einer Zusammenfassung unserer wichtigsten Resultate werden wir diese Arbeit mit einem
Ausblick auf mögliche Erweiterungen, Verbesserungen und Anwendungen des in dieser Master Thesis
verwendeten Ansatzes abschließen.
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1 Introduction

Neutron stars (NS) are the densest objects in the universe which can be observed directly. They are
compact objects with masses between 1.4 and ∼ 2 solar masses (M�) and radii of only 10 to 15km.
The baryon number densities inside a NS reach from nB,Fe = 4.730× 10−15 fm−3 at the stellar surface
up to multiple times nuclear baryon density nB,0 = 0.16 fm−3 at the core. For most discussions NS can
be considered cold [1]. A review on recent experimental constrains on NS masses, radii and equation
of state (EoS) was given by F. Özel and P. Freire in [2].

In nature NS are supernova remnants and apart from being very dense objects they are also rotat-
ing and have strong electromagnetic fields. Rotation frequencies of NS can be as high as 716Hz (PSR
J1748-2446ad) and surface magnetic fields may exceed 1011 T (SGR 1806-20) [3].

Extreme densities, fast rotation and strong electromagnetic fields make NS ideal laboratories for
extreme physics. The complication that NS are astronomical objects, which are thousands of light
years away from earth, presents a huge challenge for probing their properties with experiments. With
a new generation of X-ray telescopes (ASTROSAT-LAXPC, NICER, LOFT, SKA,...) and gravitational
wave detectors (adv. LIGO, adv. Virgo, eLISA, KAGRA) astrophysicists are trying to probe NS and
their properties in detail and precision to a degree never achieved before [2, 4, 5].

From a theoretical point of view a lot of aspects concerning NS structure and physics are still in
very active research. The equation of state of neutron star matter and in general the detailed compo-
sition and properties of NS matter at high densities beyond nB,0 is still unknown. We can not access
such densities at low temperatures in experiments and a theoretical description of matter at densities
above nB,0 has proven to be very difficult. For the foreseeable future NS are the only laboratories
which can provide experimental data for the low temperature, high density regime of the phase dia-
gram of strongly interacting matter.

Extracting experimental data on NS composition and EoS requires a detailed understanding and
description of NS structure. With upcoming precision measurements of orbital parameters, masses,
radii, moments of inertia, burst oscillations, mergers and maybe even gravitational wave signals of
isolated NS a detailed theoretical description of NS structure will be necessary to extract precise
data on EoS and composition. A description beyond spherical symmetric stars involving the effects
of rotation and electromagnetic fields will be important. In Chap. 2 we will discuss the theoretical
framework needed for a description of NS structure.

In the following chapters we will focus on a very special class of NS: we will discuss NS with very
strong surface magnetic fields of ∼ 1011 T so called magnetars. At least 10% of the NS population fall
into this category after their birth in a supernova explosion [6]. The ultra strong magnetic fields are
believed to decay on time scales of a few thousand years [6]. We observe magnetars in this active
stage as either Soft Gamma Repeaters (SGRs) or Anomalous X-ray Pulsars (AXPs). Both sub classes
have low rotation frequencies ® 1Hz (Periods P of a few seconds) but very high spin down rates Ṗ
of ∼ 10−13 to 10−10s s−1 [3]. Those spin down rates are associated with the so called dipole braking
mechanism: the magnetar’s magnetic axis precesses around its rotation axis and the star emits dipole
radiation. The energy loss by this radiation is compensated by a spin down of the magnetar’s rotation.
Using a simple classical description of this process and typical NS scales [7] the surface magnetic fields
of SGRs and AXPs are expected to reach up to 1011 T [3]. The fields in the stellar center might exceed
the surface field by a few orders of magnitude but the classical scalar virial theorem gives an upper
limit of 1014 T [8, 9].
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Magnetic fields of those magnitudes have effects on the stellar structure, since the electromagnetic
contribution to the star’s energy-momentum tensor becomes significant. Apart from those effects on
the stellar structure the prospect of very high magnetic fields ∼ 1014 T has recently lead to numer-
ous papers (e.g. [10–13]) concerning the effect of strong magnetic fields on the EoS. The magnetic
field affects the EoS due to Landau quantization of the constituent particles [14] and other effects. A
self-consistent study of both structure and EoS effects of strong magnetic field was presented by D.
Chatterjee et al. in 2014 [15]. They came to the conclusion that at field strengths of ∼ 1014 T the
effects on stellar structure are orders of magnitude bigger than the EoS effects when considering a
magnetic field dependent MIT bag model quark matter EoS. The method developed by D. Chatterjee
et al. was recently used to study effects of magnetic field dependent hadronic [16] and hybrid [17]
EoS on the stellar structure self-consistently. R. O. Gomes et al. in [16] and B. Franzon et al. in [17]
could confirm that EoS effects are minor at field strengths of ∼ 1014 T when using hadronic or hybrid
EoS.

The effects of electro-magnetic field on NS structure have been studied by Bonazzola et al. [18],
Bocquet et al. [19] and Cardall et al. [20] within the framework of numerical relativity. They have
solved the Einstein-Maxwell equations numerically exact for stationary, axisymmetric NS with rotation
and magnetic fields.

Apart from studies within the framework of numerical relativity, Konno et al. [21] and later Ioka
et al. and Colaiuda et al. [22–24] have studied slowly rotating, magnetically deformed stars in a
perturbative approach. Those studies are based on an expansion of the Einstein-Maxwell equations
in the magnetic field strength B and angular velocity Ω up to O

�

B2Ω1
�

.

1.1 Structure this thesis

In the scope of this work we will study the effects of electro-magnetic fields on the structure and
global properties of NS.

We will introduce the theoretical framework necessary to describe rotating NS with strong electro-
magnetic fields in Chap. 2. To describe the structure of rotating magnetized NS one faces the problem
of solving the Einstein-Maxwell equations. In Sec. 2.2 we will summarize the approach of Bonazzola
et al. [18] (BGSM) to solve this system iteratively, numerically exact in the frame work of numerical
relativity. With Sec. 2.1 we will give a very short introduction of the key concepts of numerical rela-
tivity.

In Chap. 3 we will discuss in detail how to expand the Einstein-Maxwell equations in the magnetic
field strength B and the rotation frequency around the metric of a spherical symmetric background
star up to first-order in the angular velocity and second-order in the magnetic field. Konno et al.
presented such an expansion in [21] using the Hartle-Thorne (HT) formalism [25]. We do not start
from the HT metric but rather derive it as a special case of a more general expansion of the BGSM
line element. During the derivation of our structure eqs. we keep a close connection between the
perturbative model in construction and the BGSM model. We derive our central structure equations
from the expanded field equations of Appendix A.

In Sec. 3.2 we discuss the O
�

B0Ω0
�

spherical symmetric background star and the Tolman-
Oppenheimer-Volkoff (TOV) equations governing its structure. In this thesis we will use a reformu-
lation of the TOV equation in terms of the logarithm of the enthalpy per baryon (log-enthalpy) h. We
will discuss the advantages of this reformulation and in general the log-enthalpy as very convenient
thermodynamic quantity in general relativistic calculations. We will discuss two analytical solutions
of the TOV eqs.: the Tolman VII and Schwarzschild interior solution. In the following parts of this
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thesis we will evaluate their potential to model the structure of realistic slowly rotating, magnetized
NS.

We will briefly discuss the O
�

B0Ω1
�

frame-dragging effect of the classical HT formalism in Sec. 3.3
to then study electro-magnetic fields on the curved space time of TOV background stars in sections
3.4 and 3.5. We will again start with rather general expressions but then limit ourselves to purely
dipolar magnetic field and induced quadrupolar electric fields.

In sections 3.6 and 3.7 we will discuss the O
�

B2Ω0
�

and O
�

B2Ω1
�

deformations caused by such
fields. At the end of those two sections we will have derived all structure equations of our model,
initial and matching conditions for their numerical integration and completely analytical exterior
solutions for all of them.

In Sec. 3.8 we introduce a new model to study magnetized, non-rotating but with net charge Q
globally charged NS. We will consider additional perturbations of O

�

Q2
�

and O
�

B1Q1
�

.
We will conclude our central theory Chap. 3 by discussing the global parameters related to our

model.

In Chap. 4 we will briefly discuss the implementation of our structure equations. We give a short
introduction into the implementation of the BGSM formalism within the LORENE library in Sec. 4.1.
In this chapter we will also discuss and compare the performance and accuracy of both the perturba-
tive and exact approach.

In Chap. 5 we will present numerical results. We will discuss results order by order as derived in
Chap. 2.

Apart from numerical results for the two analytical background stars, we will present results for a
polytropic and three realistic, hadronic EoS. We present information on all the used EoS in our second
appendix B. For all EoS we will use the log-enthalpy as central thermodynamic quantity.

We will continuously check our results for numerical self-consistency and compare them to the re-
sults obtained with LORENE . To the best of our knowledge, a detailed quantitative comparison and
evaluation of the potency of a perturbative general relativistic O

�

B2Ω1
�

magnetar model has not
been done in literature so far.

In Chap. 6 we present a novel technique to construct analytical series solutions of the O
�

B1Ω1
�

structure equations for the two types of analytical background stars introduced earlier. We will also
use this section to discuss related Newtonian results and expressions.

In Chap. 7 we will conclude this thesis by summarizing our results and by giving an outlook of
possible extensions and applications related to our work.
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1.2 Conventions, Notations and Units

Throughout this work we use the following conventions, notations and units.

We use Einstein summation convention, where we sum over contracted index pairs e.g.

AµAµ ≡
3
∑

µ=0

AµAµ. (1.1)

Greek letters α,β , . . . are used for spacetime indices ranging from 0 to 3, where µ,ν, . . . are usually
used for contracted spacetime summation indices. Latin indices i, j, . . . are used for spatial compo-
nents only and therefore range from 1 to 3.

Indices are lowered e.g. Aα = gαµAµ and raised e.g. Aα = gαµAµ with the metric tensor gαβ and its
inverse gαβ for which we use a space-like signature (−,+,+,+). For partial derivatives we use the
compact notation ∂α ≡ ∂ /∂ xα. We typeset vectors in boldface e.g. A, where A= Aµeµ.

We denote the symmetric parts of a tensor with parentheses () and antisymmetric parts with square
brackets [] around the indices. Explicit symmetrization and anti-symmetrization can be performed in
the usual way. The most important special cases within the scope of this work are

A(αβ)γ... =
1
2!

�

Aαβγ... + Aβαγ...

�

(1.2)

A[αβ]γ··· =
1
2!

�

Aαβγ··· − Aβαγ···
�

(1.3)

A[αβγ]δ··· =
1
3!

�

Aαβγδ··· + Aγαβδ··· + Aβγαδ··· − Aαγβδ··· − Aγβαδ··· − Aβαγδ···
�

(1.4)

We will use a similar notation for the permutation symbol: [αβγδ] is the completely antisymmetric
perturbation symbol with [0123] = 1.

For the equations and numerical computations of this work we use a geometrized unit system
(GU) in which the magnetic constant µ0 divided by 4π, the Boltzmann constant kB, the gravitational
constant G and the speed of light c are taken as unity

�

µ0/ (4π)
�

GU
!
=
�

kB

�

GU
!
= [G]GU

!
= [c]GU

!
= 1. (1.5)

We chose µ0 = 4π to resemble a Gaussian unit system for the electromagnetic units since this system is
quite common in astrophysics. In our GU system the dimensions of all physical quantities are powers
of only one base dimension. We choose this dimension to be a length. This makes the equations and
the numerical computations easier since they are not cluttered with physical constants. However for
most discussions and figures we present our numerical results in more common units.

For the fundamental constants in our numerical computations we use the recommended values of
CODATA [26] and for the astronomical constants we use values given by USNO [27].
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2 Theoretical Framework: The Einstein-Maxwell equations

Neutron stars are rather small (R ∼ 15km) but quite massive (M ∼ 1.5 M�), which means they have
a large compactness (Z ≡ M/R ∼ 0.15) and strong gravitational fields. Because of that fact, among
other properties like strong electromagnetic fields or fast rotation, they need to be treated in a fully
relativistic framework. The conventional theory to describe fully relativistic bodies with strong gravi-
tational fields is Albert Einstein’s theory of general relativity (GR).

Albert Einstein presented his geometric theory of gravitation, general relativity, in its final form in
three papers in November 1915 [28–30]. We will only give a short introduction of GR, in which we
will present the central equations and concepts important and related to this work. For a detailed
discussion of GR we recommend, apart from Einstein’s original papers, the textbooks [31–33].

Most of our central equations of the following chapters are derived from Einstein’s field equations

Eαβ ≡ Gαβ − 8πTαβ = 0 (2.1)

which relate curvature of four-dimensional spacetime, encoded in the Einstein tensor Gαβ , to the
Einstein-Hilbert energy-momentum tensor Tαβ . This set of equations are the central point of GR. The
Einstein tensor can be expressed in terms of the Ricci tensor Rαβ and the scalar curvature R as

Gαβ ≡ Rαβ −
1
2

gαβ R. (2.2)

The scalar curvature is the contraction of the Ricci tensor R≡ Rµµ and the latter can be constructed
from the metric and its first and second derivatives as

Rαβ ≡ ∂µΓ µαβ − ∂βΓ µµα + Γ µµνΓ νβα − Γ µβνΓ νµα, (2.3)

with the affine connection/Christoffel symbols

Γ αβγ ≡
1
2

gαµ
�

∂γgµβ + ∂β gµγ − ∂µgβγ
�

. (2.4)

gαβ is the metric of the four-dimensional spacetime manifold M . Given a coordinate grid {xα} with
a set of associated basis vectors {eα} the metric tensor is given by the scalar product

gαβ ≡ eα · eβ = eβ · eα = gβα. (2.5)

The metric together with its first and second derivatives encodes the curvature of the spacetime
manifold M completely. gαβ is essential for the line element/spacetime interval

ds2 = eµ · eνd xµd xν = gµνd xµd xν, (2.6)

which is the measure for the separation of spacetime events. On a timelike (ds2 < 0) world line the
line element and the infinitesimal proper time interval dτ are related by dτ=

p
−ds2.

In GR free falling particles move along geodesics in M which are governed by the geodesic equation

d2qα

ds2
= −Γ αµν

dqµ

ds
dqν

ds
, (2.7)
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with d2qα/ds2 as the four acceleration of the particle. The geodesic eq. is the GR analogue to
Newton’s laws of motion and it can easily be extended to include external forces like the Lorentz
force.

From the symmetry of the metric, and Schwarz’s theorem follows the symmetry of the Ricci tensor
and from it the symmetry of the Einstein tensor. The Ricci tensor is the only non-trivial contraction of
the Riemann curvature tensor Rαβγδ, which can be defined by the Ricci identity

∇α∇βAγ −∇β∇αAγ = AµRµγβα (2.8)

as the commutator of the covariant derivative (2.11) of an arbitrary covector with components Aγ.
The Riemann tensor Rαβγδ has a multitude of symmetries and properties when using the torsion free
connection (2.4):

Skew symmetry: Rαβγδ = −Rβαγδ = −Rαβδγ = Rβαδγ, (2.9a)

Interchange symmetry: Rαβγδ = Rγδαβ , (2.9b)

First Bianchi identity: 3Rα[βγδ] = Rαβγδ + Rαγδβ + Rαδβγ = 0, (2.9c)

Second Bianchi identity: 3∇[εRγδ]αβ =∇εRαβγδ +∇δRαβεγ +∇γRαβδε = 0. (2.9d)

For the compact notation of the first Bianchi identity we use screw symmetry in the last two indices to
transform the uneven permutations which then add up with the even ones. For the compact notation
of the second Bianchi identity we use interchange symmetry and then screw symmetry in the last two
indices. An extremely useful contraction of the second Bianchi identity is

∇µRµα =
1
2
∇αR=

1
2
∂αR. (2.10)

The covariant derivative of a tensor field T of rank
�

m
n

�

in direction eγ is given by

∇γT
α1...αm

β1...βn
= ∂γT

α1...αm
β1...βn

+ Γ α1
µγT

µα2...αm
β1...βn

+ . . .+ Γ αm
µγT

α1...αm−1µ

β1...βn

− Γ µ
β1γ

Tα1...αm
µβ2...βn

− . . .− Γ µ
βnγ

Tα1...αm
β1...βn−1µ

.

(2.11)

A fundamental property of the covariant derivative of a rank
�

m
n

�

tensor is, that it is a rank
�

m
n+1

�

tensor.
For a scalar S, which is a tensor of rank

�

0
0

�

, the covariant derivative is just the partial derivative
∇γS = ∂γS and ∂γS is the component of a rank

�

0
1

�

covector.
With the contraction (2.10) one can show another fundamental property of the Einstein tensor: its

covariant divergence vanishes ∇µGαµ = 0. Using this on the field eqs. (2.1) leads to

∇µEαµ =∇µGαµ −∇µTαµ = 0⇔∇µTαµ = 0, (2.12)

which is the general relativistic form of energy-momentum conservation. If one is dealing with a
moving perfect fluid one can project this equation orthogonally to the fluid rest frame, in which
eq. (2.12) has the form of a relativistic Euler equation [24]. The fundamental law of baryon number
conservation for a perfect fluid with proper baryon number density nB and fluid four-velocity uα takes
the form

∇µ(nBuµ) = ∂µ(nBuµ
p

−g) = 0, (2.13)

where the second identity uses the volume element of the metric
p
−g =

p

−det g and the identity
Γ µαµ = ∂α log(

p
−g).
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In order to incorporate electromagnetic fields one has to solve the Einstein equations with the
electromagnetic contribution to the energy-momentum tensor as well as the Maxwell equations since
they govern the electromagnetic field. The Maxwell equations have to be solved on the curved four-
dimensional spacetime governed by the Einstein equations.

A modern approach to formulate the Maxwell equations in a general relativistic framework is pre-
sented in [34–36]: one can begin by formulating the Maxwell equations in a locally flat inertial frame.
In such a frame the inhomogeneous Maxwell source equations (Gauss-Ampère law), not including a
macroscopic material description, in their contravariant form

∂µFαµ = 4πJα (2.14)

describe the effects of electromagnetism. In agreement with the laws of special relativity those equa-
tions are Lorentz invariant. Fαβ is the antisymmetric Faraday tensor

Fαβ = 2∂[αAβ] = ∂αAβ − ∂βAα, (2.15)

Aα is the electromagnetic four-potential and Jα is the four-current. The homogeneous Maxwell equa-
tions (Gauss-Faraday law)

∂[µFνλ] = 0 (2.16)

are satisfied by construction when using a Faraday tensor of form (2.15) due to the antisymmetry of
Fαβ and Schwarz’s theorem.

The effects of spacetime curvature can be incorporated by replacing all derivatives with their co-
variant counterparts (∂µ → ∇µ), the Minkowski metric of flat spacetime with its GR counterpart
describing the curved spacetime (ηαβ → gαβ) and the volume element d4 x by

p
−gd4 x . This way

of connecting a physical interaction with the gravitational field described by spacetime curvature is
called minimal coupling [35, 36]. Applying this scheme to the Maxwell source equations (2.14) yields

∇µFαµ = 4πJα, (2.17)

where ∇µFαµ is now the covariant divergence of the Faraday tensor. The Faraday tensor itself keeps
its form (2.15) because we use a torsion free metric connection: the Levi-Civita connection. The
Christoffel symbols we defined in eq. (2.4) satisfy the torsion freeness condition Γ α(βγ) = 0 which
leads to ∇[αAβ] = ∂[αAβ]. Electric charge conservation takes the form of a covariant divergence

∇µJµ = ∂µ(J
µ
p

−g) = 0. (2.18)

and the electromagnetic contribution to the energy-momentum tensor is

T (EM)
αβ

=
1

4π

�

FαµFβ
µ −

1
4

gαβ FµνFµν
�

. (2.19)

Since T (EM)
αβ

is one of the source terms of Einstein’s field equations (2.1), the Maxwell equations
(2.17) and the Einstein equations form a coupled system of nonlinear partial differential equations
(PDEs). This system is sometimes referred to as Einstein-Maxwell equations and in general it can only
be solved numerically using an iterative approach [18–20].

Noether’s theorem relates symmetry properties of physical systems to conservation laws. We have
already encountered charge (2.18) and baryon number (2.13) conservation which are related to
internal symmetries. The U(1) symmetry of electromagnetism implies electric charge conservation
and similarly the U(1) symmetry of QCD implies baryon number conservation.
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The gauge invariance under general coordinate transformations of GR is the reason for the covari-
ant conservation (2.12) of the energy-momentum tensor. We only presented the derivation of this
conservation law from Einstein’s field equations. It is also possible to derive ∇µTαµ = 0 using the
definition of the energy-momentum tensor as functional derivative of the matter action with respect
to the metric, see e.g. [36]. By doing the latter, the connection to gauge invariance under general
coordinate transformations becomes obvious.

Apart from those symmetries spacetime manifolds can have global symmetries which also lead to
conservation laws. A way to encode spacetime symmetries in a coordinate-independent way is to
use group actions on the spacetime manifold M , see e.g. [37] for details. By using Lie groups it is
possible to encode continuous transformations. A spacetime manifold M with metric g is invariant
under such transformations if

2∇(αKβ) =∇αKβ +∇βKα = 0, (2.20)

where K is the generator of the symmetry group. Eq. (2.20) is called Killing equation and K Killing
vector. When using a coordinate system adapted to such a Killing vector field, derivatives of the
metric in the K-direction vanish. This can be used to dramatically reduce the complexity of the field
equations.

Noether’s theorem implies that a Killing vector field has an associated conserved current. This
current is

Jα(K) ≡ KµRαµ (2.21)

and its conservation ∇µJµ(K) = 0 follows from the Killing eq. (2.20) and the fact that the directional
derivative of the curvature scalar along a Killing vector field vanishes.
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2.1 Numerical relativity and the 3+1 formalism

Solving Einstein’s equations in dynamical scenarios with only a few or even no spacetime symmetries
is in general a very difficult task due to the complicated nature of the coupled field equations. The
field of numerical relativity (NR) has this task at its core. Again we will only give a short introduction
of the basic points of NR and refer the interested reader to the various textbooks, lecture notes and
papers on the topic. We can recommend the textbooks [34, 38] and the excellent lecture notes [39]
for a first introduction to NR. After considerable ground work done by G. Darmois, A. Lichnerowicz
and Y. Choquet-Bruhat between 1920 and 1950, P. A. M. Dirac and R. Arnowitt et al. presented a
Hamiltonian formulation of GR, see e.g. [39] for references.

The formal foundation of the central equations of NR was laid 1962 by R. Arnowitt, S. Deser and
C. W. Misner (ADM) in their paper "The dynamics of general relativity" [40]. The key idea of ADM and
the authors mentioned previously was to decompose the four-dimensional spacetime manifold M
into three-dimensional, space-like hypersurfaces Σt orthogonal to a time coordinate t. This slicing of
spacetime is often referred to as 3+1 decomposition and Fig. 2.1 shows the concept and some central
objects.

The LHS of Fig. 2.1 depicts the foliation of the spacetime manifold while the RHS shows some
central geometrical objects of the 3+1 formalism. The basis vector ∂t, given by the coordinate line
of constant spatial points, can be decomposed into a spacelike part β (shift) and a timelike part Nn
(lapse): ∂t = Nn + β . n is the timelike unit normal (nµnµ = −1) of the hypersurfaces Σt . In the
following we will use coordinates adapted to this foliation: on Σt we introduce spatial coordinates
�

x i
	

=
�

x1, x2, x3
	

and constant spatial points are connected by a temporal coordinate t. The basis
vectors associated with those coordinates are ∂t = ∂ /∂t and ∂i = ∂ /∂x i .

From the geometry of the foliation it is possible to derive the components of n and β

βα = (0,β i)T , (2.22)

nα =
1
N
(1,−β i)T , (2.23)

nα = (−N , 0, 0, 0), (2.24)

Figure 2.1: Foliation of the spacetime manifold M in space-like hypersurfaces Σt (left) and coordinates (x i) on
the hypersurfaces Σt and Σt+δt (right). Source: E. Gourgoulhon (2007) [39], p. 40 Fig. 3.1 (left) and
p. 55 Fig. 4.1 (right).
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where the form of the covector component nα follows directly from the normalisation condition and
the vector component nα. n can be interpreted as the four-velocity of the so called Eulerian observer
On [18, 39]. For the Eulerian observer events on the hypersurface Σt are simultaneous. The lapse
function N relates coordinate time t to the physical time τ measured by On

dτ= Ndt. (2.25)

Using coordinates adapted to this foliation it is possible to decompose the metric g of M . The
metric γ on Σt is the spatial part of the 4-metric g, when using adapted coordinates

γi j = gi j. (2.26)

The full metric g can be decomposed as

�

gαβ
�

=

 

−N2 + βkβ
k β j

βi γi j

!

, . (2.27)

with the corresponding line element

ds2 = gµν d xµd xν = −N2d t2 + γmn

�

d xm + βmd t
� �

d xn + βnd t
�

. (2.28)

The volume elements of g and γ are related by
p

−det g = N
p

−detγ. The identities (2.26) and
(2.27) can be obtained using the projection operator

γαβ ≡ δαβ + nαnβ (2.29)

and the eqs. (2.22) and (2.24). γαβ is purely spatial and can be used to project into Σt .

Using the 3+1 decomposition one can reformulate Einstein’s field equation (10 coupled PDEs)
into a constrained initial value problem of 6 evolution equations and 4 constrain equations (ADM
equations). The constrain equations are four time-independent PDEs which specify the curvature on
a given spatial hypersurface and the evolution equations are PDEs which describe how the curvature
of the hypersurfaces changes in time, advancing from one time slice to the next. The ADM equations
relate components of the spatial metric γi j and of the extrinsic curvature Ki j to source terms projected
into Σt and t-direction. The extrinsic curvature Ki j encodes how Σt is embedded into M . The
evolution equation of the spatial metric encodes the relation between the time derivative of the induced
metric components γi j and the components of the extrinsic curvature

∂tγi j = −2NKi j + 2∇(iβ j) = −2NKi j +∇iβ j +∇ jβi, (2.30)

where ∇i are the covariant derivatives in Σt .
J. W. York played a primordial role in the development of modern NR by providing a general method

to solve the initial data problem [41] and by reformulating the ADM equations into their modern form
[42]. The field equations in this form (e.g. [34, p. 43, Box 2.1]) have several practical advantages
over the classical GR field equations regarding implementation and numerical solution [34]. Apart
from that the slicing of the four dimensional space time into three dimensional spatial hypersurfaces
and an orthogonal time direction allows for an easier interpretation of results and central objects.

A lot of research and development by various groups alongside with the rapid development of pow-
erful computer systems in the last decades made today’s computations and simulations in the scope
of NR possible. Today numerically exact solutions of fully general relativistic complex systems are
possible. In this work we will limit our discussions on isolated compact stars but there are a lot of
other, mostly astrophysical, applications and scenarios which use NR.

In the following section 2.2 we will give a short overview of the so called BGSM formalism which
can be seen as an application of the formal concepts of NR to stationary, axisymmetric compact stars.
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2.2 Exact solutions of Einstein-Maxwell equations in the BGSM formalism

In the introduction of Chap. 2 we presented the overall theoretical framework needed to describe
compact objects with electromagnetic fields in a fully general relativistic setting. In this section we
will introduce the formalism presented by S. Bonazzola, E. Gourgoulhon, M. Salgado and J. A. Marck
(BGSM) in 1993 [18] for treating stationary, axisymmetric compact stars in a self-consistent way. We
will present the equations of this formalism in the notation chosen by [37]. We can recommend the
lecture notes [37] for a detailed presentation of the original BGSM formalism.

The metric of stationary, axisymmetric, circular and asymptotically flat spacetime can be expressed
as

ds2 = gµν d xµd xν = −N2d t2 + A2
�

d r̃2 + r̃2dθ 2
�

+ B2 r̃2 sin2θ
�

dφ − Nφd t
�2

, (2.31)

where the metric potentials N , A, B and Nφ are functions of (r̃,θ ) only. t and φ are ignorable
coordinates, meaning that all derivatives with respect to those two coordinates vanish.

The metric of this line element is

�

gαβ
�

=













−N2 + B2NφNφ r̃2 sin2θ 0 0 −NφB2 r̃2 sin2θ

0 A2 0 0

0 0 A2 r̃2 0

−NφB2 r̃2 sin2θ 0 0 B2 r̃2 sin2θ













. (2.32)

The form of this metric follows directly from the assumed symmetries, which can be encoded math-
ematically by two, commuting Killing vector fields ξ = ∂ /∂t and χ = ∂ /∂φ. ξ is the generator of
unidimensional translations in t and ξ is orthogonal to the hypersurfaces of constant time Σt . χ is
the generator of rotations around the z-axis/in φ-direction. The t and φ coordinates are adapted to
the Killing vector fields and therefore to the symmetries of the problem. The components of ξ and χ
are trivial by construction

(ξα) = (1,0, 0,0)T (2.33)

(χα) = (0,0, 0,1)T . (2.34)

ξ and χ commute

ξµ∂µχα −χµ∂µξα = ξµ∇µχα −χµ∇µξα = 0, (2.35)

which means that the order in which both transformations are applied does not matter. A spacetime
manifold with ξ and χ as Killing vectors is stationary and axisymmetric. Circularity refers to the
vanishing of gt r̃ , gtθ , g r̃φ and gθφ and requires

ξµTµ
[αξβχγ] = 0, (2.36)

χµTµ
[αξβχγ] = 0. (2.37)

Circularity limits the BGSM to sources with vanishing meridional flows: four-currents, four-velocities
and the four-potential can not have non-vanishing r̃ and θ components. The metric components gtφ
and gφφ are directly related to the scalar products of the corresponding killing vectors when using an
adapted coordinate system

gtφ = ξµχ
µ, gφφ = χµχ

µ. (2.38)
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The φ-component of the shift vector can then be identified as

Nφ = −
gtφ

gφφ
= −

ξµχ
µ

χµχµ
. (2.39)

gtφ or in the sense of eq. (2.39) Nφ is a measure of the spacetime vorticity. Configurations with
vanishing Nφ are not only stationary, they are also static. Static spacetimes are stationary and the
killing vector ξ is orthogonal to the family of hypersurface Σt .

The BGSM formalism uses so called MSQI (Maximal Slicing - Quasi-Isotropic) spherical coordinates
(t, r̃,θ ,φ). Maximal slicing means that the volume element of the spatial metric γi j is maximal and
the trace K ≡ γmnKmn of the extrinsic curvature tensor, from eq. (2.30), vanishes. Quasi-isotropic
refers to the special choice of radial coordinates (r̃,θ ) for which g r̃θ = 0 and gθθ = r̃2 g r̃ r̃ . The
isotropic radius r̃ differs from the one used in the Hartle-Thorne formalism. The Hartle-Thorne for-
malism or in general most analytical approaches in classical GR use the flat space areal radius r, for
which the area A r of a 2-sphere at constant time and areal radius r is simply given by

A r = 4πr2. (2.40)

In the special case of spherical symmetry the same area in isotropic radial coordinates is given by

A r = 4πA(r̃)2 r̃2, (2.41)

in the BGSM formalism. The ADM eqs. of the BGSM formalism (2.44) do not reduce to the canonical
TOV eqs. (3.48) when describing a spherical symmetric star without rotation and electromagnetic
fields. They reduce to three second-order ordinary differential equations in r̃ [37]. Those structure
equations in isotropic coordinates where first found by R. C. Tolman as early as 1930 [43].

A big advantage of the BGSM formalism is that it works with very general sources, energy-
momentum tensors, as long as they do not break the symmetries of the model. For the following
we will consider an energy-momentum tensor composed of a part for an ideal fluid T (M)

αβ
and a part

from the electromagnetic field T (EM)
αβ

:

Tαβ = T (M)
αβ
+ T (EM)

αβ
. (2.42)

Within the BGSM approach the fluid is allowed to rotate in φ-direction with an angular velocity Ω.
The four-velocity of such a fluid is given by

uα =
�

ut , 0, 0, uφ
�T
= ut (1, 0,0,Ω)T , (2.43)

with Ω = uφ/ut . For an observer moving with u the fluid is at rest and the corresponding reference
frame Ou is called fluid rest frame. With respect to the symmetries of the model the vector potential
and currents have only the following non-vanishing components At , Aφ, Jt and Jφ.

Using the metric of eq. (2.31) and the 3+1 decomposition of energy-momentum tensor of eq. (2.42)
with the ADM equations, Einstein’s field equations reduce to the following set of coupled, elliptic
partial differential equations:

∆3 [ν] = σν, (2.44a)

e∆3

�

Nφ r̃ sinθ
�

= σNφ , (2.44b)

∆2

�

(NB − 1) r̃ sinθ
�

= σNB, (2.44c)

∆2

�

log A+ ν
�

= σνA, (2.44d)
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where ν ≡ log N . ∆2, ∆3 and e∆3 are the scalar 2D flat space Laplacian, the scalar Laplacian and the
φ-component of the vector Laplacian in 3D flat space:

∆2 =
∂ 2

∂ r̃2
+

1
r̃
∂

∂ r̃
+

1
r̃2

∂ 2

∂θ 2
, (2.45a)

∆3 =
∂ 2

∂ r̃2
+

2
r̃
∂

∂ r̃
+

1
r̃2

∂ 2

∂θ 2
+

1
r̃2 tanθ

∂

∂θ
, (2.45b)

e∆3 =∆3 −
1

r̃2 sin2θ
. (2.45c)

The source terms σ are complicated, nonlinear functions of the metric potentials, their derivatives
and of components of the 3+1 decomposition of the energy-momentum tensor. They can be found in
[37, eqs. (3.14)-(3.17)]. The field equations are therefore coupled and very complex but a numerical
implementation is possible [18, 20].

The field equations are coupled to a set of Maxwell equations

∆3 At = σAt
, (2.46a)

e∆3

�

Aφ

r sinθ

�

= σAφ , (2.46b)

where the source terms σAt
and σAφ are again complicated nonlinear functions of the metric poten-

tials, their derivatives and of components of the 3+1 decomposition of the energy-momentum tensor.
For a formulation of the BGSM formalism with electromagnetic fields we refer to the paper "Rotating
neutron stars models with magnetic field" of M. Boncquet, S. Bonazzola, E. Gourgoulhon and J. Novak
(BBGN) from 1995 [19]. The original BGSM paper included a discussion of electromagnetic fields
but in a slightly different notation: they implemented the Maxwell equations for electric and magnetic
potentials Φ ≡ −n · A = −1/N

�

At + NφAφ
�

and Ψ ≡ e3 · A = (Ar̃ sin2θ )−1Aφ and not for the vector
potentials.

The timelike four-velocity of On is

nµ =
1
N

�

1, 0,0, Nφ
�T

. (2.47)

Projecting the momentum conservation equation into On leads to

∂i

�

h+ log N − log Γ
�

=
1

ρ + P

�

Jφ −ΩJ t
�

∂iAφ, (2.48)

with the logarithm of the enthalpy per baryon (log-enthalpy) h≡ log
�

ρ+P
nBmB

�

, the Lorentz factor

Γ ≡ −n · u= Nut =
Ar̃ sinθ

N

�

Ω− Nφ
�

(2.49)

relating the fluid rest frame and the Eulerian observer On . The integrability condition for the system
(2.48) requires the RHS to be expressible as a gradient ∂i M . For non-constant Aφ BGSM have shown
that this condition implies the following relation between the currents and Aφ

Jφ −ΩJ t = (ρ + P) f (Aφ), (2.50)
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where f (Aφ) is the so called current function. We will discuss the relation between Jφ and Aφ and the
notion of a current function further in Sec. 3.4. Using this result the equation of motion (2.48) can
be integrated to a first integral of motion

h (r̃,θ ) + log
�

N (r̃,θ )
�

− log
�

Γ (r̃,θ )
�

+M (r̃,θ ) = const., (2.51)

with an electromagnetic Lorentz force term

M (r̃,θ )≡ −
∫ Aφ(r̃,θ )

0

f (x)d x . (2.52)

Eq. (2.51) is the general relativistic equivalent to the classical Bernoulli theorem. To show this one
can expand eq. (2.51) in the non-relativistic limit (c →∞). This is done in [37] for non-magnetic
configurations and expressions for classical rotating and magnetic configurations are discussed in
[44]. To briefly summarize the result: In the non-relativistic limit eq. (2.51) looks very similar but the
relativistic enthalpy is replaced by the classical one, log N is replaced by the Newtonian gravitational
potential, the Lorentz factor is replaced by the fluid velocity squared and the Lorentz force term is
replaced with a classical analogon.

In the stellar interior the BGSM and BBGN approach assumes infinite conductivity. For cold NS
this assumption is a good first approximation since the electrical transport properties of cold NS are
mainly determined by the degenerate, relativistic electron gas, which has an electrical conductivity
of the order 1024s−1 [45] in the majority of the interior volume. According to Ohm’s law the electric
field measured in the fluid rest frame must vanish

E(u)α = Fαµuµ = 0, (2.53)

when assuming an interior with infinite conductivity. Eq. (2.53) is commonly referred to as ideal mag-
netohydrodynamics (MHD) condition [34]. Projecting this relation into On leads to a simple relation
between At and Aφ:

∂ At

∂ x i
= −Ω

∂ Aφ
∂ x i

. (2.54)

In case of rigid rotation Ω= const. eq. (2.54) can be integrated to

At = −ΩAφ + C , (2.55)

where C is related to the total charge of the star. We will refer to eq. (2.55) as induction equation.
Eqs. (2.54) and (2.55) only hold in the stellar interior in the stellar exterior the second Maxwell
equation for the At eq. (2.46b) needs to be solved.

The electric and magnetic fields measured in On are given by

E(n)α = Fαµnµ, (2.56)

B(n)α = −
1
2
εαµνξnµFνξ. (2.57)

εαµνξ =
p
−g[αµνξ] is the pseudo-tensorial Levi-Civita symbol associated with the metric [32] andp

−g is the proper measure for the volume element

p

−g =
p

−detg= NA2Br̃2 sinθ . (2.58)
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The electromagnetic fields described by (2.56) and (2.57) are purely spatial Eµ(n)nµ = Bµ(n)nµ = 0 and
in the following we will drop the label (n): if not explicitly stated otherwise we will measure all
electromagnetic quantities in On .

Using the volume element (2.58) and the velocity of On (2.47) the non-vanishing field components
are

Er̃ =
1
N

�

∂r̃ At + Nφ∂r̃ Aφ
�

, (2.59a)

Eθ =
1
N

�

∂θ At + Nφ∂θ Aφ
�

, (2.59b)

Br̃ =
1

Ar̃2 sinθ
∂θ Aφ, (2.59c)

Bθ = −
1

Asinθ
∂r̃ Aφ. (2.59d)

As a consequence of the ideal MHD condition the Faraday tensor in the stellar interior is completely
determined by the magnetic field

Fαβ = εαβµνuµB(u)ν , (2.60)

which implies for the electric field

Ei = −εi jk

�

u j

ut
+ β j

�

Bk

N
, (2.61)

with εi jk =
p
γ[i jk] = nµεµi jk.

All global quantities, like gravitational and baryonic mass, angular momentum, flat space radii and
more can be obtained by integrals or analytic relations in terms of the metric potentials and source
terms. Most formulas can be found in the original BGSM paper [18] and for a detailed discussion we
refer to [37, Chap. 4, p. 59].

We will briefly describe a scheme for the numerical implementation of the BGSM formalism in
Sec. 4.1. Apart from numerical errors the solutions of the BGSM/BBGM structure equations are exact
solutions of the Einstein-Maxwell equations. Good measures of those numerical errors and the self-
consistency of a numerical solution are the general relativistic virial identities GRV3 [46] and GRV2
[47].

In the scope of the current work we will focus our discussions on slowly rotating NS with constant Ω
and magnetic fields modeled by a current function f (x) = const.. As we discuss in Sec. 3.4 choosing
such a constant current function will limit the magnetic field geometry to purely dipolar magnetic
fields.
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3 Perturbative Magnetar model

In this chapter we discuss a perturbative expansion of the Einstein-Maxwell equations in the magnetic
field up to O

�

B2
�

and in angular velocity up to O
�

Ω1
�

. We will do so using an approach similar to
the one proposed by J. B. Hartle and K. S. Thorne (HT) in the 1970s. In 1967 Hartle presented an
approach in his paper "Slowly Rotating Relativistic Stars I. Equations of Structure" [25], which in its
core is based on an expansion of Einstein’s field equations for rotating fluid spheres in the angular
velocity Ω. In the following years HT published a series of papers related to this formalism, e.g. [48,
49].

In 1999 Konno et al. [21] used the HT ansatz to describe the deformations of NS with polytropic
EoS by a dipole magnetic field. In the following years several authors picked up this idea and used it
to solve the Einstein-Maxwell equations for magnetized NS perturbatively. In 2003 and 2004 K. Ioka
and M. Sasaki discussed magnetic fields of NS extensively using a perturbative approach [22, 23].
Influenced by the work of Konno, A. Colaiuda et al. presented their work on magnetized NS in 2008
[24].

The general motivation to describe magnetic deformations of the NS perturbatively is simple: even
in magnetars the electromagnetic contribution to the total energy-momentum tensor is in general
rather small compared to the matter contributions. A magnetic field of B = 4× 1012 T has a corre-
sponding energy density

B2 = (4× 1012 T)2 ∼ 1MeV fm−3. (3.1)

Contributions from pressure and energy density to the energy-momentum tensor are well above
100MeV fm−3 in the central regions of NS. Compared to these contributions 1MeV fm−3 from the
magnetic field is a very small perturbation to the energy-momentum tensor of the fluid. So for mag-
netars with weak or even intermediate magnetic fields one can expect only small deformations away
from spherical symmetry.

Similarly one can expect that for small rotation frequencies the deformations related to rotation are
minor. An expansion only up to linear order in the rotation frequency should give reasonable results
for slowly rotating magnetars. For this class of NS the magnetic deformations are expected to exceed
rotational deformations by some orders of magnitude [18, 50].

In the following sections of this chapter we will formulate a theoretical framework to describe
magnetars perturbatively.

3.1 Ansatz

In this section we will expand the metric and source terms around the ones of a spherical symmetric,
non-rotating NS without electro-magnetic fields.

We will begin with expanding the BGSM line element (2.31) around the metric of a spherical
symmetric background star. The line element of such a star can be given in the form

ds2
(00) ≡ g(00)

µν d xµd xν ≡ −eν(r)d t2 + eλ(r)dr2 + r2
�

dθ 2 + sin2θdφ2
�

(3.2a)

= −eν(r)d t2 + eλ(r)dr2 + r2dΩ2. (3.2b)
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For our magnetar model we use the areal radius, since it is better suited than the isotropic radius for
our computations using the classical Einstein field eqs. (2.1). The angular dependency of the lapse
function N (r,θ ) can be expanded in zonal (m= 0) scalar harmonics around eν(r) as

N (r,θ )≡ eν(r)/2
 

1+ 2
∑

l

nl (r)Pl(cosθ )

!1/2

= eν(r)/2
 

1+
∑

l

nl (r)Pl(cosθ )

!

+O
�

B4Ω2
�

, (3.3)

where we consider nl (r) as O
�

B2Ω0
�

corrections.
The shift vector β or specifically its only non-vanishing component Nφ (r,θ ) has to be expanded in

vector harmonics to preserve its transformation properties. For vector and tensor harmonics we use
the notations and definitions given in [34, 51]. Our expansion in general is very similar to the one
performed by K. Ioka and M. Sasaki [23] but we will keep a close connection to the quantities of the
3+1 formalism introduced in Sec. 2.1. For the expansion of Nφ (r,θ ) we use odd parity zonal vector
harmonics

Sφl0 = σ
φN S l0

N = σ
φφS l0

φ =
∑

l

√

√2l + 1
4π

1
sinθ

dPl(cosθ )
dθ

, (3.4)

with the inverse metric σAB on the surface of the two-dimensional unit sphere S2 and S l0
A = ∇AYl0,

where ∇A is the covariant derivative on S2. The expansion Nφ (r,θ ) reads

Nφ (r,θ )≡
∑

l

wl (r)
1

sinθ
dPl(cosθ )

dθ
, (3.5)

where we have absorbed the normalisation factor
p

(2l + 1)/ (4π) in the expansion coefficients, as
we will do so with most such factors in the following.

What remains in terms of the metric is to expand the spatial metric γi j. For that task we use even
parity tensor harmonics and a convenient ansatz [23] is

γr r ≡ eλ(r)
 

1+ 2
eλ(r)

r

∑

l

ml (r)Pl(cosθ )

!

, (3.6a)

γθθ ≡ r2

 

1+ 2
∑

l

kl (r)Pl(cosθ )

!

, (3.6b)

γφφ ≡ sin2θγθθ , (3.6c)

γi j ≡ 0 ∀i 6= j. (3.6d)

T. Regge and J. A. Wheeler [52] and F. J. Zerilli [53] developed this ansatz and particular gauge choice
for metric perturbation in a spherical spacetime.

Similar to the metric we also need to expand the source terms in orders of B and Ω. We consider
the following source term

Tαβ = T (F00)
αβ

+∆T (F)
αβ
+ T (EM)

αβ
+O

�

B4Ω2
�

, (3.7)

where T (F00)
αβ

is the O
�

B0Ω0
�

source term of the background star, T (EM)
αβ

is the energy-momentum

tensor of the electro-magnetic field and and∆T (F)
αβ

are corrections due to magnetic deformation of the
fluid.

As matter source term we will consider an ideal fluid which has the energy-momentum tensor

T (F)
αβ
= (P +ρ)uαuβ + P gαβ , (3.8)
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with pressure P, energy density ρ and fluid four-velocity u. The fluid four-velocity u is a normalized
time-like vector uµuν = −1. With this normalization condition, eq. (2.43) and the metric one can find
an explicit expression for ut and uφ

ut =
1

r

−
�

gt t + 2gtφΩ+ gφφΩ2
�

= eν(r)/2
 

1−
∑

l

nl (r)Pl(cosθ )

!

+O
�

B4Ω2
�

, (3.9a)

uφ = Ωut . (3.9b)

The pressure and energy density iso-surfaces of the background star P (r) and ρ (r) are spherical
shells. Those are deformed in presence of a magnetic field. We describe this deformations as cor-
rections to the background star values P (r) and ρ (r). To do so we first recall the logarithm of the
enthalpy per baryon

h≡ log

�

ρ + P
nBmB

�

= log

�

µ

µ0

�

(3.10)

as introduced early with eq. (2.51). µ0 is the value of the baryon chemical potential at zero pressure
and it is given by the mean baryon rest mass mB. The Gibbs-Duhem relation at zero temperature

ρ = −P +µnB = −P +
dP
dµ
µ (3.11)

can be rearranged to yield a differential identity for h

dh=
dµ
µ
=

dP
ρ + P

(3.12)

which can be integrated to the definition we gave earlier. The identity

dP
dh
= ρ + P (3.13)

is extremely useful. In the following sections we identify the logarithm of the enthalpy per baryon h
as the most convenient thermodynamic base quantity to work with. Identifying and working with the
log-enthalpy within the HT is a unique feature of our derivation. Most authors work in the pressure as
base thermodynamic quantity and at some point introduce a dimensionless "pressure perturbation fac-
tor" [21, 25]. The pressure perturbation factor in the classical HT approach is in fact the deformation
log-enthalpy h grid and introducing h as corresponding fundamental thermodynamic property for the
background star makes derivation and interpretation of results much easier. For the following we will
consider a one-parameter EoS in h: the EoS relates all thermodynamic quantities to h. In the present
work the relevant quantities are pressure P(h), energy density ρ(h), baryon density nB(h) and their
derivatives with respect to h. Using the EoS we can relate the deformations of the log-enthalpy grid
h(r) to the deformations of the pressure and density surfaces as

h (r,θ )≡ h(r) +
∑

l

hl (r)Pl(cosθ ) +O
�

B4Ω2
�

, (3.14a)

P (r,θ )≡ P(h (r,θ )) = P(r) + (P (r) +ρ (r))
∑

l

hl (r)Pl(cosθ ) +O
�

B4Ω2
�

, (3.14b)

ρ (r,θ )≡ ρ(h (r,θ )) = ρ (r) +
dρ
dh

∑

l

hl (r)Pl(cosθ ) +O
�

B4Ω2
�

, (3.14c)

nB (r,θ )≡ nB(h (r,θ )) = nB (r) +
dnB

dh

∑

l

hl (r)Pl(cosθ ) +O
�

B4Ω2
�

, (3.14d)
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where we have expanded the O
�

B2
�

corrections to the background stars log-enthalpy in harmonics.
Using eqs. (3.14b), (3.14c), (3.9a) and (3.9b) the fluid energy-momentum tensors of the back-

ground star reads

T (F00)α
β
= −

�

ρ (r) + P (r)
�

δαt δ
t
β + P (r)δαβ . (3.15)

The corrections ∆T (F)
αβ

can be constructed using the four-velocity, and eqs. (3.14b)-(3.14c). We intro-

duced the energy-momentum tensor of the electro-magnetic field T (EM)
αβ

in terms of the four-potential
in eq. (2.19). In Sec. 3.4 we will discuss the expansion of the four-potential in harmonics in detail.

In terms of deformations we will only consider dipolar (l = 1) magnetic fields and the corre-
sponding induced l = 0 and l = 2 electric fields. Matching the angular dependence of the resulting
electro-magnetic source term requires only two non-vanishing hl (r) coefficients: h0 and h2. The
whole problem has reflexion symmetry in the θ = π/2-plane which excludes odd expansion coeffi-
cients in γi j and N and even coefficients in Nφ. For an expansion up O

�

B2Ω1
�

the only non-vanishing
expansion coefficients are n0, n2, w1, w3, m0, m2, k0 and k2 because higher-order coefficients have no

matching source terms. Further we choose our radial coordinate such that k0 (r)
!
= 0. This coordinate

gauge choice is very convenient and in terms of the HT formalism known as k-gauge [54].
Order by order the corrections to ds2

(00) read

ds2
(01) = g(01)

µν d xµd xν ≡ −2r2 sin2θω (r) d tdφ, (3.16)

ds2
(20) = g(20)

µν d xµd xν ≡ 2eν(r)
�

n0 (r) + n2 (r)P2(cosθ )
�

d t2

+ 2
e2λ(r)

r

�

m0 (r) +m2 (r)P2(cosθ )
�

dr2

+ 2r2k2 (r)P2(cosθ )
�

dθ 2 + sin2θdφ2
�

(3.17)

ds2
(21) = g(21)

µν d xµd xν ≡ −2r2 sin2θ
�

W1 (r) +W3 (r)
�

1+ 5P2(cosθ )
�

+ 2k2 (r)ω (r)P2(cosθ )
�

d tdφ,
(3.18)

where ds2
(01) is O

�

B0Ω1
�

, ds2
(20) is O

�

B2Ω0
�

and ds2
(21) is O

�

B2Ω1
�

. The complete line element up to

O
�

B2Ω1
�

reads

ds2 = ds2
(00) + ds2

(01) + ds2
(20) + ds2

(21) +O
�

B4Ω2
�

. (3.19)

All expansion coefficients are O
�

B2Ω0
�

apart form ω (r), W1 (r) and W3 (r). W3 (r) and W1 (r) are
O
�

B2Ω1
�

and ω (r) is O
�

B0Ω1
�

. We have split w1 (r) from eq. (3.5) into W1 (r) and ω (r) to realize
that all expansion coefficients are of proper order in B and Ω. In the following we will not discuss the
metric potential k2 itself but rather a highly convenient axillary potential v2 ≡ k2 + n2. Working in
terms of v2 makes the field equations and their solutions much easier.

This line element is identical to the one used by Hartle and Thorne [25, 48, 49]. The only mod-
ification in the scope of this work is the inclusion of an elector-magnetic source term and the fact
that we consider deformations originating from such an EM field. In the classical HT formalism up
to O

�

Ω3
�

the higher-order deformations are caused by rotational deformations originating form the
l = 1 frame-dragging term ω(r). A dipolar magnetic field has the same angular dependence which is
the reason for the equality of the line elements. The field equations we will derive will be very similar
to the ones found by HT. To be specific the homogeneous parts of the ODEs will be identical, since we
use the same line element.
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We now have a line element and source terms expanded up to second-order in B and up to first-
order in Ω. With them we compute Einstein’s field equations (2.1) up to O

�

B2Ω1
�

in the appendix
A. By using the expansion of this section to describe deformations away from spherical symmetry we
are left with a one dimensional problem in r. We expanded the entire angular dependency with low
order Legendre polynomials and the only derivatives which we can not compute analytically are the
radial ones. This makes the problem mathematically much easier because we are now dealing with
ODEs instead of PDEs. From now on we will stop writing out the radial dependence of the metric
potentials explicitly (e.g. n0 (r)≡ n0) and denote radial derivatives with an apostrophe.

Expanding the field equations in B and Ω decouples the field equations of different orders. The
higher-order eqs. only depend on the lower-order ones but higher and lower order eqs. are not cou-
pled. This allows us to solve the eqs. order by order and a self-consistent iterative solution scheme is
no longer necessary. By expanding angular dependency explicitly in harmonics and by expanding the
field eqs. in proper orders in B and Ω we reduced the coupled set of PDEs of the BGSM formalism
into a set of staggered ODEs.

There are no Einstein equations of O
�

B1
�

, since the energy-momentum tensor of the magnetic field
is of O

�

B2
�

but the Maxwell equations are of O
�

B1Ω1
�

and we will discuss them in detail in Sec. 3.4.
Sec. 3.2 we will discuss the structure equations of O

�

B0
�

and in Sec. 3.6 the ones of O
�

B2
�

. Field
eqs. related to rotation will be treated in Sec. 3.3 and Sec. 3.7.

3.1.1 Matching of interior and exterior manifolds

We will treat the stellar exterior and interior separately. In the stellar exterior matter support vanishes
T (F)
αβ
= 0,∀r > R which simplifies the field equations. The interface between the stellar interior and

exterior is the stellar surface. For a spherical symmetric background star this surface is determined
by the stellar radius R, which is defined as the radius at which P(R) = 0. In contrast to the classical
HT formalism the exterior we deal with is not outright source free: the electromagnetic contributions
T (EM)
αβ

are non-zero in the stellar exterior. This makes our higher-order O
�

B2Ω0
�

and O
�

B2Ω1
�

exterior
solutions not vacuum but electro-vacuum solutions of Einstein’s field equations.

Matching interior and exterior solutions has to be done by imposing junction conditions on the
stellar surface. We use a variation of the Israel-Darmois junction conditions (IDJC), see e.g. [55] for
a short overview and further references. Israel-Darmois junction conditions require continuity of the
induced metric and induced extrinsic curvature on the interface between the two space-time mani-
folds, to be matched. Such a matching preserves spacetime symmetries and lengths on the interface.

We will not go into details on how to formally enforce these conditions, instead we refer the in-
terested reader to the recent work of B. Reina and R. Vera [54]. B. Reina and R. Vera discussed the
matching of interior and exterior solutions in detail for the HT-metric. We will summarize their key
results. For the background star the matching conditions are

ν<(R)− ν>(R) = 0, (3.20a)

ν′<(R)− ν
′
>(R) = 0, (3.20b)

λ<(R)−λ>(R) = 0, (3.20c)

λ′<(R)−λ
′
>(R) = 8πReλ(R)ρ(R). (3.20d)

The first discontinuity rises in the derivative of the gr r potential λ′ and it is proportional to the residual
surface density ρ(R). For most EoS ρ(R) is either zero or very low. When matching potentials on the

23



stellar surface we will explicitly denote interior solutions with the sub- or superscript < and exterior
solutions with >. We will also use those sub- or superscripts when discussing results and equations
which are only valid in one regime.

In first-order in Ω the frame-dragging frequency and its derivative have to be continuous

ω<(R)−ω>(R) = 0, (3.21a)

ω′<(R)−ω
′
>(R) = 0, (3.21b)

to realize the IDJC.
For the electro-magnetic fields we employ magneto- and electrostatic matching conditions, which

we discuss briefly in Sec. 3.4 and Sec. 3.5.
The O

�

B2
�

metric potentials can all be chosen continuous across the stellar surface with the excep-
tion of the gr r monopole perturbation m0.

n<0 (R)− n>0 (R) = 0, (3.22a)

n<2 (R)− n>2 (R) = 0, (3.22b)

m<
2 (R)−m>

2 (R) = 0, (3.22c)

v<2 (R)− v>2 (R) = 0, (3.22d)

The discontinuity of m0 is proportional to discontinuities in the source terms: in O
�

B2
�

namely to
the residual surface density ρ(R), similar to the case for λ′. We will discuss this discontinuity and the
matching of m0 in detail in Sec. 3.6.2. In their classical papers HT constructed m0 continuously across
the stellar surface. This works in the case of vanishing residual surface density ρ(R) = 0 but fails to
give self-consistent results otherwise.

The O
�

B2Ω1
�

metric potentials are higher-order corrections to the frame-dragging frequency and
must obey the same matching conditions as ω

W<
1 (R)−W>

1 (R) = 0, (3.23a)

W<
1
′(R)−W>

1
′(R) = 0, (3.23b)

W<
3 (R)−W>

3 (R) = 0, (3.23c)

W<
3
′(R)−W>

3
′(R) = 0. (3.23d)

Matching conditions of the higher-order metric potentials in O
�

B2Ω1
�

are always imposed at the
background star’s radius. The deformation δR(θ ) of this surface is an O

�

B2
�

effect, see eq. (3.262).
Expanding a matching condition for an O

�

B2
�

potential, e.g. n2, reveals

n<2 (R
∗(θ ))− n>2 (R

∗(θ )) = n<2 (R+δR(θ ))− n>2 (R+δR(θ ))

= n<2 (R)− n>2 (R) + (n
<
2
′(R)− n>2

′(R))δR(θ )

= n<2 (R)− n>2 (R) +O
�

B4Ω2
�

.

(3.24)

n>2
′(R)δR(θ ) is an O

�

B4
�

term and we consider only perturbations up to O
�

B2Ω1
�

.

3.1.2 Orthonormal tetrad of the Eulerian observer

The orthonormal tetrad {eα̂} carried by the Eulerian observer On can be extracted from the corre-
sponding projection operator

γαβ ≡ δαβ + nαnβ (3.25)
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and its four-velocity n [34]. For the following we will only need the tetrad up to O
�

B1Ω1
�

and in this
order

(nα) = e−ν/2 (1,0, 0,ω)T , (3.26a)

(nα) = eν/2 (1,0, 0,0) . (3.26b)

As the notation suggest the projector γαβ is the mixed tensor form of the spatial metric.
The orthogonal and normalized basis vectors of the tetrad carried by On are given by

ek̂ · el̂ = γkl , (3.27)

eαt̂ = nα. (3.28)

The components of the tetrad in terms of the basis vectors up to O
�

B1Ω1
�

read

(eαt̂ ) = e−
ν
2 (1, 0,0,ω)T , (3.29a)

(eαr̂ ) = e−
λ
2 (0,1, 0,0)T , (3.29b)

(eα
θ̂
) =

1
r
(0, 0,1, 0)T , (3.29c)

(eα
φ̂
) =

1
r sinθ

(0,0, 0,1)T . (3.29d)

The information about spacetime curvature, which in the present case is reduced to the length of the
basis vectors, is encoded completely in components when using the tetrad (3.29) as basis. We use the
scalar product A · eα̂ to extract tetrad components Aα̂ of an arbitrary vector A:

Aα̂ = Aµeµ
α̂
. (3.30)

The components Aα̂ are very useful for displaying GR effects on vector fields and for the discussion of
non-relativistic/Newtonian limits since the length of eα̂ is constant 1. Further more all components
Aα̂ have the same dimensions as the vector field A which makes plotting components together much
easier.

In principle the choice of the tetrad carried by On as basis is arbitrary but in terms of the 3+1
formalism it is a natural one. Asymptotically the Eulerian observer coincides with a Newtonian one
at spatial infinity.

3.2 O
�

B0Ω0
�

: Spherical symmetric background star

In zeroth-order in the magnetic field and angular velocity our ansatz describes a spherical symmetric
compact star. Once an EoS is chosen, the two metric potentials ν and λ together with the log-enthalpy
gradient h(r) describe the spherical symmetric, cold compact star completely. Using the unperturbed
energy-momentum tensor of the ideal fluid one can compute the O

�

B0Ω0
�

field equations. Using the
two field equations (A.2) and (A.3) together with the Euler equation in O

�

B0
�

(A.5) we will derive
the analytical Schwarzschild solutions [56, 57] and the Tolman-Oppenheimer-Volkoff (TOV) equation(s)
[43, 58]. Starting from eq. (A.4) and a specific density profile we will derive a class of analytical
Tolman VII solutions [59].
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3.2.1 Vacuum solution: Exterior Schwarzschild solution

Outside the compact star, r > R, pressure and density vanish and eq. (A.2) becomes

0= 1− eλ> − rλ′>
= −1+ e−λ> − rλ′>e−λ>

=
d
dr

�

re−λ> − r
�

. (3.31)

This equation can be integrated to yield

−2M = re−λ> − r

1−
2M

r
= e−λ> , (3.32)

where we have chosen the constant of integration as −2M . From eq. (3.32) follows:

λ′> = −
2M

r(r − 2M)
. (3.33)

Equation (A.3) becomes

0= −1+ eλ> − rν′>, (3.34)

ν′> =
eλ> − 1

r

=
2M

r(r − 2M)
. (3.35)

Comparing eqs. (3.33) and (3.35) reveals ν′>(r) = −λ
′
>(r) and therefore

ν>(r) = −λ>(r) + cν. (3.36)

From the asymptotic flatness condition (gµν → ηµν for r → ∞) follows cν = 0 and the exterior
Schwarzschild solution (ESS) [56] reads:

eλ> =
1

1− 2M
r

, (3.37a)

λ′> = −
2M

r(r − 2M)
, (3.37b)

eν> = e−λ> = 1−
2M

r
, (3.37c)

ν′> = −λ′>. (3.37d)

Up until now M is only a constant of integration and only in that sense the gravitational mass of the
configuration, that it is the single parameter that governs the gravitational field/curvature outside the
configuration. Using the asymptotic expansion of the ESS at large distances, one can identify M as
the classical gravitational mass seen by a quasi Newtonian observer [60]. Further is can be identified
as the Komar mass, see eq. (3.242).
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3.2.2 Interior solution: Tolman-Oppenheimer-Volkoff equations in standard form

Inside the compact star, r ≤ R, pressure and density do not vanish and in order to solve the equations
of hydrostatic equilibrium, one has to specify an equation of state which relates the thermodynamic
quantities.

We begin our derivation of the TOV equation with eq. (A.2):

− 8πr2ρ = −1+ e−λ
�

1− rλ′
�

. (3.38)

By defining

M ′(r)≡ 4πr2ρ(r) (3.39)

one can integrate eq. (3.38) to:

−2M(r) = re−λ(r) − r + cM , (3.40)

e−λ(r) = 1−
2M(r) + cM

r
. (3.41)

At the surface of the star the exterior and interior solution have to be equal. Using this one can
identify the gravitational mass of the ESS, M , as

M = M(R) = 4π

∫ R

0

drr2ρ(r), (3.42)

with cM = 0.
In order to derive a differential equation for the pressure gradient we first rewrite eq. (A.3) to get

an expression for ν′:

ν′ =
8πr2Peλ + eλ − 1

r
. (3.43)

Inserting this into the Euler eq. (A.5) leads to

P ′ = −

�

8πr2Peλ + eλ − 1
�

(P +ρ)

2r
. (3.44)

With eq. (3.41) this can be rewritten into the well known form

P ′(r) = −

�

M(r) + 4πr3P(r)
�

(P(r) +ρ(r))

r(r − 2M(r))
(3.45)

= −
ρ(r)M(r)

r2

�

1+
P(r)
ρ(r)

��

1+
4πr3P(r)

M(r)

��

1−
2M(r)

r

�−1

, (3.46)

which is usually referred to as Tolman-Oppenheimer-Volkoff equation or by some authors just as
Oppenheimer-Volkoff equation [61]. It is the general relativistic equivalent of the classical, Newto-
nian equation of hydrostatic equilibrium: P ′(r) = −ρ(r)M(r)/r2. The three GR correction factors
in eq. (3.46) are all positive and therefore increase the pressure gradient, which leads to equilibrium
configurations with smaller masses compared to the Newtonian case.

To fully describe the star we need the last metric potential ν inside the star. Having derived an
expression for the pressure gradient the most convenient differential equation for ν is the plain rela-
tivistic Euler eq. (A.5):

ν′ = −
2P ′

P +ρ
. (3.47)
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In summary we have derived three differential equations which govern the structure inside a spher-
ical symmetric, cold, compact star:

M ′(r) = 4πr2ρ(r), (3.48a)

P ′(r) = −

�

M(r) + 4πr3P(r)
�

(P(r) +ρ(r))

r(r − 2M(r))
, (3.48b)

ν′(r) = −
2P ′(r)

P(r) +ρ(r)
. (3.48c)

Equations (3.48a) and (3.48b) are coupled and eq. (3.48c) is decoupled from the first two. The
stellar surface is defined as the surface of zero pressure. The boundary conditions at the stellar sur-
face, r = R, are given in eqs. (3.20) with the ESS (3.37) as exterior solution. At the center, r = 0,
all metric potentials and thermodynamic quantities need to be finite for non-singular configurations.
Given an EoS, which in case of the canonical TOV eqs. is necessary to relate pressures to energy
densities, there is a unique solution of the TOV equations for every chosen central pressure. For the
vast majority of EoS the TOV eqs. need to be integrated numerically.

The explicit form (3.46) and the definition of M(r) goes back to the paper "On Massive Neutron
Cores" of Oppenheimer and Volkoff published 1939 [58]. They not only formulated this popular
equation, they also solved it numerically for a physical, microscopic EoS: namely the one of a degen-
erated, cold neutron gas. They followed the same steps for the formulation of eq. (3.46) as we did here
based on field equations from Tolman [62]. Tolman derived the structure equations eqs. (A.2)-(A.5)
in isotropic coordinates as early as 1930 [43] and he identified eq. (3.47) as the general relativistic
equivalent to the Newtonian equation of hydrostatic equilibrium. For a modern understanding and for
the implementation using realistic EoS, Oppenheimer and Volkoff’s work was essential but Tolman’s
contribution to the derivation of this equation should not be underestimated [63]. We will refer to
the entire system (3.48) as TOV equations.

This canonical form of the structure eqs. is very popular and used by most authors but it has major
shortcomings in terms of implementability, stability and even theoretical insight into the problem as
we will discuss in the next subsection.

3.2.3 Interior solution: Lindblom’s form of the Tolman-Oppenheimer-Volkoff equations

There are three major shortcomings of the TOV eqs. in their canonical form (3.48).
The first one is the fact that they give ν only in differential form and explicit integration to obtain

ν would be necessary without further insight.
The last two are more technical problems when integrating the coupled system eqs. (3.48a) and

(3.48b). The integration domain is not known prior to integration, since the stellar radius is not
known. It is defined as the radius R where P(R) = 0. To determine this point during integration
can be problematic especially when using tabulated EoS or analytical EoS which do not approach
P = 0 asymptotically, like e.g. the EoS of an incompressible fluid with constant density. Furthermore
eqs. (3.48a) and (3.48b) form a stiff ODE system: the pressure and energy density vary strongly in
order of magnitude. Numerical integration of the TOV eqs. in their standard form is certainly possible
with a good adaptive method and special care at the stellar surface but it is not unproblematic [64].

In this subsection we will derive the TOV equations in the log-enthalphy which will solve all three
problems.
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Recalling the differential definition of h from the Gibbs-Duham relation in eq. (3.12) it is possible
to rewrite the Euler eq. (A.5) as

dν (r)
dr

= −
2

P (r) +ρ (r)
dP (r)

dr
= −2

dh (r)
dr

. (3.49)

This equation can be trivially integrated to

ν (r) = −2h (r) + cνh (3.50)

This integral form of the Euler equation is the general relativistic Bernoulli theorem for a static,
spherical symmetric star. The gt t metric potential is directly related to the log-enthalpy h. The
constant cνh can be found by matching the interior solution to the ESS

ν>(R)
!
= ν<(R)⇒ cνh = log

�

1−
2M
R

�

, (3.51)

since h(R) = 0. The latter can be derived from the definition (3.10) of h. At the stellar surface
P = 0⇒ µ= µ0 = mB and h(R) = log(µ0/µ0) = 0.

Eq. (3.48a) can be reformulated as

dh(r)
dr

=
dP(r)

dr
dh(r)
dP(r)

= −

�

M(r) + 4πr3P(r)
�

r(r − 2M(r))
. (3.52)

"Inverting" this equation and integrating the system {dr(h)/dh, dM(h)/dh} is possible and solves all
the three problems mentioned above, since the integration domain is known as h ∈

�

hc, 0
�

and the
ODE dr(h)/dh is regular at h = 0. This reformulation was first proposed by L. Lindblom in 1992
[65]. We will use a slightly modified version of Lindblom’s original eqs. by rewriting the system
{dr(h)/dh, dM(h)/dh} into

dr(h)2

dh
= −

2r(h)2
�

1− 2z(h)
�

4πr(h)2P(h) + z(h)
, (3.53a)

dz(h)
dh

=

�

2πρ(h)−
z(h)

2r(h)2

�

dr(h)2

dh
, (3.53b)

with z ≡ M(r)/r. This form was brought forward by L. Lindblom [66] and S. Postnikov discussed it
in detail in [67]. It has an increased numerical stability when compared to the system in r(h) and
M(h) and it allows for a proper NLO expansion around r → 0⇔ h→ hc:

r(h)2 −−−→
h→hc

3(hc − h)
2π(3Pc +ρc)

 

1+
3 dρ

dh |hc
+ 15Pc − 5ρc

10(3Pc +ρc)
(hc − h)

!

+O
�

h3
�

, (3.54a)

z(h) −−−→
h→hc

2ρc(hc − h)
3Pc +ρc

 

1−
5ρc(ρc − 3Pc) + 3 dρ

dh |hc
(6Pc +ρc)

10ρc(3Pc +ρc)
(hc − h)

!

+O
�

h3
�

. (3.54b)

With this expansion one can make the first integration step of the system (3.54) explicitly with a
controlled error by comparing the LO(h1) step with the NLO(h2) step. This expansion in proper
orders in the integration variable is unique to the {dr2(h)/dh, dz(h)/dh} system.

The system (3.53) together with an EoS and the two algebraic identities for the metric potentials

ν(h) = −2h+ log
�

1−
2M
R

�

, (3.55a)

λ(h) = − log
�

1− 2z(h)
�

, (3.55b)

29



encode the stellar structure completely.

In order to expand the following higher-order structure eqs. we invert (3.54) to get expansions of
the metric potentials and thermodynamic quantities in r

λ (r) −−→
r→0

8
3
πρc r2 +O

�

r3
�

, (3.56a)

ν (r) −−→
r→0

νc +
4
3
π(3Pc +ρc)r

2 +O
�

r3
�

, (3.56b)

P (r) −−→
r→0

Pc −
2
3
π(ρc + Pc)(3Pc +ρc)r

2 +O
�

r3
�

, (3.56c)

ρ (r) −−→
r→0

ρc −
2
3
π(3Pc +ρc)

dρ
dh

�

�

�

hc
r2 +O

�

r3
�

. (3.56d)

For using the EoS and the Euler eq. (3.50) to compute ν analytically it is not necessary to integrate
in h. Using the identity (3.50) or its equivalent in terms of the chemical potential [1] is possible
independent of the scheme used for the system {(3.48a), (3.48b)}. In Tab. 4.1 we will compare
numerical performance of different forms of the TOV eqs. but to anticipate the results: the system
(3.53) is overall the best choice in terms of performance and stability.

The close relation of the log-enthalpy to the baryon chemical potential, h = logµ/µ0, makes it a
rather natural base variable for an EoS. A lot of analytical, zero temperature, microscopic EoS can be
given in closed form in µ. To mention the some prominent examples: degenerate fermi gas, npe-gas,
constant speed of sound and MIT bag model EoS can be given analytically in terms of µ and therefore
also in terms of h. At T = 0 the chemical potential and the Fermi energy are equal. First-order
phase transitions have continuous pressures and chemical potentials so h is also continuous at such
transitions. For realistic tabulated EoS the chemical potential is often directly tabulated or it can be
constructed using the Gibbs-Duham relation. In computations of realistic EoS from more involved
interacting models for hadrons or quarks the baryon chemical potential is an important quantity.

Due to its simplicity, numerical advantages and close connection to the Bernoulli theorem we can
strongly recommend Lindblom’s system {dr2(h)/dh, dz(h)/dh} over the classical one of Oppenheimer
Volkoff.

3.2.4 Interior Schwarzschild solution

In 1916 K. Schwarzschild presented not only his famous solution of Einstein’s field equations outside
a spherical, static body, he also presented an analytical solution for the interior of an incompressible
fluid sphere [57]. This solution is referred to as interior Schwarzschild solution (ISS). We use it in the
scope of this work to check the accuracy of our numerical implementation and to compare configura-
tions of constant density to ones with a more realistic density gradient.

The ISS is the solution of the TOV equations for an incompressible fluid sphere of constant density.
This central density is related to the total gravitational mass M and the radius R of the star by

ρ(r) = ρc =
3M

4πR3
. (3.57)

Eq. (3.39) can be integrated analytically to

M(r) =
M
R3

r3 =
4
3
πρc r3. (3.58)
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With the EoS of an incompressible relativistic fluid (IRF), eq. (B.2), and the expression (3.58) the
differential eq. (3.53a) for r(h) becomes separable

r(h)r ′(h)
3− 8πρc r(h)2

=
1

4πρc

1
2− 3eh

(3.59)

and can be integrated by parts to

−
log

�

3− 8πr2ρc

�

16πρc
=

h
8πρc

−
log

�

2− 3eh
�

8πρc
+ crh. (3.60)

Using the boundary condition of vanishing radius at the stellar center r(hc) = 0 one can fix the
integration constant crh to get

r2(h) =
3

8πρ



1−
�

(3eh − 2)ehc−h

3ehc − 2

�2


 , (3.61)

z(h) =
4
3
πρr2(h). (3.62)

The central log-enthalpy hc is related to the ISS star’s compactness Z ≡ M/R by

hc = log

�

3− 6Z +
p

1− 2Z
4− 9Z

�

, (3.63)

which results in an expression for the central pressure

Pc = ρc
3Z +

p
1− 2Z − 1

4− 9Z
. (3.64)

Mass and radius in terms of hc and ρc are given by

M =
1

12
p

2πρc

�

3−
3e2hc

(2− 3ehc )2

�3/2

, (3.65)

R=
1

2
p

2πρc

�

3−
3e2hc

(2− 3ehc )2

�1/2

. (3.66)

For our purposes the ISS in h is ideal since we also integrate the TOV eqs. in h. Especially eqs. (3.61)
and (3.62) can be used to test numerical solutions for accuracy. Fixing just two of the parameters out
of
�

M , R, Z ,ρc, Pc, hc

�

plus a mean baryon rest mass, if nB(s) is of interest, completely determines
the structure of an equilibrium configuration and we have analytic expressions for all quantities and
gradients of such an IRF background star.

The ISS in terms of h is not very common but it can be used together with the IRF EoS to construct
metric potentials and thermodynamic quantities in terms of the radius. For our purposes the ISS
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solution in terms of the dimensionless radial variable s ≡ r/R and the configurations compactness Z
and radius R is best suited:

λ(s) = − log
�

1− 2s2Z
�

, (3.67a)

ν(s) = −2 log

�p
1− 2Z

p
1− 2s2Z − 6Z + 3

(s2 − 9) Z + 4

�

+ log [1− 2Z] , (3.67b)

P(s) =
3Z

4πR2

�p
1− 2Z

p
1− 2s2Z − 6Z + 3

(s2 − 9) Z + 4
− 1

�

, (3.67c)

ρ(s) =
3Z

4πR2
= const., (3.67d)

nB(s) =
ρ(s)
mB

=
3Z

4πR2mB
= const.. (3.67e)

The metric potentials ν(s) and λ(s) are independent of the configuration’s central density. Pressure,
energy- and baryon density scale trivially in ρc. The internal structure only depends on Z in a non-
trivial way. We will make use of this fact in Chap. 6.

The expression for the baryonic mass MB = mBB0 from eq. (3.250a) is analytical for the ISS and
can be integrated to yield

MB =
3R
4

�

1
p

2Z
arcsin

�p
2Z
�

−
p

1− 2Z

�

. (3.68)

Using eq. (3.64) we can derive two interesting limits for compact objects.
The first one is the so called Schwarzschild-Buchdahl (SB) limit [57, 68]: There is a maximum

compactness ZSB for incompressible fluid spheres in GR

ZSB =
4
9

, (3.69)

given by the Pc → ∞ limit of eq. (3.64). S. Weinberg showed in 1972 [69] that this limit holds
independently of the EoS for all stars with ∂ ρ/∂ r ≤ 0 and gr r not singular. In GR no compact star
can have a compactness beyond 4/9 without collapsing into a black hole. This limit is special to GR
since it does not exist in the Newtonian theory.

Requiring ρc = Pc leads to the second limit

ZC =
3
8

. (3.70)

ZC is called causality limit for ISS stars. In 1964 H. Bondi showed that for arbitrary EoS with P > 0,
ρ > 0 and dP/dρ < 1 a similar limit of ZB = 0.38 holds [1, 70].

The ISS is one and arguably the simplest and most popular analytic interior solution for relativistic
compact objects. The simplicity of the ISS however comes at a cost; it is not very well suited to
describe realistic compact objects or to be specific neutron stars. A constant density profile is not
realistic and the IRF EoS is not physical in the sense that its sound speed is at all densities infinite. For
modeling self-bound stars with high residual surface densities, like pure quark stars, the ISS provides
a somewhat viable effective model for some global parameters but for primarily hadronic NS it is not
well suited.

32



3.2.5 Tolman VII solution

We already discussed the ISS as one analytic interior solution and pointed out its shortcomings when
it comes to describing NS. In this subsection we will introduce another analytic interior solution which
will be better suited for describing realistic NS. M. S. R. Delgaty and K. Lake (DL) list 127 analytic
interior solutions for isolated, static, spherically symmetric, perfect fluid spheres [71]. They found
that only 16 can be considered physical meaning that they

1. have isotropic pressure,

2. are regular at the origin,

3. have positive definite pressures and densities at the origin,

4. have a finite stellar radius with a vanishing surface pressure,

5. have decreasing pressure and density gradients

6. and causal sound speeds.

The ISS meets all but the last of these six requirements. From those 16 physical perfect fluid interior
solutions one is particularly interesting: the Tolman VII [59] solution. In his famous 1939 paper Static
Solutions of Einstein’s Field Equations for Spheres of Fluid R. C. Tolman discussed eight analytic interior
solutions. Among those a solution constructed by him, which he referred to as Solution VII (TVII). He
only presented this solution and immediately disregarded it. In his words:

"The dependence of p on r, with e−λ/2 and eν explicitly expressed in terms of r, is so compli-
cated that the solution is not a convenient one for physical considerations." – R.C. Tolman,
1939 [59].(1)

It is true that the algebraic structure of TVII solution is complicated but this does not a priori dis-
qualifies it as unphysical. In fact the TVII solution satisfies all six requirements of DL and quite a few
analytic interior solutions are of TVII-type or include it as a limit [55]. Tolman’s statement of it being
not convenient still holds to some extent but with modern computer algebra systems, the analytic
complexity of the solution can be handled.

In this subsection we will derive a class of TVII solutions, using the same steps Tolman used in his
original derivation but a different notation. We will discuss and reason through out this work that the
TVII solution can be a very potent tool to model realistic NS.

To construct the TVII solution the following form for the gr r metric potential is assumed

e−λ
!
= 1+

r2

A2
+

r4

B4
≡ 1+

8
15
πρc r2

�

3r2µ

R2
− 5

�

, (3.71)

where we introduced three constants µ, ρc and R instead of the two originally used by Tolman. ρc
is the configuration’s central density and R its radius. The density gradient inside the star can be
constructed from eq. (3.71) with eq. (A.2)

ρ (r) = ρc

�

1−µ
r2

R2

�

. (3.72)

The free parameter µ classifies families of TVII solutions. µ controls the density gradient: the energy
density inside a TVII configuration is strictly monotonically decreasing for µ ∈ (0, 1]. (1−µ)ρc is the

(1) Tolman uses lowercase p as variable name for the pressure, while we use uppercase P.
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residual density on the stellar surface and for µ = 0 the ansatz is the one for the ISS. For µ = 0 the
density is constant and for µ ∈ (0,1] it quadratically decreases towards the surface.

The total mass of a TVII configuration is given by

M =
4

15
πR3ρc

�

5− 3µ
�

(3.73)

and with this expression we can rewrite our ansatz in terms of the dimensionless radial variable
s ≡ r/R and the compactness Z ≡ M/R as

e−λ(s) = 1+
2s2Z

�

5− 3µs2
�

3µ− 5
, (3.74a)

ρ(s) =
15Z

�

µs2 − 1
�

4π(3µ− 5)R2
. (3.74b)

The next step towards a complete interior solution is deriving an expression for the gt t metric
potential ν. For that endeavour we rewrite eq. (A.4) using eq. (A.3) as

d
ds

�

e−λ(s) − 1
s2

�

+
d
ds

�

e−λ(s)ν′(s)
2s

�

+ e−λ(s)−ν(s)
d
ds

�

eν(s)ν′(s)
2s

�

= 0, (3.75)

which can be integrated twice to yield

eν(s) =
5Z + 6µ− 15Zµ

6µ
cos2φ(s), (3.76)

with the auxiliary functions

φ(s) = arctan

�
p

5−µ
p

(6/Z − 12)µ
+

W (s)−W (1)
2

�

, (3.77a)

W (s) = log

�

6
p

2µs2 − 5
p

2+ 2
p

3
p

(5− 3µ)µe−λ(s)/Z

6
p

(5− 3µ)µ

�

, (3.77b)

where we already fixed the constants of integration with the boundary conditions P(s = 1) = 0 and
eν(s=1)−λ(s=1) = 1.

Using the field eq. (A.3) and the expressions for the metric potentials we can find an expression for
the pressure

P(s) =
2sZ

�

5− 3µs2
�

+
�

3µ− 6µs4Z + 10s2Z − 5
�

ν′(s)

8π(3µ− 5)R2s
(3.78)

and with it expressions for the baryon density and the log-enthalpy

nB(s) =
cosφ(s)
φ(1)

P(s) +ρ(s)
mB

, (3.79)

h(s) = log
cosφ(1)
cosφ(s)

. (3.80)

The expression for the speed of sound reads

c2
s (s) =

1
15

tanφ(s)

 

3 tanφ(s)−

p
6Z
�

6µs2 − 5
�

p

µ(5− 3µ)Ze−λ(s)

!

. (3.81)
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µ hc Pc [MeV fm−3] ρc [MeV fm−3] nB(0) [fm
−3] cs(0) M [M�] R [km] Z MB [M�]

0 0.103 51.214 473.444 0.508 ∞ 0.768 7.559 0.150 0.851
1/4 0.112 48.967 473.444 0.502 0.714 0.833 8.199 0.150 0.921
1/2 0.125 47.734 473.444 0.494 0.554 0.918 9.035 0.150 1.013
3/4 0.147 48.503 473.444 0.484 0.512 1.035 10.192 0.150 1.138
1 0.189 54.170 473.444 0.469 0.530 1.214 11.952 0.150 1.321

Table 3.1: Global parameters related to the configurations plotted in Fig. 3.1 and Fig. 3.2. The column with
µ= 0 corresponds to the ISS configuration, while columns with µ > 0 are TVII configurations. All
share the same compactness and central density.

While the expressions for λ and ρ are reasonably simple the expression for ν and the thermody-
namic quantities P, nB and h are highly complicated nested expressions.

In Sec. B.2 of the appendix we will discuss the EoS related to TVII configurations. In the remainder
of this subsection we will discuss the structure of TVII equilibrium configuration, related limits and
compare both to the ISS.

Fig. 3.1 displays the pressure, energy- and baryon density gradients in five configurations of the
same central density and compactness. Four TVII configurations and one ISS configuration are plot-
ted. The energy density gradients show the quadratic decay of the ansatz and the increasing residual
surface density for decreasing µ. The baryon density gradients look similar to ρ(s) for TVII configu-
rations but the functional dependence of the monotonic decrease is highly complicated. The residual
surface baryon density is

nB(s = 1) =
ρc

mB
(1−µ). (3.82)

For µ→ 0 the TVII solutions approach their ISS counterparts, as expected from the ansatz.
Fig. 3.2 depicts the metric potentials and the speed of sound. The metric potentials of all five

solutions are identical in the stellar exterior with this choice of radial coordinate. In s = r/R the ESS
for λ> and ν> depends on the compactness only and we choose five configurations with the same
compactness. The ISS as (µ→ 0)-limit of the TVII solutions is again evident.

The speed of sound in the right panel of Fig. 3.2 shows a very interesting feature of TVII solutions:
the speed of sound is not only causal it is also monotonically decreasing form the stellar center to the
stellar surface. This behavior is expected in realistic NS and only 9 of the 127 solutions listed by DL
have this feature. Especially the TVII1 solution is extremely interesting since it has vanishing sound
speed, pressure and density at the stellar surface. Very low or in terms of central values vanishing
surface sound speeds and densities are also expected for NS with a realistic, non-relativistic crust.

Tab. 3.1 shows the global parameters related to the configurations plotted in Fig. 3.1 and Fig. 3.2.
Central log-enthalpy, radii and masses increase while central baryon densities decrease for TVII con-
figurations with increasing µ at fixed Z and ρc. For the central speed of sound and the pressure the
hierarchy has not a simple linear relation to µ. The functional dependence of both quantities is to
complicated for that.

Using the expression (3.81) for the sound speed and the expressions for pressure (3.78) and en-
ergy density (3.74b) one can discuss three extreme configurations. Depending on µ we can derive
compactness limits for configurations with infinite central pressure, configurations with Pc = ρc and
configurations at the causal limit cs(s = 0) = 1. Fig. 3.3 shows these limits and the corresponding
ones for ISS solutions. There are no ISS solutions with causal sound speeds so it is not surprising
that in the (µ→ 0)-limit TVII configurations aproach zero compactness/ vanish. The Schwarzschild-
Buchdahl limit for the TVII solution lies below 4/9 for all µ ∈ (0,1]. The (Pc = ρc)-limit lies below
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Figure 3.1: Thermodynamic gradients inside four TVII configurations and one ISS configuration. All share the
same central density of 473.444MeV fm−3 and compactness of Z = 0.15.
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Figure 3.2: Metric potentials (left) and sound speed gradient (right) for four TVII configurations and one ISS
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Z = 0.15. Dashed lines mark the exterior solutions.
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Figure 3.3: Compactness limits for extremal TVII configurations for different µ: Configurations with maximal
compactness (red) are the ones with Pc =∞, TVII stars with Pc = ρc (blue) have lower
compactnesses and causal configurations (green) have compactnesses below 0.3. The dashed lines
correspond to the Schwarzschild-Buchdahl limit (red) and causality limit (blue) of the ISS solution.

3/8 for TVII configurations with large µ, slightly above (too slightly to be visible in Fig. 3.3) 3/8 for
low µ and approaches the ISS value for µ→ 0.

For µ= 1, meaning vanishing surface density, the numerical values for those limit are

ZTVII
SB (µ= 1)≈ 0.386, (3.83a)

ZTVII
Pc=ρc

(µ= 1)≈ 0.335, (3.83b)

ZTVII
cs(0)=1(µ= 1)≈ 0.270. (3.83c)

Fig. 3.4 shows the binding energy MB−M divided by M for sequences of different µ and Z . MB/M−
1 > 0 for all configurations on the displayed sequences, meaning that all configurations are bound.
The expression for the baryonic mass is an integral over analytic functions but the integrand is too
complicated for analytic integration. We obtained the values for MB in this subsection by numerical
integration of

MB = 4πR3mB

∫ 1

0

nB(s)e
λ(s)/2s2ds. (3.84)

For more details regarding the properties and structure of TVII configuration, we refer the interested
reader to the work of A. M. Raghoonundun [55, 72].
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3.3 O
�

B0Ω1
�

: Frame-dragging

The only non-trivial field equation linear in Ω is eq. (A.6), which becomes the homogeneous second-
order ODE

ω̄′′ +
1
2r

�

r(ν′ +λ′)− 8
�

ω̄′ +
2
r
(ν′ +λ′)ω̄= 0. (3.85)

when using

ω̄ (r)≡ Ω−ω (r) . (3.86)

Eq. (3.85) is the classical HT frame-dragging (FD) equation and it is discussed in detail in [25, 48].
The difference between the four-velocity of the fluid rest u and the one of the Eulerian observer n is
given by

(uα − nα) = (0,0, 0, e−ν/2ω̄)T +O
�

B2Ω1
�

. (3.87)

Apart from O
�

Ω1
�

effects, ω̄ (r) and ω (r) are also needed for the deduction of the induced electric
field and for the higher-order corrections W1 and W3.

The Eulerian observer rotates around the z-axis with an angular velocity smaller than Ω which
gives the effect its name. This effect in general is also known as Lense-Thirring precession or the
Lense-Thirring effect and it is a purely general relativistic effect.

Fig. 3.5 shows the trajectory of a free falling particle in the (θ = π/2)-plane. The particle gets
dragged in positive φ-direction.

Around the coordinate singularity at the origin the FD eq. (3.85) can be expanded and solved to
yield

ω̄ (r)/Ω −−→
r→0

cω̄

�

1+
8
5
π(Pc +ρc)r

2
�

+O
�

r4
�

. (3.88)

In the stellar exterior eq. (3.85) becomes

ω̄′′> +
4
r
ω̄′> = 0, (3.89)
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Ω

ω(r)=2J/r3

Figure 3.5: Dragging of local inertial frames in the (θ = π/2)-plane: The trajectory of a free falling particle
(blue) dropped from spatial infinity with vanishing initial velocity and its angular velocity
dφ/d t =ω(r) are depicted in the field of a slowly rotating star (black circle). This illustration is
based on Fig. 6.1 of [1].

which can be integrated trivially. The asymptotically flat solution is

ω̄> (r) = Ω−
2J
r3

, (3.90)

where J can be identified as the angular momentum of the rotating configuration in O
�

B0Ω1
�

. We
will discuss J and alternate expressions for it in Sec. 3.9. Introducing the moment of inertia I ≡ J/Ω
eq. (3.90) implies

ω> (r) =
2I
r3
Ω. (3.91)

The angular momentum J and the scale of the homogeneous system cω̄ can be determined by im-
posing the junction condition (3.21).

In O
�

B0Ω1
�

the line element (3.19) in the stellar exterior takes the form

ds2
> = −

�

1−
2M

r

�

d t2 +
�

1−
2M

r

�−1

dr2 +−
4J sin2θ

r
d tdφ + r2dΩ2 +O

�

B2Ω2
�

. (3.92)

Expanding the Kerr metric [73] in the Kerr parameter a = J/M up to first-order in a leads to the same
line element (3.92).

3.4 O
�

B1Ω0
�

: Magnetic field of a spherical background star

One of two non-trivial Maxwell equations is the one governing the magnetic field

∇µFφ
µ = 4πJφ, (3.93)

which is of O
�

B1Ω0
�

. For the covariant divergence we can use the metric of the background star (3.2),
since we are only interested in the magnetic field up to order O

�

B1
�

. Solving the Maxwell equations
with the metric of the magnetically deformed star would involve terms of order O

�

B3
�

. With the
O
�

B0Ω0
�

metric (3.2) eq. (3.93) becomes

4πJφ =∇µFφ
µ (3.94a)

4πJφ (r,θ ) = −e−λ∂ 2
r Aφ (r,θ ) +

1
2

e−λ
�

λ′ − ν′
�

∂rAφ (r,θ ) +
cotθ∂θAφ (r,θ )

r2
−
∂ 2
θ

Aφ (r,θ )

r2

(3.94b)

−4πJφ (r,θ ) = e−λ∂ 2
r Aφ (r,θ ) +

1
2

e−λ
�

ν′ −λ′
�

∂rAφ (r,θ ) +
sinθ

r2
∂θ

�

1
sinθ

∂θAφ (r,θ )
�

(3.94c)
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The angular part of this second-order PDE can be solved by expanding Aφ (r,θ ) and Jφ (r,θ ) in odd
parity zonal (m= 0) vector harmonics S l0

φ
as introduced in eq. (3.4)

Aφ (r,θ )≡
∞
∑

l=1

aφl (r)S
l0
φ =

∞
∑

l=1

aφl (r) sinθ
dPl (cosθ )

dθ
= −

∞
∑

l=1

aφl (r)
�

1− ỹ2
� dPl

�

ỹ
�

d ỹ
, (3.95)

Jφ (r,θ )≡
∞
∑

l=1

jφl (r)S
l0
φ =

∞
∑

l=1

jφl (r) sinθ
dPl (cosθ )

dθ
= −

∞
∑

l=1

jφl (r)
�

1− ỹ2
� dPl

�

ỹ
�

d ỹ
, (3.96)

with ỹ ≡ cosθ and the Legendre polynomials Pl( ỹ). This expansion corresponds to a multipole ex-
pansion of the fields Aφ (r,θ ) and Jφ (r,θ ). Equating eq. (3.94c) with this expansion and using the
Legendre differential equation

d
d ỹ

�

�

1− ỹ2
�

P′l ( ỹ)
�

+ l(l + 1)Pl( ỹ) = 0, (3.97)

leads to l second-order ODEs in r for the expansion coefficients aφl (r) and jφl (r):

e−λa′′φl +
1
2

e−λ
�

ν′ −λ′
�

a′φl −
l (l + 1)

r2
aφl = −4π jφl . (3.98)

Up until now our discussion holds for arbitrary, purely poloidal magnetic fields and currents. The
expansion coefficients of the current density jφl (r) are not independent of aφl (r). In order to describe
a star in hydrostatic equilibrium the configuration must obey the relativistic Euler equation. This
equation includes Lorentz force terms ∼ JµFµα and one can derive a relation between Jα and Aα.
A. Colaiuda et al. [24] derived such a relation from the relativistic Euler equation in a differential
from. In case of vanishing toroidal fields and decoupled harmonic components there is just one
non-vanishing jφl (r) coefficient [23, 24]:

jφl (r) = c jφ r2
�

P (r) +ρ (r)
�

δl1, (3.99)

where c jφ is a constant of O
�

B1
�

. We will derive this result from the relativistic Euler equation in
Sec. 3.6.1 for the special case (l = 1). Combining this result from the Euler eq. with the Maxwell eq.
leads to

e−λa′′φl +
1
2

e−λ
�

ν′ −λ′
�

a′φl −
l (l + 1)

r2
aφl = −4πc jφ r2

�

P +ρ
�

δl1. (3.100)

Eq. (3.100) is called relativistic Grad-Shafranov (GS) equation on a spherical-symmetric background
star [21–23]. Fields satisfying this equation result in hydrostatic equilibrium configuration satisfying
the Bernoulli theorem (3.174). The classical Grad-Shafranov equation [74] describes the equilibrium
of a classical two dimensional plasma in ideal MHD. For the special case of purely dipolar fields we
recover the classical GS eq. as the non-relativistic limit of eq. (3.100) in Sec. 6.2.2, eq. (6.47).

For the following discussions of this subsection we will limit ourselves to configurations with pure
dipolar magnetic fields, meaning that we only consider vector potentials Aφ and current densities Jφ
with just one non-vanishing expansion coefficient aφ1 (r)≡ aφ (r) and respectively jφ1 (r)≡ jφ (r):

Aφ (r,θ )
!
= aφ1 (r) sinθ

dP1 (cosθ )
dθ

≡ −aφ (r) sin
2θ , (3.101)

Jφ (r,θ )
!
= jφ1 (r) sinθ

dP1 (cosθ )
dθ

≡ − jφ (r) sin
2θ . (3.102)
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Considering only dipolar magnetic fields simplifies the problem. In this case the magnetic configura-
tion is governed by only one second-order ODE

e−λa′′φ +
1
2

e−λ
�

ν′ −λ′
�

a′φ −
2
r2

aφ = −4π jφ. (3.103)

Using the relativistic Euler equation we will derive the functional form of jφ in eq. (3.172) and
eq. (3.103) becomes

e−λa′′φ +
1
2

e−λ
�

ν′ −λ′
�

a′φ −
2
r2

aφ = −4πc jφ r2(P +ρ). (3.104)

Eq. (3.104) is singular at r = 0 because of the coordinate singularity at that point but physically
its solutions for aφ have to be regular. To guaranty regularity of the solutions and to find initial
conditions we expand eq. (3.104) in a Taylor series around r = 0, using the TOV asymptotic from eqs.
(3.56). In leading-order the ODE (3.104) becomes

a′′φ(r)− 2aφ(r) +O
�

r3
�

= 0, (3.105)

which has the regular solution

aφ(r)
r→0
→ −

1
2

B0r2 +O
�

r3
�

. (3.106)

B0 is an integration constant of O
�

B1
�

, which we have chosen this way so that eq. (3.119a) becomes

Br̂(r = 0,θ = 0) = B0 (3.107)

at the stellar center: B0 is the magnetic field strength at the stellar center and a free input parameter
of our model. All constants of O

�

B1
�

and O
�

B2
�

can be expressed in terms of this constant e.g.

c jφ ≡ B0c jφ0, (3.108)

where c jφ0 is of O
�

B0
�

and depends only on the background star.

c jφ0 is not a free parameter: it has to be fixed by imposing magnetostatic boundary conditions
[21, 75] on the stellar surface. The components of the magnetic field tangential to the stellar surface
are continuous in the case of vanishing surface currents and the component normal to the surface is
always continuous. We will only consider configurations with vanishing surface currents and therefore
completely continuous fields. Translating those matching conditions to the vector potential using eqs.
(3.118) it becomes obvious that the expansion coefficients aφl (r) and their derivatives a′

φl (r) have
to be continuous at r = R

a<φl(R)
!
= a>φl(R), (3.109a)

a<φl
′(R)

!
= a>φl

′(R). (3.109b)

In the purely dipolar case we have two matching conditions in l = 1.
For a given background star and field strength the matching conditions (3.109) can only be realized

with unique c jφ0 and an unique exterior solution. The latter depends on the background star and the
O
�

B1
�

magnetic dipole moment µ, see Sec. 3.4.1. With the expansion (3.106) and with the matching
conditions the ODE for aφ (3.104) has to be solved as a boundary value problem. We use the following
procedure: We integrate eq. (3.104) with a guess for c jφ0 and then we fix the dipole moment µ by

imposing a<
φl(R)

!
= a>

φl(R). We optimize our guess for c jφ0 by finding the root of the second matching

condition a<
φl
′(R)− a>

φl
′(R).
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3.4.1 Exterior solution for the vector potential

Outside the star the metric is given by the ESS encoded in eqs. (3.37) and the current density vanishes
jφl = c jφ r2(P +ρ)δl1 = 0 since P and ρ vanish for r > R. This simplifies the GS eq. (3.104) for aφl
significantly:

0=
�

1−
2M

r

�

r2a>φl
′′ (r) + 2Ma>φl

′ (r)− l(l + 1)a>φl (r) (3.110a)

0= r2 d
dr





�

1−
2M

r

� da>
φl (r)

dr



− l(l + 1)a>φl (r) . (3.110b)

A change of variables with x ≡ r/(2M)> 1 transforms eq. (3.110b) into

− (x − 1)xa>φl
′′(x)− a>φl

′(x) + l(l + 1)a>φl(x) = 0. (3.111)

This ODE has the form of a hypergeometric equation [76] with a = l, b = −l − 1 and c = −1 and the
solution with the correct (r →∞)-asymptotic is

a>φl(x) = −
µl

(2M)a
x−a

2F1

�

a, a− c + 1, a− b+ 1; x−1
�

= −
µl

(2M)l
x−l

2F1

�

l, l + 2, 2l + 2; x−1
�

,

(3.112)
with the Gauss hypergeometric function 2F1

�

a, a− c + 1, a− b+ 1; x−1
�

analytically continued on
the x > 1 branch, the multipole moment µl and the asymptotic

a>φl(x) −−−→x→∞
−

µl

(2M)l
x−l

�

1+O
�

x−1
�

�

. (3.113)

In our geometrized unit system µl has the dimensions length to the power of l+1 and
�

µl

�

SI = Aml+1.

In our numerical computations we only consider configurations with purely dipolar fields,
µl = µδl1, with

a>φ (r) =
3µr2

8M3

�

2M
r
+

2M2

r2
+ log

�

1−
2M

r

�

�

, (3.114a)

a>φ
′(r) =

3µ
2M2

�

M − r
2M − r

+
r

2M
log

�

1−
2M

r

�

�

. (3.114b)

The dipole moment µ is fixed by matching interior and exterior solutions as described at the end of
Sec. 3.4.

3.4.2 The magnetic field

The magnetic field measured by the Eulerian observer On (moving with nα) is given by

Bα = −
1
2
εαµνξnµFνξ, (3.115)

with

εαµνξ = e(ν+λ)/2r2 sinθ
�

αµνξ
�

, (3.116)
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and nα from eq. (3.26a), the non-vanishing components of the magnetic field measured in On are

Br (r,θ ) =
eλ(r)/2

r2 sinθ
∂θAφ (r,θ ) , (3.117a)

Bθ (r,θ ) = e−λ(r)/2 sinθ∂rAφ (r,θ ) . (3.117b)

For discussion and the non-relativistic limiting case the components of Bα with respect to the or-
thonormal tetrad carried by On are advantageous as discussed in Sec. 3.1.2. Using eq. (3.29) and the
scalar product Bα̂ = B · eα̂, the tetrad components of the magnetic field follow as

Br̂ (r,θ ) = −
1

r2 sinθ
∂θAφ (r,θ ) = −

∞
∑

l=0

l(l + 1)
r2

aφl (r)Pl(cosθ ), (3.118a)

Bθ̂ (r,θ ) =
e−λ(r)/2

r sinθ
∂rAφ (r,θ ) =

∞
∑

l=0

e−λ(r)/2

r
a′φl (r)

dPl(cosθ )
dθ

, (3.118b)

with the typical angular dependency expected for a multipole expansion of a purely poloidal magnetic
field. When considering purely dipolar configurations eq. (3.118) reduces to

Br̂ (r,θ ) = −
2aφ (r)

r2
cosθ , (3.119a)

Bθ̂ (r,θ ) =
e−λ(r)/2a′

φ
(r)

r
sinθ . (3.119b)

Inserting the exterior solution a>
φ

and the ESS, the magnetic field outside the star can be given
analytically as

B>r̂ (r,θ ) = −
∞
∑

l=0

l(l + 1)
r2+l

µl 2F1

�

l, l + 2,2l + 2,
2M

r

�

Pl(cosθ ), (3.120a)

B>
θ̂
(r,θ ) = −

√

√

1−
2M

r

∞
∑

l=0

l(l + 1)
r3+l

µl

�

(l + 1)r 2F1

�

l, l + 2,2l + 2,
2M

r

�

+M(l + 2) 2F1

�

l + 1, l + 3,2l + 3,
2M

r

�

�dPl(cosθ )
dθ

.

(3.120b)

Asymptotically those complicated expressions reduce to the flat space multipole expansion of a purely
poloidal magnetic field

B>r̂ (r,θ ) −−−→r→∞

∞
∑

l=0

l(l + 1)
r2+l

µl

�

1+O
�

1
r

�1
�

Pl(cosθ ), (3.121a)

B>
θ̂
(r,θ ) −−−→

r→∞
−
∞
∑

l=0

l
r2+l

µl

�

1+O
�

1
r

�1
�

dPl(cosθ )
dθ

, (3.121b)

with the characteristic r−l−2 LO. The far field is dominated by the dipolar (l = 1) part of the magnetic
field decaying in LO as r−3. When considering such a field exclusively, µl = µδl1, the magnetic field
takes the explicit form

B>r̂ (r,θ ) = −
3µ

4M3

�

log
�

1−
2M

r

�

+
2M

r
+

2M2

r2

�

cosθ , (3.122a)

B>
θ̂
(r,θ ) =

3µ
4M3

 

√

√

1−
2M

r
log

�

1−
2M

r

�

+
2M (M − r)

r
p

r (r − 2M)

!

sinθ . (3.122b)
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Expanding in the non-relativistic limit (c→∞⇔ M → 0) yields

B>r̂ (r,θ ) =
2µ
r3

�

1+
3M
2r
+

12M2

5r2
+O

�

M3
�

�

cosθ , (3.123a)

B>
θ̂
(r,θ ) =

µ

r3

�

1+
2M

r
+

37M2

10r2
+O

�

M3
�

�

sinθ , (3.123b)

where the terms beyond O
�

M0
�

are higher-order corrections to the non-relativistic limit. The higher-
order terms account for the effects of spacetime curvature. At the surface of the sun M/R is of the
order 10−6 and at the surface of a compact star (M = 2 M�, R= 15km) it is around 10−1. So even in
relativistic scenarios the corrections to the magnetic field outside the star are rather small but inside
a compact star they become significant. The non-relativistic, flat space expressions for the magnetic
dipole field

B>r̂,cl. (r,θ ) =
2µ
r3

cosθ , (3.124a)

B>
θ̂ ,cl.
(r,θ ) =

µ

r3
sinθ , (3.124b)

are the standard textbook expressions [77] which arise from purely classical calculations.

3.5 O
�

B1Ω1
�

: Electric field of a spherical background star

The non-trivial Maxwell equation governing the electric field is

∇µFt
µ = 4πJt (3.125)

and it is of O
�

B1Ω1
�

. For the covariant divergence we use the metric g(00)
αβ
+ g(01)

αβ
of the rotating

background star of O
�

B0Ω1
�

. Computing the covariant divergence leads to

4πJt =∇µFt
µ (3.126a)

−4πJt (r,θ ) = e−λ(r)∂ 2
r At (r,θ )−

e−λ(r)
�

−4+ rλ′ (r) + rν′ (r)
�

2r
∂rAt (r,θ ) +

1
r2
∂ 2
θ At (r,θ )

+
cotθ

r2
∂θAt (r,θ )−

e−λ(r)
�

ω (r)
�

−2+ rν (r)′
�

− rω′ (r)
�

r
∂rAφ (r,θ )

+
2ω (r) cotθ

r2
∂θAφ (r,θ )

(3.126b)

which can be rewritten to

−4πJt (r,θ ) +
e−λ(r)

�

ω (r)
�

−2+ rν (r)′
�

− rω′ (r)
�

r
∂rAφ (r,θ )−

2ω (r) cotθ
r2

∂θAφ (r,θ ) =

e−λ(r)∂ 2
r At (r,θ )−

e−λ(r)
�

−4+ rλ′ (r) + rν′ (r)
�

2r
∂rAt (r,θ ) +

1
r2 sinθ

∂θ
�

sinθ∂θAt (r,θ )
�

.

(3.127)

Expanding At (r,θ ) and Jt (r,θ ) in scalar zonal (m = 0) harmonics, Legendre polynomials Pl(cosθ ),
and using the expansion of Aφ the angular and radial dependencies decouple and eq. (3.127) decom-
poses into l inhomogeneous second-order ODEs in r for the expansion coefficients:

−
1
r

e−λ
�

ω(rν′ − 2)− rω′
�

�

∑

n

a′φn sinθ
dPn(cosθ )

dθ

�

l

+
2
r2
ω

�

∑

n

n(n+ 1)aφn cosθPn(cosθ )

�

l

= e−λa′′t l −
1
2r

e−λa′t l

�

rν′ + rλ′ − 4
�

− l(l + 1)
at l

r2
+ 4π jt l .

(3.128)
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In the following we will focus on the electric field corresponding to the dipolar field aφl = aφδl1 for
which eq. (3.128) simplifies to

− 4π jt l −
1
r

e−λ
�

ω(rν′ − 2)− rω′
�

a′φ

�

2
3
δl0 −

2
3
δl2

�

+
2
r2
ωaφ

�

1
3
δl0 +

2
3
δl2

�

= e−λa′′t l −
1
2r

e−λa′t l

�

rν′ + rλ′ − 4
�

− l(l + 1)
at l

r2
.

(3.129)

In the following subsections we will discuss interior and exterior solutions of this Maxwell equation
and the corresponding electric fields, currents and potentials.

3.5.1 Interior solution for the electric potential and charge density

In the stellar interior we assume infinite conductivity (ideal MHD condition) as discussed in Sec. 2.2.
The ideal MHD condition which requires the vanishing of the electric field in the fluid rest frame

E(u)α = Fαµuµ = 0 (3.130)

leads to

∂xi

�

At (r,θ ) +ΩAφ (r,θ )
�

= 0, (3.131)

in case of Ω = const.. The multipole expansions of the four potential and considering purely dipolar
magnetic fields leads to

∞
∑

l=0

a′t l (r)Pl(cosθ ) = −Ω sin2θa′φ (r) , (3.132)

∂θ

∞
∑

l=0

at l (r)Pl(cosθ ) = −2Ω sinθ cosθaφ (r) , (3.133)

which requires

at l (r) = at0 (r)δl0 + at2 (r)δl2. (3.134)

In case of a purely dipolar magnetic fields the induced electric fields in the stellar interior have only
mono and quadrupole components. With this fact we can integrate the induction equation to get
explicit expressions for a<t0 and a<t2:

a<t0 (r) =
2
3
Ωaφ (r) + cat0, (3.135a)

a<t2 (r) = −
2
3
Ωaφ (r) . (3.135b)

The integration constant cat0 has no effect on the electric field. We fix cat0 to ensure continuity of
at0 over the stellar surface. We make this particular gauge choice because it makes plotting the four
potential easier and more instructive. The particular expressions for the induced electric potentials
result in a very simple overall expression for A<t (r,θ ):

A<t (r,θ ) = Ωaφ (r) sin
2θ + cat0. (3.136)

The electric potential in the interior is purely of O
�

B1Ω1
�

.
Plugging the induced electric potentials into the Maxwell eq. (3.129) allows for a determination of

the corresponding induced charge density jt l = jt0δl0 + jt2δl2 with

j<t0 (r) =
2Ω jφ (r)

3
−

aφ (r) ω̄ (r)

3πr2
+

e−λ(r)a′
φ
(r)
�

ω̄ (r)
�

−2+ rν′ (r)
�

− rω̄′ (r)
�

6πr
, (3.137a)

j<t2 (r) = −
2Ω jφ (r)

3
−

2aφ (r) ω̄ (r)

3πr2
−

e−λ(r)a′
φ
(r)
�

ω̄ (r)
�

−2+ rν′ (r)
�

− rω̄′ (r)
�

6πr
. (3.137b)
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3.5.2 Exterior solution for the electric potential

We consider the stellar exterior as matter free. Currents, densities and pressures vanish outside the
NS. In the stellar exterior the Maxwell eq. (3.129) simplifies to

−(x−1)xa>t l
′′(x)−2(x−1)a>t l

′(x)+l(l+1)a>t l(x) = Jµ
δl0 +δl2

�

2+ 3x − 6x2 − 6(x − 1)x2 log
�

x−1
x

�

�

4M4(x − 1)x3
,

(3.138)
where we used the ESS, the exterior solution for the frame-dragging frequency and the coordinate
transformation x ≡ r/(2M) > 1. For l = 0 and l = 2 this second-order ODE is inhomogeneous even
in the stellar exterior.

The inhomogeneous RHS is a aφω cross term between the magnetic field and the frame-dragging
frequency. The homogeneous LHS has again the form of a hypergeometric equation but in this case
with a = −l, b = l + 1, c = 2. The homogeneous part of eq. (3.138) has two linearly independent
solutions

a>t l,H1(x) = x l
2F1

�

−1− l,−l,−2l; x−1
�

, (3.139)

a>t l,H2(x) = x−l−1
2F1

�

l, l + 1, 2+ 2l; x−1
�

, (3.140)

with x →∞ asymptotics

a>t l,H1(x) −−−→x→∞
x l
�

1+O
�

x−1
�

�

, (3.141)

a>t l,H2(x) −−−→x→∞
x−lO

�

x−1
�

. (3.142)

For l = 0 and l = 2 it is necessary to construct a particular solution of the inhomogeneous system.
Using the two independent homogeneous solutions we construct a particular solution by the variation
of parameters method, see e.g. [76]. For shorter expressions and the involved integrals it is convenient
to work with a compactified, dimensionless radial coordinate y = 1− 2M/r with y ∈ [1− 2M/R, 1)
and 1− 2M/R≥ 1/9 because of the SB-limit (3.69).

The solutions for a>t l have two free parameters each which we fix using the following boundary
conditions. At spatial infinity we require the potentials to vanish which fixes one constant and at the
stellar surface we impose electrostatic boundary conditions [75, 78] which fixes the other one. At
the stellar surface the tangential components of the electric field in the surface need to be continuous
while the radial/normal component can be discontinuous. When considering the interior solutions
related to a purely dipolar magnetic field, electrostatic boundary conditions require

a>t l = a>t0δl0 + a>t2δl2, (3.143)

a<t2 = a>t2. (3.144)

Electrostatic boundary conditions require that the exterior field related to the induced interior field
has only non-vanishing l = 0 and l = 2 components. The quadrupolar component of the electric
potential has to be continuous to ensure continuity of the tangential field components. The monopole
components at0 and its derivative can be discontinuous across the surface. We discuss this disconti-
nuity and the physics behind it in the second part of Sec. 3.5.3. The exterior monopole component is
given by

a>t0(y) =
Q(y − 1)

2M
−

Jµ
8M4

�

−5+ 4y + y2 − 2(1+ 2y) log[y]
�

, (3.145)
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which has the asymptotics

a>t0(r) −−−→r→∞
−

Q
r
+

Jµ
3r4
+O

�

r−5
�

. (3.146)

Q is the total electric charge of the star and it is not a constant of O
�

B1Ω1
�

. The global electrical charge
Q of the NS is a free input parameter. For the most part we will consider configurations with Q = 0
but we will discuss some theoretical aspects of globally charges NS in Sec. 3.8 and corresponding
numerical results in Sec. 5.6.

The exterior quadrupolar potential is given by

a>t2(y) = −5QE
−1− 9y + 9y2 + y3 − 6y(1+ y) log[y]

2M3(y − 1)2

− Jµ
6+ 41y − 39y2 − 9y3 + y4 +

�

1+ 27y + 33y2 − y3
�

log[y]

4M4(y − 1)2
,

(3.147)

which has the asymptotics

a>t2(r) −−−→r→∞
2
QE

r3
+O

�

r−4
�

. (3.148)

QE can be identified as the asymptotic, electric quadrupole moment and its value is fixed by the
matching conditions on the stellar surface. The non-vanishing tangential component Eθ̂ is governed
by at2 and requiring its continuity E>

θ̂
(R) = E<

θ̂
(R) fixes QE as

QE = µΩR2
(−1+ Y )2

�

3− 4Y + Y 2 + 2 log(Y )
�

20
�

−1− 9Y + 9Y 2 + Y 3 − 6Y (1+ Y ) log(Y )
�

+µΩI

�

6+ 41Y − 39Y 2 − 9Y 3 + Y 4 +
�

1+ 27Y + 33Y 2 − Y 3
�

log(Y )
�

5R(−1+ Y )
�

−1− 9Y + 9Y 2 + Y 3 − 6Y (1+ Y ) log(Y )
� ,

(3.149)

where Y ≡ 1− 2M/R and I is the moment of inertia of the rotating star. In the non-relativistic limit
this rather lengthy expression simplifies drastically to

QE =
1
3
µΩR2 +O

�

M1
�

, (3.150)

which resembles the textbook expression [77] for the electric quadrupole moment induced by the
magnetic dipole moment µ of a with angular velocity Ω rotating star with radius R.

When considering configurations with global charge Q = 0, the electric field in the interior and
exterior is purely O

�

B1Ω1
�

.

3.5.3 The Electric field and induced charges

The tetrad components of the electric field measured by On , E(n)α = Fαµnµ, are given by

Er̂ (r,θ ) = e−(ν(r)+λ(r))/2
�

∂rAt (r,θ ) +ω (r)∂rAφ (r,θ )
�

, (3.151a)

Eθ̂ (r,θ ) = e−ν(r)/2
�

∂θAt (r,θ ) +ω (r)∂θAφ (r,θ )
�

. (3.151b)
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Using eqs. (3.135) the electric field in the stellar interior takes the explicit form

E<r̂ (r,θ ) = e−(ν(r)+λ(r))/2ω̄ (r) a′φ (r) sin
2θ , (3.152a)

E<
θ̂
(r,θ ) =

2e−ν(r)/2ω̄ (r) aφ (r)

r
sinθ cosθ , (3.152b)

which can be rewritten in terms of the magnetic tetrad components (3.118) as

E<r̂ (r,θ ) = e−ν(r)/2ω̄ (r) rB<
θ̂
(r,θ ) sinθ , (3.153a)

E<
θ̂
(r,θ ) = −e−ν(r)/2ω̄ (r) rB<r̂ (r,θ ) sinθ . (3.153b)

Eq. (3.153) highlights the fact that the interior electric field is induced in O
�

Ω1
�

×O
�

B1
�

and that it
is directly coupled to the magnetic field components. This result could be obtained without the help
of the four-potential by using eq. (2.61). The angular structure in the interior is quite interesting. The
polar-component is a pure l = 2 quadrupole while the radial component has a pure sin2θ -angular
dependence. The mono and quadrupole components a<t0 and a<t2 interfere destructively as the θ -
independent part of the l = 2 term cancel with the l = 0 term. We will visualize the geometry of the
electro-magnetic fields with streamline plots in Sec. 5.3.1.

In the stellar exterior the electric field is given analytically by

E>r̂ (r,θ ) =
Q
r2
+ dr (r)P2(cosθ ), (3.154a)

E>
θ̂
(r,θ ) = dθ (r) sinθ cosθ . (3.154b)

where we used eqs. (3.145) and (3.147) and introduced the functions dr (r) and dθ (r). The exterior
electric field is a superposition of a pure O

�

B1Ω1
�

quadrupole field and a monopole field governed by
the global charge of the configuration only. dr (r) and dθ (r) are lengthy functions of r and given by

dr (r) = −5QE

2M
�

M2 + 3M r − 6r2
�

+ 3(3M − 2r)r2 log
�

1− 2M
r

�

2M5r2

+ Jµ
2M

�

6M3 + 5M2r + 15M r2 − 30r3
�

+
�

6M3r + 45M r3 − 30r4
�

log
�

1− 2M
r

�

4M6r3
,

(3.155a)

dθ (r) = −15QE

2M
�

M2 − 6M r + 3r2
�

+ 3r
�

2M2 − 3M r + r2
�

log
�

1− 2M
r

�

2M5r3/2
p
−2M + r

− 3Jµ
2M

�

2M4 − 5M2r2 + 30M r3 − 15r4
�

− 15r3
�

2M2 − 3M r + r2
�

log
�

1− 2M
r

�

4M6r7/2
p
−2M + r

.

(3.155b)

Asymptotically the electric field takes the simple form

E>r̂ (r,θ ) −−−→r→∞

Q
r2
−

6QE

r4
P2(cosθ ) +O

�

1
r

�5

, (3.156a)

E>
θ̂
(r,θ ) −−−→

r→∞
−

6QE

r4
sinθ cosθ +O

�

1
r

�5

. (3.156b)

As expected we find the characteristic r−l−2 LO terms for the multipole components.
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For the non-relativistic limit we can expand the electric field in M to get

E>r̂ (r,θ ) =
Q
r2
−

2µΩR2

r4

�

1−
�

1
2
−

8R
3r

�

M
R
+
�

1−
2R
r

�

I
R3
+O

�

M2
�

�

P2(cosθ ), (3.157a)

E>
θ̂
(r,θ ) = −

2µΩR2

r4

�

1−
�

1
2
−

3R
r

�

M
R
+
�

1−
3R
r

�

I
R3
+O

�

M2
�

�

sinθ cosθ , (3.157b)

where we considered the moment of inertia as O
�

M1
�

in LO. In the Newtonian limit these expressions
reduce further to

E>r̂,cl. (r,θ ) =
Q
r2
−

2µΩR2

r4
P2(cosθ ), (3.158a)

E>
θ̂ ,cl.
(r,θ ) = −

2µΩR2

r4
sinθ cosθ , (3.158b)

where we can identify the classical expression for QE,cl. = µΩR2/3. The non-relativistic, flat space,
electric field (3.158) resembles the textbook expression of the induced field of a rotating, aligned
dipole [77].

The radial component of the electric field is discontinuous at the surface. This discontinuity is
related to a surface charge density. Associated with the induced charge density is an induced interior
charge. An expression relating global-, interior- and surface charge can be obtained by integrating
the covariant law of current conservation (2.18). Integrating over a spatial slice of constant time and
employing the Gauss-Ostrogradsky theorem leads to

Q =Q< +QS, (3.159)

with Q as the global electric charge, Q< as the induced interior charge

Q< = 2π

∫ R

0

∫ θ

0

J t (r,θ )
p

−gdθdr = −4π

∫ R

0

e
λ(r)−ν(r)

2 r2

�

jt0 (r)−
2 jφ (r)ω (r)

3

�

dr (3.160)

and QS as the surface charge

QS = 2πR2

∫ π

0

σS(θ ) sinθdθ , (3.161)

where the surface charge density σS(θ ) is given by

σS(θ ) =
1

4π

�

E>r̂ (R,θ )− E<r̂ (R,θ )
�

. (3.162)

Eq. (3.159) can be used for checking the self-consistency of our expressions. The integral for the
surface charge can be performed analytically, since all angular dependencies are analytical

QS =Q−
2
3

e−(ν(R)+λ(R))/2R2ω̄(R)a′φ(R) =Q−
2
3

R2ω̄(R)a′φ(R) =Q−
2
3
µΩ+O

�

M1
�

. (3.163)

The total surface charge is made up of the global charge Q and an induced O
�

B1Ω1
�

surface charge.
The induced surface charge in the non-relativistic limit is simply given by −2/3µΩ. The quadrupolar
parts of the exterior field do not contribute to QS, since P2(cosθ ) sinθ integrates to zero over the
interval [0,π].
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The integral (3.160) for Q< can be rewritten as

Q< = 2π

∫ R

0

2
3

e−(λ+ν)/2r2ω̄a′′φ −
1
3

e−(λ+ν)/2ra′φ
�

ω̄
�

−4+ rλ′ + rν′
�

− 2rω̄′
�

dr, (3.164)

where we used the explicit expression for jt0 from eq. (3.137a) as well as the Maxwell eq. (3.103) to
eliminate jφ. Integrating the first summand under the integral by parts leads to a primitive function
and an integral which cancels with the second summand what remains is

Q< =
�

2
3

e−(ν(r)+λ(r))/2r2ω̄(r)a′φ(r)
�R

0
=

2
3

R2ω̄(R)a′φ(R). (3.165)

The induced interior charge is equal to minus one times the induced surface charge. Induced charges
do not contribute to the global electric charge as they should. Creating global net charge with induc-
tion would violate charge conservation.

The only way to describe charged configurations is to prescribe a global charge Q, which takes the
form of a surface charge when we require purely dipolar magnetic fields.

3.5.4 Tetrad components of the four-current and four-potential

With the results of this section and the previous one we can give explicit expressions for the four-
current and four-potential tetrad components. For purely dipolar magnetic fields and the correspond-
ing induced electric fields the non-vanishing tetrad components of J and A read

J t̂ (r,θ ) = e−ν(r)/2
�

jt0 (r) + jt2 (r)P2(cosθ )
�

, (3.166a)

Jφ̂ (r,θ ) = −
jφ (r)

r
sinθ , (3.166b)

A t̂ (r,θ ) = e−ν(r)/2
�

at0 (r) + at2 (r)P2(cosθ )
�

, (3.167a)

Aφ̂ (r,θ ) = −
aφ (r)

r
sinθ . (3.167b)

3.6 O
�

B2Ω0
�

: Magnetic deformations

In this section we discuss the O
�

B2Ω0
�

deformations caused by a magnetic dipole field discussed in
Sec. 3.4.

3.6.1 Perturbations of the source terms

The Euler equations eqs. (A.22)-(A.21) can be rearranged to yield the following identities for the
log-enthalpy deformations

∇µE θµ = 0⇔ h2 = −n2 −
2aφ jφ

3r2(P +ρ)
, (3.168)

�

∇µE rµ
�

l=0
= 0⇔ h′0 = −n′0 +

2 jφa′
φ

3r2(P +ρ)
, (3.169)

�

∇µE rµ
�

l=2
= 0⇔ h′2 = −n′2 −

2 jφa′
φ

3r2(P +ρ)
. (3.170)
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Differentiating eq. (3.168) and comparing it to eq. (3.170) results in a simple ODE for the current
density jφ:

d
dr





2 jφ (r)

3r2
�

P (r) +ρ (r)
�



= 0, (3.171)

which can be integrated trivially to

jφ (r) = c jφ r2
�

P (r) +ρ (r)
�

. (3.172)

We used this result earlier to derive the GS eq. (3.100) for a pure (l = 1) field, which guaranties that
our magnetic fields are consistent with the equation of motion. Eq. (3.172) is not an O

�

B2
�

identity
it is an O

�

B1
�

relation restricting the shape of the current density/current function. This restriction is
a direct consequence of only considering l = 1 magnetic fields. A. Colaiuda et al. [24] derived equiv-
alent expressions for higher l and even for non-vanishing meridional currents and coupling multipole
components. We just presented an explicit derivation of the pure l = 1 identity because it is the only
one we will use throughout this work.

The raw Euler equation ∇µE rµ = 0 including O
�

B0Ω0
�

and O
�

B2Ω0
�

terms reads

0= h′ (r) + h′0 (r) + h′2 (r)P2(cosθ ) + ν′ (r)/2+ n′0 (r) + n′2 (r)P2(cosθ )−
jφ (r) a′φ (r)

r2
�

P (r) +ρ (r)
� sin2θ .

(3.173)
Using eq. (3.172) we can integrate the differential Euler equation to a first integral of motion

h (r)+h0 (r)+h2 (r)P2(cosθ )+ν (r)/2+n0 (r)+n2 (r)P2(cosθ )−c jφaφ(r) sin
2θ =

cνh

2
+cn0h0, (3.174)

which is the O
�

B2Ω0
�

expansion of the equation of motion of the BGSM formalism (2.51). Where in
our case −c jφaφ(r) sin

2θ can be identified as the Lorentz force term

M (r,θ ) = −c jφaφ(r) sin
2θ =

∫ Aφ(r,θ )=−aφ(r) sin
2θ

0

c jφd x . (3.175)

Our restriction to purely dipolar magnetic fields is realized by a constant current function (2.50):
f (x) = const. in the BGSM/BBGN. The constant cνh is O

�

B0Ω0
�

and we introduced it in eq. (3.50)
and the constant cn0h0 is O

�

B2Ω0
�

.

Decomposing the angular parts of eq. (3.174) we can give algebraic relations between the gt t metric
potential and the source term deformations

h0 = −n0 +
2
3

c jφaφ + cn0h0, (3.176)

h2 = −n2 −
2
3

c jφaφ. (3.177)
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3.6.2 Monopole metric perturbations

Solving the field eq. (A.14) for m′0 yields

�

E t
t

�

l=0 = 0⇔ m′0 = 4πr2 dρ
dh

h0 +
1
3

e−λ
�

a′φ
�2
+

2a2
φ

3r2
. (3.178)

Similarly solving the field eq. (A.16) for n′0 leads to

�

E r
r

�

l=0 = 0⇔ n′0 =
eλ
�

1+ rν′
�

r2
m0 + 4eλπr(P +ρ)h0 +

�

a′
φ

�2

3r
−

2eλa2
φ

3r3
. (3.179)

Making use of eqs. (3.179) and (3.169) one can derive an ODE for h0:

h′0 =
2
3

c jφa′φ − n′0 = −
eλ
�

1+ rν′
�

r2
m0 − 4eλπr(P +ρ)h0 −

�

a′
φ

�2

3r
+

2eλa2
φ

3r3
+

2
3

c jφa′φ. (3.180)

Since the ODE for m0 (3.178) contains h0 and not n0 it is convenient to implement the coupled sys-
tem of m′0 and h′0. The n0 metric potential then follows from the simple algebraic expression (3.176)
between n0 and h0.

To implement the ODEs (3.178) and (3.180) for m0 and h0 the r → 0 asymptotic of both functions
is needed for the first explicit step of numerical integration. Using the TOV asymptotic (3.56) and the
asymptotic of aφ from eq. (3.106), we derive

h0 (r)
r→0
→ ch0 −

1
6

�

B2
0(1+ 2c jφ0) + 4π

�

3Pc +ρc +
dρ
dh

�

�

�

r=0

�

ch0

�

r2 +O
�

r3
�

, (3.181a)

m0 (r)
r→0
→

1
6

�

B2
0 + 8π

dρ
dh

�

�

�

r=0
ch0

�

r3 +O
�

r4
�

. (3.181b)

The constant ch0 corresponds to the scale of the homogeneous system and to the central value of h0,
since h0(r = 0) = ch0. ch0 is the O

�

B2
�

shift of the central log-enthalpy. In the scope of this work
we will only consider configurations with h0(r = 0) = 0, which in turn implies that the central log-
enthalphy is entirely provided by the background star. This scheme leads to magnetically deformed
stars with non-constant baryonic mass (see eq. (3.251)) for different B0. This choice is well suited for
comparing NS sequences with variable magnetic field B0 but constant central log-enthlaphy hc.

Another scheme [23] for fixing ch0 is to enforce constant baryonic mass when changing the central
magnetic field strength B0. This requires negative ch0 to compensate for the magnetic deformations.
Enforcing constant baryonic mass/ total baryon number on a variable Bc sequence this way works well
for small magnetic deformations and equivalently small absolute values of ch0. Once the deformations
become larger describing the shift of central log-enthalphy in order O

�

B2
�

becomes inaccurate. Re-
alizing constant baryonic mass sequences for variable Bc by adjusting the central log-enthalphy hc of
the background star works better in this case.

Outside the star (r > R) the ODEs for m0 and n0 can be solved analytically. The deformations of
the log-enthalpy grid have no meaning in the stellar exterior, since the enthalpy field vanishes outside
the star. The first term of Eq. (3.178) vanishes since P and ρ vanish for r > R and the remaining ODE
can be integrated analytically

m>
0 (r) = δM +

3
�

r2 −M2
�

µ2

8M4r
−

3
�

M2 +M r − r2
�

µ2

8M5
log

�

1−
2M

r

�

+
3r2(r − 2M)µ2

32M6
log2

�

1−
2M

r

�

,

(3.182)
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by using the ESS (3.37) and the exterior solution a>
φ
(r) of eq. (3.114). The second term of Eq. (3.180)

vanishes again because matter sources vanish outside the star and with m>
0 (r), n>0 (r) can be obtained

by analytical integration

n>0 (r) =
δM

2M − r
−

3µ2
�

M2 − 6M r + r2
�

8M4r(2M − r)
−

3µ2
�

3M2 − 4M r + r2
�

8M5(2M − r)
log

�

1−
2M

r

�

+
3µ2r2

32M6
log2

�

1−
2M

r

�

.

(3.183)

The integration constant δM and cn0h0 from eq. (3.176) can be determined by matching interior
and exterior solutions. The matching condition for m0 reads

δM = m<
0 (R)−m>

0 (R)|δM=0 + 4πR3 2M − R
M − R

ρ(R)h<0 (R), (3.184)

where m<
0 (R) and h<0 (R) are the surface values of the interior solutions. The discontinuity of m0

scales with the residual surface density and will in the scope of this work only be significant when
using IRF EoS or TVII EoS with µ < 1. This subtlety is overlooked by most authors when using the HT
formalism to describe rotational [25, 79] or magnetic [24] deformations. The O

�

B2
�

constant δM has
a fundamental meaning: it is the shift/increase in gravitational mass due to magnetic deformations,
as we will discuss and show in Sec. 3.9.

The constant cn0h0 relating n0 and h0 is fixed by imposing n>0 (R)
!
= n<0 (R).

3.6.3 Quadrupole metric perturbations

Solving the field eq. (A.19) for m2 yields a simple analytical relation between m2 and n2:

�

Eφφ −E θθ
�

: m2 = −e−λrn2 +
2
3

e−2λr
�

a′φ
�2

. (3.185)

By equating the field eqs. (A.18) and (A.17) with this expression for m2 one can derive a coupled
ODE system for v2 and n2:

v ′2 = −ν
′n2 +

4aφa′
φ

3r2
+

e−λ
�

a′
φ

�2 �
2+ rν′

�

3r
, (3.186)

n′2 =

�

2+ 2eλ
�

−1+ 4πr2(P +ρ)
�

− r2
�

ν′
�2
�

r2ν′
n2 −

4eλ

r2ν′
v2

+
�

a′φ
�2
�

2
3r2ν′

+
1
3

e−λν′
�

+
4aφa′

φ

�

2+ rν′
�

3r3ν′
+

8eλa2
φ

3r4ν′
+

16eλπaφ jφ
3r2ν′

.

(3.187)

The rather complicated structure of especially the second ODE (3.187) makes this system difficult to
handle compared to the ones encountered previously. To work with this system it is convenient to
introduce

y2 ≡ v2 −
2

3r2
a2
φ +

2e−λ

3r
a′φaφ +

e−λ

6
(a′φ)

2 (3.188)
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and to use y2 instead of v2 for the numerical integration in the stellar interior. The ODE system

y ′2 = −n2ν
′ +

1
2

e−λ
�

a′φ
�2
ν′ −

e−λaφa′
φ

�

−2+ 2eλ − rλ′ − rν′
�

3r2
+

8πaφ jφ
3r

+
4
3
π jφa′φ, (3.189)

n′2 = −
n2

�

−2+ 2eλ − rλ′ − rν′ + r2
�

ν′
�2
�

r2ν′
−

4eλ y2

r2ν′
+

4aφa′
φ

3r2
+

1
3

e−λ
�

a′φ
�2
ν′ +

16eλπaφ jφ
3r2ν′

,

(3.190)

has regular homogeneous and particular expansions around r = 0

n2,H (r)
r→0
→ cn2H0r2 +O

�

r3
�

, (3.191a)

y2,H (r)
r→0
→ −

2
3

cn2H0π(3Pc +ρc)r
4 +O

�

r5
�

, (3.191b)

n2,P (r)
r→0
→ cn2P0r2 +O

�

r3
�

, (3.191c)

y2,P (r)
r→0
→ −

2
9
π(3Pc +ρc)(3cn2P0 + 3c jφ0 − 2)r4 +O

�

r5
�

. (3.191d)

Expanding the particular system
�

dn2/dr, dv2/dr
	

around r = 0 is not possible, which is why we
integrate

�

dn2/dr, d y2/dr
	

in the stellar interior numerically.

In the stellar exterior we can use the ESS and the exterior solution a>
φ

to construct an analytical
ODE for n2. In the stellar exterior the second term of the RHS of eq. (3.190) becomes 2/M y2(r)
which allows us to differentiate the entire eq. (3.190) once in r and then plug in eq. (3.189) to derive
a decoupled second-order ODE for n>2

(1−p2)n>2
′′(p)−2pn>2

′(p)+
2(3p2 − 1)

p2 − 1
n>2 (p) =

3µ2
�

2
�

−1+ p+ p2
�

+ (−1+ p)(1+ p)2 log
�

−1+p
1+p

�
�

M4
�

−1+ p2
�2 ,

(3.192)
where we used the dimensionless radial variable p ≡ r/M − 1. Eq. (3.192) is an inhomogeneous
second-order ODE, with a homogeneous LHS in form of a associated Legendre differential equation
[76] with l = 2 and m = 2. The homogeneous system has two linearly independent solutions: the
associated Legendre polynomials P2

2 (p) and Q2
2(p). Using variation of parameters with those two

solutions, we construct a particular solution in terms of the compactified exterior radial variable
y ≡ 1− 2M/r:

n>2 (y) = −
5
�

−1+ 8y − 8y3 + y4 + 12y2 log(y)
�

16M3(−1+ y)2 y
QM

+
3µ2

�

7− 40y − 4y2 + 40y3 − 3y4 + 2
�

1− 24y2 − 8y3 + y4
�

log(y) + 8y2 log2(y)
�

32M4(−1+ y)2 y
,

(3.193)

where we already determined one integration constant by requiring asymptotic flatness. The re-
maining O

�

B2
�

constant QM is the mass quadrupole moment of the deformed NS, as we will see in
eq. (3.271).
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The exterior solutions for y2 and v2 can be constructed by integrating eq. (3.189) or respectively
eq. (3.186) after plugging in the exterior solution for n2, since both ODEs have trivial homogeneous
solutions, meaning no explicit v2 or y2 dependent terms. The exterior solutions are

y>2 (y) = −
5
�

−1− 9y + 9y2 + y3 − 6y(1+ y) log(y)
�

16M3(y − 1)y
QM −

3
�

6+ 45y + 8y2 + y3
�

µ2

32M4 y

+
3
�

1+ 12y + 14y2 + 3y3
�

µ2 log(y)

16M4(y − 1)y
−

3(−1+ 3y)µ2 log2(y)
16M4(y − 1)

,

(3.194)

v>2 (y) = −
5
�

−1− 9y + 9y2 + y3 − 6y(1+ y) log(y)
�

16M3(y − 1)y
QM −

3
�

5+ 28y + 9y2 + 2y3
�

µ2

32M4 y

3
�

1+ 2y + 6y2 + 5y3
�

µ2 log(y)

16M4(y − 1)y
−

3
�

−1− 10y + 3y2
�

µ2 log2(y)

16M4(y − 1)2
,

(3.195)

where we used asymptotic flatness to determine the integration constants of the first-order systems.
This makes QM the only O

�

B2
�

constant governing the l = 2 exterior metric potentials.

QM and cn2H0 can be determined by imposing the junction conditions n<2 (R) − n>2 (R) = 0 and
v<2 (R) − v>2 (R) = 0, while cn2P0 can be chosen arbitrarily since a general solution is given by an
arbitrary particular solution plus a homogeneous one.

3.7 O
�

B2Ω1
�

: Electro-magnetic deformations

The O
�

B2Ω1
�

metric potentials W1 and W3 are higher-order corrections to the frame-dragging fre-
quency. The field eqs. (A.23) and (A.24) governing them are inhomogeneous second-order ODEs
with rather complicated source terms. The source terms include O

�

B2
�

deformations coupled to the
frame-dragging frequency, namely S0 and S2, as well as electro-magnetic sources S1 and S3 which are
either O (B)×O (E) or O (Ω)×O

�

B2
�

.

For implementation and numerical integration in the stellar interior we recast the second-order
ODEs into coupled first-order systems by using the substitutions

Ui ≡ r4e−(ν+λ)/2W ′
i , (3.196)

Vi ≡ e−(ν+λ)/2Wi. (3.197)

The system for W1 form eq. (A.23) becomes

U ′1 = 2r3
�

ν′ +λ′
�

V1 − S0 − S1 + S2, (3.198a)

V ′1 =
U1

r4
−

1
2

�

ν′ +λ′
�

V1, (3.198b)

with the source terms of eqs. (A.25), (A.27) and (A.26). Expanding homogeneous and particular
systems around the coordinate singularity r = 0 reveals

U1,H (r)
r→0
→ cU1H0r5 +O

�

r6
�

, (3.199a)

V1,H (r)
r→0
→

�

5
16π(Pc +ρc)

−
1
8

r2

�

cU1H0 +O
�

r3
�

, (3.199b)

U1,P (r)
r→0
→ cU1P0r5 +O

�

r6
�

, (3.199c)

V1,P (r)
r→0
→ −

2
9
π(3Pc +ρc)(3cn2P0 + 3c jφ0 − 2)r4 +O

�

r5
�

. (3.199d)
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In the stellar interior electro-magnetic source terms S1 can be simplified using the induction
eq. (3.135) to

S<1 =
16
5

e−
λ
2−

ν
2 ω̄

�

eλa2
φ + r2(a′φ)

2
�

. (3.200)

In the stellar exterior it is possible to construct an analytical solution for W1. The LHS of eq. (A.24)
simplifies drastically in the stellar exterior to

W>
1
′′ (r) +

4W>
1
′ (r)

r
=

1
r4

�

S2 − S1 − S0

�

. (3.201)

The homogeneous system of eq. (3.201) has to linearly independent solutions W>
1,H1 = cW1H1r−3

and W>
1,H2 = cW1H2 and using them and the variation of parameters method we can construct an

asymptotically flat exterior solution

W>
1 (r) = −

(y − 1)3

4M3
δJ −

3QMJ(y − 1)
�

3− 3y2 +
�

1+ 4y + y2
�

log(y)
�

8M6
−

3QEµy(7+ 5y) log(y)
2M6(y − 1)

+
QEµ

�

−(y − 1)2
�

11− 69y − 15y2 + y3
�

+ 36y(1+ y) log2(y)
�

8M6(y − 1)2

+
Jµ2

�

10133− 24240y − 3900y2 + 3400y3 + 135y4 + 72y5
�

3200M7

−
3Jµ2

�

54− 283y − 302y2 + 32y3 + 13y4 + 6y5
�

log(y)

160M7(y − 1)

+
9Jµ2

�

1− 26y − 13y2 + y3 − 4y4 + y5
�

log2(y)

80M7(y − 1)2
.

(3.202)

The reason for the complicated and lengthy particular solution is the complexity of the expressions
for the electro-magnetic field and metric potentials in the stellar exterior. Asymptotically W>

1 decays
as

W>
1 (r)

r→∞
→

2δJ
r3
−

4(JQM +µQE)
5r6

+O
�

1
r

�7

, (3.203)

where we can identify δJ as LO term and a r−6 NLO term proportional to the sum of the quadrupole
moments multiplied by he angular momentum and dipole moment respectively. The constant δJ can
be identified, see eq. (3.248), as the O

�

B2Ω1
�

correction to the angular momentum. In contrast to
the situation in the classical O

�

Ω3
�

HT formalism δJ is not just a correction associated with a higher-
order correction to the moment of inertia. Our δJ has also purely electro-magnetic contributions but
since we consider only O (Ω)×O (B) electric fields in this section we can define an effective moment
of inertia correction δI of pure O

�

B2
�

as

δI =
δJ
Ω

. (3.204)

For electric fields which can not be considered as O (Ω) × O (B) the angular momentum can not be
related to such a correction of the moment of inertia. Will discuss this highly interesting situation in
Sec. 3.8 for configurations with non-vanishing net charge.
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The second-order ODE for W3 (A.24) can be reformulated into two coupled first-order ODEs

U ′3 = 2r2
�

5eλ + r
�

ν′ +λ′
�

�

− S2 − S3, (3.205)

V ′3 =
U3

r4
−

1
2

�

ν′ +λ′
�

V3, (3.206)

using the ansatz of eq. (3.198). Around r = 0 this system has a rather simple expansion

U1,H (r)
r→0
→ cU3H0r5 +O

�

r6
�

, (3.207a)

V1,H (r)
r→0
→

cU3H0

2
r2 +O

�

r3
�

, (3.207b)

U1,P (r)
r→0
→ cU3P0r5 +O

�

r6
�

, (3.207c)

V1,P (r)
r→0
→

cU3P0

2
r2 +O

�

r5
�

. (3.207d)

In the stellar interior electro-magnetic source terms S3 can be simplified using the induction
eq. (3.135) to

S<3 =
8

15
e−

λ
2−

ν
2 ω̄

�

4eλa2
φ − r2(a′φ)

2
�

. (3.208)

Even though the system for W3 has one less source term compared to the W1 system constructing
an exterior solution for W3 is more difficult. The homogeneous system has two linearly independent
solutions which are on their own more complicated than the simple expressions for W>

1,H and the par-
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ticular solution resulting from variation of parameters is rather lengthy and involves non-elementary
functions:

W>
3 (r) = −

7
�

−6− 125y + 80y2 + 60y3 − 10y4 + y5 − 60y(1+ 2y) log(y)
�

64M5(y − 1)2
W∞

3

+
QEµ

�

3+ 481y + 129y2 + 18y3 − y4
�

24M6(y − 1)
−
QEµy

�

32+ 58y + 15y2
�

log(y)

4M6(y − 1)2

+
3QEµy(−1+ 4y) log2(y)

4M6(y − 1)2
−
QMJ

�

−6+ 3667y + 3315y2 − 837y3 + 161y4
�
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+
JQM

�
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�

log(y)

16M6(y − 1)2
−

15JQM y(1+ 2y) log2(y)
8M6(y − 1)2

+
Jµ2

�

59460+ 1207739y + 847797y2 − 125163y3 + 17617y4 − 2358y5 − 432y6
�

19200M7(y − 1)

−
Jµ2

�

6+ 131y + 51y2 − 9y3 + y4
�

π2

40M7(y − 1)
+

3Jµ2 y(1+ 2y) log(y)π2

2M7(y − 1)2

+
J
�

−234− 7186y − 20450y2 − 6480y3 + 1062y4 − 159y5 + 36y6
�

µ2 log(y)

320M7(y − 1)2

+
3Jµ2

�

6+ 131y + 51y2 − 9y3 + y4
�

log(1− y) log(y)

20M7(y − 1)

−
9Jµ2

�

2+ 33y − 6y2 − 18y3 + 2y4
�

µ2 log2(y)

160M7(y − 1)2
−

3J y(1+ 2y) log3(y)
8M7(y − 1)2

3Jµ2
�

−6− 125y + 80y2 + 60y3 − 10y4 + y5 + 60y(1+ 2y) log(y)
�

Li2(y)

20M7(y − 1)2

−
18Jµ2 y(1+ 2y)Li3(y)

M7(y − 1)2
+

18Jµ2 y(1+ 2y)ζ(3)
M7(y − 1)2

,

(3.209)

with an integration constant W∞
3 , the dilogarithm Li2(y) and the trilogarithm Li3(y). We were not

able to construct a more compact solution in terms of elementary functions but the solution we found
is asymptotically flat by construction and solves the ODE for W3 in the stellar exterior. The asymptotic
of eq. (3.209) is again rather simple

W>
3 (r)

r→∞
→

W∞
3

r5
+

18QMJ + 25MW∞
3 − 2QEµ

10r6
+O

�

1
r

�7

. (3.210)

We have four matching conditions (3.23) in O
�

B2Ω1
�

, which we can use to determine δJ , cU1H0,
W∞

3 and cU3H0. For the particular solutions in the stellar interior we chose w.l.o.g. cU1P0 = B2
0Ω

1 and
cU3P0 = B2

0Ω
1.

3.8 Effects of non-zero global net charge on non-rotating equilibrium configurations

While constructing the exterior solution for the monopole electric potential at0 in Sec. 3.5.2 we first
encountered the possibility of global net charge as a free input parameter. In this section we will
discuss some effects of globally charged configurations. We will introduce global net charge in form
of a surface charge density, see eq. (3.163). We will only consider non-rotating configurations with a
charge free interior.
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Realistic astrophysical objects do not posses significant global net charge, because the long range
repulsion of the constituents of such a charge would destabilize the astrophysical object. When de-
scribing NS with atmospheres larger local charge differences between interior and atmosphere are
possible. When compensated by a pulsar magnetosphere net interior charges of realistic NS can
be of the order of 1012 C [80] but we are not considering NS with atmospheres. We will only dis-
cuss some interesting theoretical aspects of charged configurations within our perturbative approach.
This section and the corresponding numerical results of Sec. 5.6 are meant as a qualitative/order of
magnitude discussion of effects of global net charge.

Looking at units one can expect that even very large charges have only a minor effect on non-
electromagnetic characteristics. An electric field of 1.2× 1021 V/m has a corresponding energy density

E2 = (1.2× 1021 V/m)2 ∼ 1MeV fm−3. (3.211)

Even in charged or rotating magnetars 1021 V/m are gigantic values for electric fields. A global charge
of around 1019 C would be necessary to realize 1021 V/m fields on the surface of a static 15km NS. In
terms of contributions to the energy-momentum tensor even very high charges and electric fields have
only minor effects. Such fields and charges can not be realized in a realistic equilibrium configuration/
astrophysical object.

3.8.1 O
�

B1Q1
�

: Electromagnetically-induced frame-dragging

When considering non-rotating, configurations with global net charge Q and a non-vanishing mag-
netic field a very interesting GR effect occurs. The spacetime of such configurations is not static and
possess a non-vanishing vorticity: the scalar product of the two killing vector fields χ and ξ is non-
vanishing. The reason for that is a non-vanishing electro-magnetic Poynting vector around the source.
In the case of a monopole electric and dipolar magnetic field the non-vanishing tetrad component of
this Poynting vector in the stellar exterior is

Sφ̂ = −
Qa′

φ
(r)

4πeλ(r)r3
Θ(r − R) sinθ , (3.212)

which is part of the energy-momentum tensor

T (EM),>
tφ = Sφ̂ r sinθ . (3.213)

This source term implies the existence of a corresponding curvature term Gtφ/(8π) according to
Einstein’s field equations. It becomes necessary to introduce a O

�

B1Q1
�

frame-dragging frequency
ωBQ. This FD frequency is purely of the order O (B)×O (Q) and is therefore known under the name
electromagnetically-induced frame-dragging.

The line element of the O
�

B0Q0
�

background star ds2 from eq. (3.2) needs to be extended using

ds2
(BQ) = g(BQ)

µν d xµd xν ≡ −2r2 sin2θωBQ (r) d tdφ. (3.214)

The O
�

Q1B1
�

field eq. is very similar to the FD eq. (3.85):

ω′′BQ −
1
2r

�

r(ν′ +λ′)− 8
�

ω′BQ +
2
r
(ν′ +λ′)ωBQ = −

Qa′
φ

r4
Θ(r − R). (3.215)

In the stellar interior both are identical, since the O
�

Q1B1
�

source term is only non-vanishing in the
stellar exterior. The homogeneous interior system is regular around the coordinate singularity r = 0:

ωBQ (r) −−→r→0
cBQ

�

1+
8
5
π(Pc +ρc)r

2
�

+O
�

r4
�

. (3.216)
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In the stellar exterior the ODE (3.215) simplifies to

ω>BQ
′′ (r)−

1
4r
ω>BQ

′ (r) = −
3Qµ

�

2M(M − r) + (2M − r)r log
�

1− 2M
r

�

�

M3(2M − r)r3
, (3.217)

which can be integrated twice to the asymptotically flat expression

ω>BQ (r) =
2JBQ

r3
+

Qµ
�

2M
�

2M2 + 3M r − 3r2
�

+ 3(2M − r)r2 log
�

1− 2M
r

�

�

4M4r3
, (3.218)

with the asymptotic

ω>BQ (r)
r→∞
→

2JBQ

r3
−

Qµ
r4
−

6QµM
5r5

+O
�

1
r

�6

. (3.219)

The two O
�

B1Q1
�

constants cBQ and JBQ can be determined by imposing the junctions conditions
(3.21).

JBQ can be identified as the angular momentum of the configuration, see eq. (3.248). This angular
momentum of O (B) × O (Q) is electromagnetically-induced and not related to rotation of the fluid.
Because of the coupling to the magnetic field even small or realistic charges can result in a significant
increase of the total angular momentum.

The Komar integral expression

JBQ = −
8
3
π

∫ R

0

eλ/2−ν/2
�

P +ρ
�

ω̄BQr4dr −
µQ

�

R2 log
�

1− 2M
R

�

+ 2M(M + R)
�

4M3
, (3.220)

has an interior contribution similar to the expression for J in eq. (3.246) and an exterior contribution,
which we already integrated.

The effect of electro-magnetically induced FD arises quite naturally in GR as consequence of Ein-
stein’s field equations when considering sources with elector-magnetic fields with non-zero Poynting
vectors and we arguably discussed one of the simplest cases where it can occur. Just as the canonical
Lense-Thirring effect, electromagnetically-induced frame-dragging is a purely GR effect with no direct
Newtonian analogon. For a more general discussion of this GR effect we refer the interested reader
to the work of A. F. Gutiérrez-Ruiz and L. A. Pachón [81] and L. Herrera et al. [82] and references
therein.

3.8.2 O
�

Q2
�

: Electric corrections to gt t and gr r

When allowing global net charge and considering corrections up to O
�

Q2
�

the electro-magnetic
energy-momentum in the stellar exterior T (EM),> has additional O

�

Q2
�

source terms

T (EM),>
t t =

e−λQ2

8πr4
+

eνa2
φ

2πr4
cos2 θ +

e−λ+ν
�

a′
φ

�2

8πr2
sin2θ , (3.221a)

T (EM),>
r r = −

e−νQ2

8πr4
−

eλa2
φ

2πr4
cos2 θ +

�

a′
φ

�2

8πr2
sin2θ . (3.221b)
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The algebraic simplicity of this additional Q2 sources allows for simple O
�

Q2
�

additions to the exterior
solutions of n0 and m0

n>0 (r) = (3.183) +
Q2

2r2 − 4M r
(3.222)

m>
0 (r) = (3.182) + −

Q2

2r
. (3.223)

The mass shift is increased by

δM = δM |O(B2) +δM |O(Q2) = δM |O(B2) +Q2 2R− 3M
2R(R−M)

≡ δM |O(B2) +δMQ. (3.224)

We derived the expression for this mass shift using the junction conditions on the stellar surface and
the source term integral expression (3.240b) for the Komar mass shift. In the stellar interior h0 and
m0 have no Q2 source terms and the solutions are either the purely O

�

B2
�

expressions or for vanishing
magnetic fields they are trivial solutions. The n0 metric potential has an additional O

�

Q2
�

shift cn0Q
to satisfy n<0 (R)− n<0 (R) = 0:

cn0Q =
Q2 − 2δMQR

2R2 − 4MR
. (3.225)

This shift contributes Mcn0Q to the Komar mass according to eq. (3.240b) and the electric field addi-
tionally contributes Q2/R which leaves

δMQ =
Q2

R
+

M
�

Q2 − 2δMQR
�

2R2 − 4MR
=Q2 2R− 3M

2R(R−M)
=

Q2

R
2− 3Z
2− 2Z

(3.226a)

∼ 5.0× 10−5
�

Q
1× 1018 C

�2� R
km

�−1�2− 3Z
2− 2Z

�

M� (3.226b)

for the electric contribution to the mass shift. δMQ is equal to the electric contribution Q2/R lowered
by a compactness factor (2−3Z)/(2−2Z)which is 1 for Z = 0 and 3/5 at the Schwarzschild-Buchdahl
limit. For a (R = 15km | Z = 0.2) NS the massive charge of 1019 C corresponds to an increase in
gravitational mass of only 3.2× 10−4 M�.

The correct overall mass shift is realized by imposing the modified junction condition for m0

δM = m<
0 (R)−m>

0 (R)|δM=0 + 4πR3 2M − R
M − R

ρ(R)h<0 (R) +Q2 R− 2M
2R(R−M)

. (3.227)

Imposing the junction condition (3.227) guaranties self-consistent results for δM .

In the case of vanishing magnetic fields the only non-zero perturbations are m0 and n0 and they
read

m<
0 (r) = 0 (3.228)

m>
0 (r) = δMQ −

Q2

2r
=Q2 2R− 3M

2R(R−M)
−

Q2

2r
(3.229)

n<0 (r) = cn0Q =
Q2 − 2δMQR

2R2 − 4MR
=

Q2

2MR− 2R2
(3.230)

n>0 (r) =
2δMQr

4M r − 2r2
−

Q2

4M r − 2r2
=

Q2
�

3M r −MR− 2rR+ R2
�

2rR(2M − r)(M − R)
. (3.231)
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The corresponding line element in the stellar exterior up to O
�

Q2
�

reads

ds2
> = −

�

1−
2(M +δMQ)

r
+

Q2

r2

�

d td t +
r(2δMQ − 2M + r)−Q2

(r − 2M)2
drdr + r2dΩ2 +O

�

B1Q3
�

(3.232)

= −
�

1−
2M

r
+

Q2

r2

�

d td t +

�

1−
2M

r
+

Q2

r2

�−1

drdr + r2dΩ2 +O
�

B1Q3
�

, (3.233)

where we introduced the total mass in O
�

Q2
�

M ≡ M + δMQ, used the fact that δMQ is O
�

Q2
�

and
that we only consider the metric up to O

�

B0Q2
�

. In the stellar interior the metric only differs by a
constant shift in gt t from the one of the background star:

ds2
< = ds2

(00) + 2eνcn0Qd t2 +O
�

B1Q3
�

. (3.234)

Eq. (3.232) is the O
�

Q2
�

weak field expansion of the Reissner-Nordström metric [83, 84] which has
the form of (3.233). The Reissner-Nordström metric is a static solution to the Einstein-Maxwell field
eqs., which corresponds to the gravitational field of a non-rotating, spherically symmetric body of
mass M and charge Q. It is a trivial extension of the exterior Schwarzschild solution and we derived
and discussed it in this section as the exterior solution of a NS with non-zero net surface charge.

3.9 Global parameters

In the previous sections of this chapter we extensively discussed the solutions and equations governing
metric potentials and electro-magnetic fields of our perturbative magnetar model. In this section we
will discuss associated global parameters which we will focus on when comparing numerical results.

3.9.1 Conserved charges

The spacetime manifold we use has two killing vectors ξ (2.33) and χ (2.34) associated with sta-
tionarity and axisymmetry. Associated with those two spacetime symmetries/ Killing vectors are two
conserved currents, according to eq. (2.21). We will use the standard way to construct associated
conserved charges. Integrating a conserved covariant divergence over a spatial slice of constant time
Σt reveals

0=

∫

Σt

∇µJµ(K)d x3 =

∫

Σt

∂xµ

�

p

−gJµ(K)
�

d x3 (3.235a)

=

∫

Σt

∂x t

�

p

−gJ t
(K)

�

d x3 +

∫

Σt

∂xi

�

p

−gJ i
(K)

�

d x3. (3.235b)

In eq. (3.235a) we used the standard identity Γ µαµ = ∂α log(
p
−g). The second integral of (3.235b)

can be rewritten into the flux through the surface ∂Σt using the Gauss-Ostrogradsky theorem. When
considering asymptotically flat spacetimes and Σt =R3 this contribution vanishes. Using the fact that
we integrate over a slice of constant time we can interchange the integration and the partial derivative
and we can integrate over t introducing a conserved charge QK as integration constant:

QK =

∫

Σt

p

−gJ t
(K)d x3. (3.236)
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Using the identity (3.236) on the conserved current of ξ we get the expression for the Komar mass
[85]

MK =
1

4π

∫

Σt

p

−gJ t
(ξ)d x3 =

1
4π

∫

Σt

p

−gξµRt
µd x3 = 2

∫

Σt

p
γ

�

Tνµ −
1
2

Tδνµ

�

nνξ
µd x3, (3.237)

where we used the field eqs. and the relation
p
−gRt

µ =
p
γnνR

ν
µ to derive the last identity. T = Tµµ

is the trace of the energy momentum tensor. Using the expressions for ξν from eq. (2.33), eq. (3.237)
simplifies to

MK = 2

∫

Σt

p
γ

�

T t
t −

1
2

T
�

ntξ
t d x3 = 2

∫

R3

p
γ

�

T t
t −

1
2

T
�

nt d x3, (3.238)

This general expression needs to be expanded into proper orders of B and Ω in the setting of our
perturbative approach:

MK ≡M ≡ M +δM +O
�

B3Ω2
�

, (3.239)

with

M = 4π

∫ R

0

�

3P +ρ
�

eλ/2+ν/2r2dr, (3.240a)

δM = 4π

∫ R

0





�

3P + 3ρ +
dρ
dh

�

h0 +
�

3P +ρ
�

�

n0 +
eλm0

r

�



eλ/2+ν/2r2dr

+

∫ ∞

0





4a2
φ

3r2
+

2(a′
φ
)2

3



eλ/2+ν/2dr,

(3.240b)

where M is O
�

B0Ω0
�

and δM is O
�

B2Ω0
�

. The second integral of eq. (3.240b) is the contribution of
the magnetic field to the mass shift and it is non-vanishing in the stellar exterior. This integral can be
split into an interior and exterior integral, where the latter can be performed analytically.

The integral (3.238) can be transformed into a surface integral over ∂Σt , see e.g. [37] for details,
which in turn can be transformed into an asymptotic identity for the Komar mass

MK =
1
2

lim
r→∞

∫ π

0

∂r

Æ

−gt t (r,θ )r
2 sinθdθ . (3.241)

Using the explicit asymptotic of ν and n0 from eqs. (3.37) and (3.183) we can confirm

MK =
1
2

lim
r→∞

∫ π

0

∂
p

−g>t t (r,θ )
∂ r

r2 sinθdθ = M +δM +O
�

B3Ω2
�

. (3.242)

This can also be shown using partial integration of eq. (3.240) and the field equations. We will use
the source term integrals (3.240) to check self-consistency of our numerical results, by comparing the
asymptotic and integrated expressions for M and δM . Eq. (3.240a) is not the canonical expression
(3.42) for the gravitational mass of a static, spherical-symmetric NS. The expression for the Komar
mass includes relativistic pressure contributions as well as effects of spacetime curvature. Using the
field eqs. and the boundary conditions at r = 0 and r = R one can show

M = MK |O(B0Ω0) = 4π

∫ R

0

�

3P +ρ
�

eλ/2+ν/2r2dr = 4π

∫ R

0

ρ(r)r2dr. (3.243)
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The fact that the total gravitational mass of a static, spherical-symmetric NS can be expressed as a flat
space integral over the density alone is a non-trivial consequence of the field eqs. and their boundary
conditions. Pressure and curvature contributions only cancel when integrating from r = 0 to R. The
notion of an inclosed mass is not unique since for r < R: MK(r) 6= M(r).

Using analogous steps on the conserved current associated with χ we can derive a source term
integral expression for the Komar angular momentum [85]

JK = −
∫

Σt

p
γ
�

T t
φ

�

ntχ
φd x3 = 2

∫

R3

p
γ
�

T t
φ

�

nt d x3, (3.244)

which again can be decomposed in terms of proper order in B and Ω

JK ≡J ≡ J +δJ +O
�

B3Ω2
�

, (3.245)

where J is the O
�

Ω1B0
�

angular momentum and δJ O
�

Ω1B2
�

corrections to it. The source term
integral for δJ is rather lengthy and involves all lower-order metric potentials and fields. The source
term integral for J on the other hand is rather simple

J =
8
3
π

∫ R

0

eλ/2−ν/2
�

P +ρ
�

ω̄r4dr. (3.246)

Analogously to MK one can also derive an asymptotic definition for JK , see e.g. [37] for details,

JK = −
1
8

lim
r→∞

∫ π

0

∂r

�

−
gtφ

gt t

�

r4 sin3 θdθ = −
1
8

lim
r→∞

∫ π

0

∂r Nφ (r,θ ) r4 sin3 θdθ . (3.247)

Using the explicit asymptotic of ω and W1 from eqs. (3.90) and (3.203) we can confirm

JK = −
1
6

lim
r→∞

�

ω′> (r) +W>
1
′ (r)

�

r4 = J +δJ +O
�

B3Ω2
�

. (3.248)

W3 does not contribute to the angular momentum since its angular dependency integrates to zero.
The fact that the exterior solution for W1 has δJ as free parameter is no coincidence. We constructed
the particular solution for W>

1 to guarantee this behavior. In the classical HT formalism this is not
done and the exterior solution for W1 has an integration constant which is only related to δJ . We
tried to reduce the constants of our model as much as possible and choosing global parameters as
integration constants is a good way to archive this goal.

Apart from the two conserved charges associated with the spacetime symmetries of our config-
urations we also have internal symmetries and related conservations laws, namely baryon number
and electric charge conservation. We already discussed global net-charge in Sec. 3.5.3 and will now
introduce an integral expression for the total baryon number.

Integrating the expression for the baryon number conservation (2.13) the same way as discussed
for MK we can derive an expression for the total baryon numberB of a magnetically deformed star

B =
∫

Σt

nB

p

−gut d x3 =B0 +δB +O
�

B3Ω2
�

, (3.249)

with

B0 = 4π

∫ R

0

eλ/2nBr2dr (3.250a)

δB = 4π

∫ R

0

eλ/2
�

dnB

dh
h0 +

eλm0

r
nB

�

r2dr. (3.250b)
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Using the total baryon number we can construct the related baryonic massMB and the gravitational
binding energy EB:

MB ≡ MB +δMB ≡ mB

�

B0 +δB
�

, (3.251)

EB ≡MB −M =
�

MB −M
�

+
�

δMB −δM
�

. (3.252)

3.9.2 Iso-surfaces and geometric measures of deformation

The surfaces of constant log-enthalphy h(r) are spheres of radius r in the metric of the unperturbed
background star. According to our ansatz (3.14a) these surfaces are deformed in O

�

B2
�

by h0(r) and
h2(r). We are now looking for surfaces r̄ (r,θ ) of constant log-enthalpy in O

�

B2
�

h(r̄ (r,θ ) ,θ )
!
= h(r) = const.. (3.253)

For that task we make the following ansatz for the iso-surfaces r̄ (r,θ )

r̄ (r,θ )≡ r + ξ (r,θ )≡ r + ξ0(r) + ξ2(r)P2(cosθ ) +O
�

B4Ω2
�

. (3.254)

Taylor expanding h(r̄ (r,θ )) up to O
�

B4Ω2
�

results in

h (r) +
dh
dr
∆r̄ (r,θ ) + h0 (r) + h2 (r) P2(cosθ )

!
= h(r) +O

�

B4Ω2
�

, (3.255a)

h0 (r) + h2 (r) P2(cosθ ) +O
�

B4Ω2
� !
= −h′ (r)∆r̄ (r,θ ) , (3.255b)

h0 (r) + h2 (r) P2(cosθ ) +O
�

B4Ω2
� !
= −h′ (r)

�

ξ0 (r) + ξ2 (r) P2(cosθ )
�

, (3.255c)

and we can identify

ξ (r,θ ) = −
�

h′ (r)
�−1
∆h (r,θ ) +O

�

B4Ω2
�

. (3.256)

The deformations of iso-surfaces of constant log-enthalpy are directly related to the deformations of
the log-enthalpy grid. Using the Bernoulli theorem (3.50) in O

�

B0Ω0
�

we recover a classical HT result

∆h (r,θ ) =
1
2
ν′ξ (r,θ ) = −h′ξ (r,θ ) , (3.257)

where our ∆h (r,θ ) is called p∗ (r,θ ) in the original HT paper [25]. Identifying ∆h (r,θ ) as deforma-
tions of the log-enthalpy grid and not as a convenient choice of a dimensionless pressure perturbation
makes this derivation much more intuitive. r̄ (r,θ ) describes a surface of constant log-enthalpy h(r)
in the coordinate system of the O

�

B2Ω1
�

. Fig. 3.6 depicts such an iso-surface r̄ (r,θ ).
r̄ (r,θ ) describes surfaces in the curved space of the metric gµν with its non-orthonormal basis

vectors, which makes direct interpretation of them rather difficult. It is much more convenient to
work with surfaces in a flat space. It is possible to embed the two dimensional surface

ds2
(2) =

�

gθθ (r̄,θ ) + gr r(r̄,θ )(∂θ r̄)2
�

dθ 2 + gφφ(r̄,θ )dφ2 (3.258)

of constant time and radius r = r̄ (r,θ ) into three dimensional flat space. An embedding can be
constructed by imposing conservation of lengths

ds2
(2)

!
= ds2

(3) = dη2
x + dη2

y + dη2
z . (3.259)
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θ

(r,θ)

r

z

ξ(r,θ)

Figure 3.6: Coordinate systems (r,θ ) in black and (r̄ (r,θ ) ,θ ) in blue. This illustration is based on Fig. 1 of [25].

Such an embedding is not unique but a natural choice is an embedding which preserves axis symmetry.
Equating (3.259) in O

�

B2Ω1
�

using cylindrical coordinates {ηρ(θ ),ηφ = φ,ηz(θ )} reveals

ηρ

ηz
= ± tanθ , (3.260)

which allows us to choose spherical coordinates {ηr(θ ),ηθ = θ ,ηφ = φ} for ds2
(3). The flat space

embedding of r̄ (r,θ ) is given by

ηr (r,θ ) = r + r̄0 (r) +
�

rk2 (r) + r̄2 (r)
�

P2(cosθ ) +O
�

B4Ω2
�

. (3.261)

ηr (r,θ ) describes a surface of constant log-enthalpy h(r) in three dimensional flat space. Arguably
the most interesting surface is the stellar surface R∗(θ ) with h(R) = 0:

R∗(θ )≡ ηr(R,θ )≡ R+δR(θ ) = R+ ξ0(R) +
�

Rk2(R) + ξ2(R)
�

P2(cosθ ) +O
�

B4Ω2
�

. (3.262)

In O
�

B0Ω0
�

we recover R∗(θ ) = R, which is expected since we work with the areal radius r, which is
chosen to have this property. ξ0(R), ξ2(R) and k2(R) are O

�

B2
�

deformations of the background star
surface.

Using the expression for R∗(θ ) we can derive a variety of geometrical parameters. Polar and equa-
torial radius are given by

R∗p ≡ R∗(0) = R+ ξ0(R) + ξ2(R) + Rk2(R) +O
�

B4Ω2
�

≤ R, (3.263)

R∗e ≡ R∗(π/2) = R+ ξ0(R)−
1
2

�

ξ2(R) + Rk2(R)
�

+O
�

B4Ω2
�

≥ R. (3.264)

The spheroids we encounter are oblate R∗p ≤ R∗e. The surface area of the deformed spheroid described
by R∗(θ ) is given by

A = 2π

∫ θ

0

R∗(θ )
r

R∗(θ )2 +
�

∂θR∗(θ )
�2

sin2θdθ = 4πR2 + 8πRξ0(R) +O
�

B4Ω2
�

, (3.265)
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which in O
�

B2Ω1
�

allows us to identify the mean areal radius

R∗m ≡

√

√A
4π
= R+ ξ0(R) +O

�

B4Ω2
�

. (3.266)

Common measures of geometrical deformation of axisymmetric spheroids are the ellipticity e and
the flattening/oblateness ε:

e ≡

√

√

√

√1−

�

R∗p
R∗e

�2

=
Ç

3
�

k2(R)− ξ2(R)/R
�

, (3.267)

ε ≡ 1−
R∗p
R∗e
= −

3
2

�

k2(R) + ξ2(R)/R
�

. (3.268)

e and ε are in the interval [0, 1] and we will mainly use the oblateness ε to quantify geometrical
deformation. ε has the nice property that it scales as a pure O

�

B2
�

term.

Using the oblateness we can introduce various thresholds for the magnetic field. In our approach
the central magnetic field B0 or in general the strength of the magnetic field is a free input parameter
and all expressions, which we derived in this chapter scale in a well defined way in B0. The geometry
of the spheroid described by R∗(θ ) only makes sense for R∗p ≥ 0. When the polar radius is zero the
surface of revolution of R∗(θ ) is similar to an elliptic torus with an overall diameter of 2R∗e. We will
consider the R∗p = 0 configuration as extremal and we will call the magnetic field strength realizing
it Bmax. The geometry of such a configurations deviates significantly from the one of the background
star and it should be expected that our perturbative approach fails to describe such configurations
accurately.

A much more reasonable limit for the magnetic field can be derived from the definition of the
oblateness. Looking at the relative difference between the exact definition of ε as 1− R∗p/R

∗
e and the

proper O
�

B2
�

expansion −3/2
�

k2(R) + ξ2(R)/R
�

we can specify and relative error

∆ε ≡

�

�

�

�

�

1−
1− R∗p/R

∗
e

−3
2

�

k2(R) + ξ2(R)/R
�

�

�

�

�

�

(3.269)

related to the geometrical deformation. If the deformation of the spheriod gets too big the O
�

B2
�

expansion −3/2
�

k2(R) + ξ2(R)/R
�

will significantly differ from the definition. We will denote the
magnetic field realizing a specific relative error ∆ε as B∆ε. A priori it is not clear if ∆ε is a good
measure for general derivations from the exact solution. We will test the viability of∆ε as an intrinsic
error estimate by comparing our perturbative results to exact results computed within the BGSM
formalism throughout Chap. 5.

Bmax and B∆ε depend on the background star only.

3.9.3 Asymptotic form of the external metric

In this chapter we derived analytical exterior solutions for all metric potentials. They are electro-
vacuum solution of the Einstein-Maxwell eqs. and as those their analytic structure can be quite
complicated. But since we describe an asymptotically flat exterior manifold their r →∞ asymptotics
are rather simple.
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The complete O
�

B2Ω1
�

line element has the following asymptotic

ds2 = −
�

1−
2(M +δM)

r
+

2QM

r3
P2(cosθ ) +O

�

1
r

�4
�

d t2

+

�

1+
2(M +δM)

r
+

8M3 + 24M2δM
r3

−
2QM

r3
P2(cosθ ) +O

�

1
r

�4
�

dr2

+

�

1−
2QM

r3
P2(cosθ ) +O

�

1
r

�4
�

�

r2dθ 2 + r2 sin2θdφ2
�

− 2

�

2(J +δJ)
r3

+
W∞

3

r5

�

1+ 5P2(cosθ )
�

+O
�

1
r

�6
�

r2 sin2θd tdφ.

(3.270)

The NLO term in the asymptotic expansion of gt t

− gt t = 1−
2(M +δM)

r
+

2QM

r3
P2(cosθ ) +O

�

1
r

�4

(3.271)

is directly proportional to the configurations mass quadrupole momentQM [25, 37]. For the deformed
oblate spheroids we describe in our perturbative modelQM > 0. Prolate configurations haveQM < 0.

We have constructed the particular solution for n>2 such as

h>2 (r)
r→∞
→
QM

r3
+O

�

1
r

�4

. (3.272)

The specific choice of our particular solution relates the homogeneous part directly to the mass
quadrupole moment. In the classical HT formalism [25] another particular solution is chosen and
the amplitude of the homogeneous part is only related to QM but not QM itself. QM is a very im-
portant measure of deformation [18] and we can access it very easily after imposing the junction
conditions for n2 and v2 on the stellar surface. Since we have analytical expressions for our exterior
solutions in areal radius we are not forced to extractQM from the asymptotic of a numerical solution.
In the BGSM formalism the latter is necessary and in the isotropic radius not unproblematic [86].

The mass quadrupole moment can be used to study universality relations [87] and to construct
simple gravitational wave emission models [88].
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4 Implementation

4.1 Implementation of the BGSM formalism: magstar code and LORENE library

In Sec. 2.2 we gave a brief introduction into the BGSM and its central equations. To summarize: in the
BGSM formalism the stellar structure is encoded by a set of 4+ 2 coupled PDEs (four field equations
(2.44a)-(2.44d) and two Maxwell equations (2.46a)-(2.46b)) and one analytic equation of motion
(2.51). In this section we will briefly introduce the numerical resolution of those structure equations.

BGSM have developed "Pseudo-spectral methods" [89–91] to numerically solve the elliptic PDEs.
Their methods are based on expanding the solutions on a set of basis functions. These functions
are chosen with great care with regard to the symmetries and asymptotics of the problem as well
as their numerical implementability. Using those basis functions on two two-dimensional adaptive
grids the PDEs reduce to algebraic equations for expansion coefficients. It is necessary to use at least
two

�

r̃i,θi

�

-grids: one for the stellar interior (0 ≤ r̃i < R̃) and one for the exterior (R̃ < r̃ <∞),
since there are no analytical exterior solutions, in the general case, and only asymptotic boundary
conditions are know. The exterior grid is compactified for numerical implementability using u≡ 1/r̃:
(R̃< r̃i <∞)→ (u0 = 1/R̃> ui > 0). Because of the complicated nature of the coupled, non-linear
and inhomogeneous PDE system an iterative procedure is necessary to ultimately solve the structure
equations.

This iterative procedure is called self-consisten-field method [39] and it works as follows:

1. Initial conditions for the integration have to be specified and they include: an EoS, a current
function f (x), an angular velocity Ω, a total charge Q and a central log-enthalpy hc.

2. For the first step of the iteration very crude values for the metric potentials are chosen N = A=
B = 1, Nφ = 0 and At = Aφ = 0. The initial enthalpy grid is modeled by a simple profile as
h(r̃) = hc

�

1− r̃2/R̃2
�

with an assumed stellar radius of R̃= 10 km.

3. From the enthalpy grid Γ , P, ρ and all the other source terms are computed.

4. Using the Pseudo-spectral methods the field and Maxwell equations are solved, using the current
values of N , A, B, Nφ, At and Aφ on the right hand side of the elliptic PDEs, to obtain new values
for N , A, B, Nφ, At and Aφ.

5. With those new values a new Lorentz factor Γ and a new electromagnetic Lorentz force term M
are computed and the first integral of fluid motion (2.51)

h= hc + log Nc − log N + log Γ −M (4.1)

is used to compute new a enthalpy field and a new radial grid. Using adaptive grid methods the
stellar radius is adjusted in each step by the condition h(R̃) = 0. Go to step 3.

This is only a sketch of the actual algorithm: there are a lot of complicated details involved in the
actual code. Electromagnetic source terms and rotation are progressively increased. The iteration is
stopped when the changes in log-enthalpy grid in step 5 of the sketch above are below a threshold
value. A typical value for such a threshold is 10−12.

For details involving the implementation of the Maxwell equations we refer to [19] and for general
aspects we refer to the BGSM original paper [18] and references therein.
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For completeness we should mention, that the formalism and methods developed by BGSM and
BBGN for axisymmetric, static compact stars are used, improved and extended by various authors.
To mention only two examples: D. Chatterjee et al. [15] extended the BGSM formalism to include
the magnet field dependent EoS, magnetisation and anisotropies in the energy-momentum tensor in
a self-consistent way. C. Y. Cardall et al. [20] studied configurations with very strong magnetic fields
and deformations, numerical stability and EoS effects in the BGSM formalism. They developed their
own method to solve the involved PDEs using Green’s functions.

The LORENE , abbreviation for Langage Objet pour la RElativité NumériquE, library [92] provides
various C++ classes to numerically solve problems arising in NR and computational astrophysics. In
the scope of this work the methods implemented in LORENE to solve the Einstein-Maxwell equations
in the BGSM formalism are of primary interest. We use a slightly modified version of LORENE’s MAGSTAR

code to solve the Einstein-Maxwell equations for magnetized, rotating, stationary and axisymmetric
stars numerically exact.

In the scope of the current work we will limit our discussions to slowly rotating stars with dipolar
magnetic fields modeled by a current function f (x) = const. and for most part zero net charge Q = 0.

We have only made minor modifications to the original(2) MAGSTAR code and the LORENE library-
itself. The only significant modifications were changing the values for the fundamental constants in
unites.h(3) to the recent recommended values of CODATA [26] and modifying and in case of TVII
adding LORENE EoS classes. This was necessary in order to eliminate discrepancies between our
numerical results and the ones obtained from LORENE arising from a difference in the value for the
gravitational constant(4) and from slight differences in the implementation of the EoS. Apart from
that we only added and modified some methods to output data and computational parameters. These
latter modification however have no impact on the numerical results computed with the MAGSTAR

code.

4.2 Perturbative Magnetar model

In Chap. 3 we derived a set of structure equations encoding the hydrostatic equilibrium of a deformed
compact star up to O

�

B2Ω1
�

. In this section we will very briefly describe how we implemented and
solve these structure equations.

The free input parameters of the O
�

B2Ω1
�

magnetar model introduced in Chap. 3 are EoS, central
log-enthalpy hc, central magnetic field strength B0 and angular velocity Ω. There are no other free
input parameters in our model with the current assumptions.

In O
�

B0Ω0
�

we have derived the TOV eqs. (3.53) in h. For the background star we only need to
solve the coupled first-order system {dr2(h)/dh, dz(h)/dh} for a specific EoS. For the first explicit step
during numerical integration we use the NLO(h2) expansion (3.54). By comparing the differences be-
tween NLO(h2) and LO(h) for the first step we chose an initial step size in h which guarantees double
precision in the first step. The O

�

h2
�

expansion is very potent and initial steps in h corresponding
to radii of ∼ 10−7 km are possible without making a measurable error. For an integration in r much
smaller steps are necessary to archive compatible precision.

We compare the numerical performance of different implementation of the TOV eqs. in Tab. 4.1.
In terms of accuracy the systems in h work slightly better then the system in P. The TOV eqs. in
their canonical from as ODE in r performs not very well compared to the systems in P and h. The
plain system in h without introducing z and r2 as variables needs the most steps. We have only taken

(2) v1.14 2014/10/13 08:53:57 J. Novak
(3) v1.8 2015/03/17 14:20:00 J. Novak
(4) The current 2014 CODATA value for G is about 0.04% bigger then the one from 1998, which was set in unites.h.
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TOV system steps(steps/tries) r1 [km] |1−M/MISS| |1− R/RISS|
{dr2(h)/dh, dz(h)/dh} 59 (1.00) 1.20× 10−6 km 1.42× 10−14 1.42× 10−14

{dr(h)/dh, dm(h)/dh} 446 (1.00) 1.20× 10−6 km 1.45× 10−14 1.45× 10−14

{dr2(P)/dP, dz(P)/dP} 41 (1.00) 5.18× 10−18 km 1.13× 10−13 1.13× 10−13

{dP(r)/dr, dm(r)/dr} 298 (0.78) 1.00× 10−20 km 3.76× 10−11 3.76× 10−11

Table 4.1: Performance comparison between different forms of the TOV eqs. We used our standard
gsl_odeiv2_step_rk8pd integrator with adaptive step size control but without limiting the maximal
step size to integrate the Z = 0.15 IRF(189) configuration. Used initial step size r1, needed steps,
steps over tries ratio and the discrepancies between numerically obtained and analytical ISS radii and
masses are displayed.

rudimentary measures to solve the problems with the systems in P and r. We integrate the system
in P from Pc to a very small residual pressure but make no attempts to make the last remaining step
to P = 0. For the system in r and the IRF EoS the integrator overshoots the stellar surface and steps
resulting in negative pressures occur. If such a step happens we discard it and try a new step with
a significantly decreased step size. We continue this process until the relative changes in radius are
below 1× 10−16 km. With a bit more care especially the system in r might perform better. For the
system (3.53) no modifications are necessary.

The two O
�

B0Ω0
�

metric potentials are algebraically related to z and h by eq. (3.55). After in-
tegrating the TOV eqs. in h we invert the numerical solution r2(h) to h(r) and use this relation to
provide the background quantities in terms of the radius. When limiting the maximal step size one
can archive even better accuracies. The implementation we used to obtain the results of the next
chapters integrate the TVII and IRF EoS with accuracies of around 1× 10−15.

In O
�

Ω1
�

we have one second-order ODE system for the FD-frequency and in O
�

B1
�

we have
the linear relativistic GS eq. (3.104) which describes the magnetic field in the stellar interior (one
second-order inhomogeneous ODE). The induced electric field in O

�

B1Ω1
�

is analytically related to
the magnetic field.

In O
�

B2
�

we have two separate ODE systems for mono- and quadrupole perturbations. To impose
the l = 2 boundary condition without solving a boundary value problem we integrate the homoge-
neous and particular systems separately. In O

�

B2Ω1
�

we have two additional systems of two coupled
ODEs for which we again solve the homogeneous and particular systems separately to impose the
junction conditions for W1 and W3

To solve those ODE systems in the stellar interior we use the Explicit embedded Runge-Kutta
Prince-Dormand (8, 9) method (gsl_odeiv2_step_rk8pd) of the GNU Scientific Library [93] with
the gsl_odeiv2_control_scaled_new method for adaptive step size control. Since most of our
structure equations are singular at r = 0, because of the coordinate singularity at that point, we
perform the first step of numerical integration explicitly using the series expansions of the ODE sys-
tems and functions derived in Chap. 3. We chose a small initial steps size of 10−15 km and we limited
the maximal step size to 1× 10−3 R. In principle the rk8pd integrator would work with much big-
ger steps in intermediate radial regions but since we need the gradients of all our functions (P(r),
M(r),...) for the integrations of the higher-order systems we limited the maximal step size to reduce
errors due to interpolation.

The only real boundary value problem we have to solve is the one for aφ. For that purpose
we implemented a Shooting method [94] using our standard rk8pd integrator together with the
gsl_root_fsolver_brent rootfinder. We use the same rootfinder to compute configurations with
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certain global parameters like stars with specific masses or compactnesses.

To check the numerical self-consistency of our model we use the source term integral expressions
for M , J , Q< and δM from Sec. 3.9 and eq. (3.160). Comparing results from those integrals to the
values fixed by the matching conditions provides us with intrinsic error estimates in different orders.

O
�

B0Ω0
�

:∆M ≡ |1−M(3.240a)/M | (4.2a)

O
�

B0Ω1
�

:∆J ≡ |1− J(3.246)/J | (4.2b)

O
�

B1Ω1
�

:∆Q ≡ |1+Q</QS| (4.2c)

O
�

B2Ω0
�

:∆δM ≡ |1−δM(3.240b)/δM | (4.2d)

Those error estimates are typically around ∼ 10−6 for interpolated EoS and better then ∼ 10−10

for analytical EoS. The intrinsic error estimators of the magstar code GRV2 and GRV3 have similar
magnitudes.

In total we have to solve only 18 ODEs as initial value problems where only pairs of two are coupled
and the second-order system for aφ as boundary value problem to have access to the entire structure
of the deformed NS in O

�

B2Ω1
�

. This is computationally extremely inexpensive when compared
to the self-consistent iteration method of the magstar code. Depending on EoS and compactness
computing a full solution for an equilibrium configuration takes between 0.5 and 2 seconds on a
personal computer. A similar computation with the magstar code takes at least two orders of mag-
nitude longer. For higher fields the iteration method of magstar needs a lot of steps to arrive at a
self-consistent result where in our approach rotation frequency and magnetic field strengths are just
scales and have no effect on runtime.

Once h(r), z(r), aφ(r), ω(r), m0(r), h0(r), n2(r), v2(r), W1 and W3 are obtained by numerical
integration and all the corresponding constants are fixed, the stellar structure of the deformed com-
pact star is completely known up to O

�

B2Ω1
�

. All other quantities can be obtained from analytical
relations or by integration over the source terms and metric potentials.
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5 Numerical Results

In this chapter we present the numerical results obtained from the implementation of our perturbative
approach. We will discuss the structure of NS within this formalism up to O

�

B2Ω1
�

and we will present
some results for charged, non-rotating NS up to O

�

B2Q2
�

.
We will compare our results obtained from the perturbative approach to results from the

BGSM/BBGN formalism, computed with LORENE’s magstar code.

5.1 O
�

B0Ω0
�

: Spherical symmetric background stars

In this section we discuss numerical results for non-rotating configurations with no electro-magnetic
fields. These are computations for O

�

B0Ω0
�

spherical symmetric background stars as discussed theo-
retically in the previous Sec. 3.2.

We will only present specific results related to the following discussion of magnetically deformed,
slowly rotating stars. Studies of neutron star structure within the framework of the TOV equations
have been done by many authors in the past decades. The references [1, 9, 60, 95] and [96, 97] are
just a small sample of the many textbooks and papers on the topic.

5.1.1 Mass-radius curves and global parameters

To solve the TOV eqs. (3.53) in h it is necessary to supply an EoS relating pressure and energy density
to the log-enthalpy h. To compute baryonic masses and binding energies it is further necessary to
provide the relation between baryon number density to the log-enthalpy. In this work we discuss
results for three realistic EoS, for a polytropic EoS and for two types of analytic EoS related to the ISS
and TVII interior solutions.

We have chosen three realistic, tabulated, hadronic EoS: DD2 [98, 99], SFHo [100, 101] and FSG
[102, 103]. We discuss the interpolation method we use as well as some details on those EoS in
appendix B.4. We have chosen DD2 as an example for a stiff EoS: it generates a high pressure at a
given energy density and has a high maximum mass. SFHo has a medium stiffness and a maximum
mass of 2.06M�. SFHo is compatible with the latest NS mass-radius constraints [101]. FSG is an
example for a rather soft EoS with a low maximum mass of 1.74M�, not compatible with 2M� NS.
We have included FSG anyway to discuss effects of such soft EoS on NS structure and fields.

We have chosen a polytrope with relativistic polytropic index γ = 2 and a dimensionless pressure
coefficient κ = 0.05. Details and definitions for this type of analytic EoS can be found in appendix
B.3. This choice of parameters allows NS with masses beyond 2M�. Radii of NS with this polytropic
are rather large because Poly(0.05|2)has no realistic low pressure behavior to mimic a crust.

For most discussions we will use IRF(189) and TVII1(473) . We have chosen the constant energy
density of 189.377MeV fm−3 for the IRF EoS to realize NS with typical masses and radii and to have
an IRF configuration with the same mass and radius as the SFHo configuration at a compactness
of Z = 0.15. We have chosen the TVII1(473) EoS with µ = 1 and ρc = 473.444MeV fm−3 for the
same reason. By construction both IRF(189) and TVII1(473) have identical Mass-radius curves for
M < MTVII

max . Choosing these two EoS to describe ISS and TVII configurations allows us to discuss ISS
and TVII configurations of varying compactness and for Z = 0.15 we have three configurations of
identical mass and radius, which only differ in EoS. This allows us to discuss the effect of different
EoS on the NS structure without having to account for different masses and radii.
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Figure 5.1: Mass over radius (left) and mass over central baryon density (right) for six different EoS. The crosses
mark the configurations with maximum mass and the dots mark configurations with specific
compactnesses. The dashed lines represent unstable configurations. The masses of PSR
B1913+16(Hulse-Taylor-Pulsar) and PSR J0348+0432 are included for reference. The shaded areas
depict the Schwarzschild-Buchdahl-limit and Bondi’s causality limit, see Sec. 3.2.4 for details on both.

The mass-radius and mass over central baryon density curves of all six EoS are displayed in Fig. 5.1.
Those particular plots focus on the NS region of the M-R plane. In Fig. B.3 we depict the full M-R
range possible with the tabulated EoS. All EoS we have chosen have stable equilibrium configurations
with compactnesses between 0.1 and 0.2. In the following we will frequently discuss results in this
compactness range. A necessary condition for stability is ∂M/∂ nB ≥ 0 [1] and NS with ∂M/∂ nB = 0
represent stable equilibrium configurations of maximum mass. By construction the M -R curves of
IRF(189) and TVII1(473) are identical below the maximum mass of TVII1(473) . We consider only
causal TVII configuration and have therefore chosen ZTVII1

max = 0.386, see eq. (3.83a), as maximal
compactness on the TVII branch. As maximum mass for IRF(189) we have chosen its Pc = ρc limit of
ZC =

3
8 but the corresponding mass of 4.80M� lies outside the plot range of Fig. 5.1. Only FSG is not

able to produce NS with masses above 2M�.

Fig. 5.2 shows some selected central thermodynamic quantities related to the configurations of
Fig. 5.1. The stiffness hierarchy between the tabulated EoS is clearly visible: FSG generates low pres-
sures and has low central sound speeds, DD2 generates high pressures and has a high central speed of
sound and SFHo lies between those two. Poly(0.05|2)has a medium stiffness between FSG and SFHo.
In terms of central sound speeds TVII1(473) is rather soft at low pressures, has a medium stiffness at
intermediate pressures and becomes very stiff and causal for high pressures. IRF(189) has an infinite
speed of sound as discussed in Sec. 3.2.4 but apart form that all EoS have causal, stable configura-
tions. DD2, FSG and Poly(0.05|2)are causal for all pressures. DD2 and Poly(0.05|2)asymptotically
approach the causal limit cs = c, see Fig. B.4. Sound speeds of SFHo become superluminal for pres-
sures beyond ∼ 1400MeV fm−3 but for those pressures configurations are already unstable.
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Figure 5.2: Central pressure over central energy density (left) and central pressure of centeral speed of sound
(right) for the six different EoS and configurations of Fig. 5.1.

Tab. 5.1 lists global parameters and central thermodynamic quantities for special stable equilibrium
configurations of Fig. 5.1. Together with the gravitational mass we give an estimate for intrinsic
numerical errors ∆M , see eq. (4.2). The idea for our definition of ∆M is similar to the one behind
the more sophisticated GR virial identities GRV3 and GRV2 used by the magstar code to measure
intrinsic numerical errors. For the analytical Poly, IRF and TVII EoS the numerical errors are with an
order of 10−14 extremely low. For the tabulated/interpolated EoS this error is significantly higher and
typically of the order 10−6.

By construction the Z = 0.15 configurations of SFHo, IRF(189) and TVII1(473) have identical
masses of 1.214M� and identical radii of 11.952km. Comparing the remaining parameters of the
Z = 0.15 star between the three EoS reveals that for IRF(189) the related thermodynamic quantities,
the baryonic mass and binding energy differ significantly from the SFHo parameters. Baryonic mass
and binding energy are off by ∼ 20% and central density, pressure and baryon number density are
only half of the SFHo values. As expected a constant density EoS is not very potent when it comes to
modeling realistic NS. The situation is completely different for TVII1(473) . The relative differences
for all parameters lie below 7% for the TVII1(473) and SFHo Z = 0.15 configuration.

In Fig. 5.3 we compare our results with results obtained with the magstar code. The results are
in very good agreement for the analytical EoS with relative errors around ∼ 10−12. For the tabu-
lated hadronic EoS the errors are around ∼ 10−6. The intrinsic error estimates of the magstar code
GRV2 and GRV3 also predict errors of this magnitude. Interpolation errors prevent a higher accu-
racy. For tabulated EoS our intrinsic error estimates using ∆M are similar but for the analytic EoS
we can archive slightly higher accuracies. For the following discussions these small differences in the
background star parameters will be negligible.
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EoS hc Pc [MeV fm−3] ρc [MeV fm−3] nB,c [fm
−3] cs,c/c Z M [M�] (∆M) R [km] MB [M�] EB [M�]

DD2 0.118 19.475 267.968 0.274 0.487 0.100 0.880 (4.9× 10−6 ) 13.000 0.928 0.047
SFHo 0.124 25.042 343.715 0.350 0.459 0.100 0.815 (1.6× 10−6 ) 12.027 0.857 0.043

FSG 0.124 21.502 303.751 0.309 0.414 0.100 0.879 (1.1× 10−5 ) 12.973 0.925 0.046
Poly(0.05|2) 0.132 9.197 140.072 0.141 0.351 0.100 1.449 (5.8× 10−14 ) 21.398 1.525 0.075

IRF(189) 0.061 11.877 189.377 0.203 ∞ 0.100 0.661 (4.0× 10−14 ) 9.758 0.705 0.045
TVII1(473) 0.110 30.608 473.444 0.485 0.399 0.100 0.661 (1.8× 10−14 ) 9.758 0.698 0.037

DD2 0.182 40.670 339.124 0.340 0.596 0.150 1.340 (3.9× 10−6 ) 13.194 1.460 0.119
SFHo 0.192 55.001 455.824 0.453 0.568 0.150 1.214 (1.2× 10−6 ) 11.952 1.319 0.105

FSG 0.200 52.890 453.128 0.445 0.493 0.150 1.289 (8.3× 10−6 ) 12.688 1.399 0.110
Poly(0.05|2) 0.238 33.625 283.871 0.269 0.460 0.150 1.942 (5.5× 10−14 ) 19.112 2.092 0.151

IRF(189) 0.103 20.486 189.377 0.203 ∞ 0.150 1.214 (1.2× 10−14 ) 11.952 1.345 0.131
TVII1(473) 0.189 54.170 473.444 0.469 0.530 0.150 1.214 (8.4× 10−15 ) 11.952 1.321 0.107

DD2 0.270 80.054 432.764 0.421 0.692 0.200 1.794 (3.1× 10−6 ) 13.242 2.022 0.229
SFHo 0.288 113.741 605.559 0.580 0.676 0.200 1.593 (9.1× 10−7 ) 11.763 1.790 0.197

FSG 0.321 135.676 748.393 0.689 0.554 0.200 1.626 (6.1× 10−6 ) 12.002 1.816 0.191
Poly(0.05|2) 0.413 121.882 598.317 0.512 0.582 0.200 2.214 (6.9× 10−14 ) 16.347 2.429 0.214

IRF(189) 0.157 32.246 189.377 0.203 ∞ 0.200 1.869 (2.9× 10−14 ) 13.801 2.159 0.290
TVII1(473) 0.298 88.753 473.444 0.448 0.681 0.200 1.869 (6.9× 10−14 ) 13.801 2.096 0.227

DD2 0.714 514.876 1092.647 0.846 0.866 0.300 2.422 (1.8× 10−6 ) 11.906 2.899 0.477
SFHo 0.722 706.559 1500.325 1.152 0.894 0.295 2.059 (5.0× 10−7 ) 10.306 2.435 0.376

FSG 0.483 339.297 1367.360 1.131 0.585 0.234 1.739 (4.6× 10−6 ) 10.955 1.967 0.227
Poly(0.05|2) 0.493 188.619 781.308 0.636 0.624 0.214 2.233 (8.6× 10−14 ) 15.377 2.453 0.220

IRF(189) 0.693 189.377 189.377 0.203 ∞ 0.375 4.799 (4.2× 10−14 ) 18.897 6.807 2.008
TVII1(473) 0.550 180.817 473.444 0.406 1.000 0.270 2.929 (5.4× 10−14 ) 16.029 3.421 0.492

Table 5.1: Global parameters and central thermodynamic quantities for special stable equilibrium
configurations of Fig. 5.1. For all six EoS we list three configurations with specific compactness
Z = 0.1, 0.15, 0.2 and the configuration of maximum mass each.
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Figure 5.3: Comparison between global parameters obtained form integrating the TOV eqs. and results from
the magstar code. We display results and errors for gravitational masses (left), baryonic masses
(center) and radii (right).
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5.1.2 Metric potentials and thermodynamic quantities

In Fig. 5.4 and Fig. 5.5 we display the metric potentials and thermodynamic quantities inside the
Z = 0.15 configuration. The expected discontinuity of λ′ at the stellar surface for IRF EoS is clearly
visible. The density gradients of the hadronic EoS decay approximately quadratic in the stellar core.
This general property of hadronic EoS is the main reason for the viability of TVII solutions as effective
analytical models for realistic hadronic NS. ν and its derivative is continuous across the surface for all
configurations and EoS.
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Figure 5.4: Metric potential ν (left),its derivative (center) and pressure (right) as functions of the dimensionless
radius for all Z = 0.15 configurations. Dashed lines mark the analytic exterior solutions.
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Figure 5.6: Moments of inertia (left) and central values forω for different stable equilibrium configurations.

5.2 O
�

B0Ω1
�

: Slowly rotating configurations

In this section we will discuss numerical solutions of the frame-dragging eq. 3.85. Fig. 5.7 displays
solutions for ω(s) for all Z = 0.15 configurations. For the hadronic EoS as well as TVII1(473) the
solutions for ω(s) are very similar. The unique density gradient of IRF(189) is the reason for the
distinct results for ω. The frame-dragging frequency is maximal at the stellar center and monotoni-
cally decreases towards 0. Outside the star this decrease is cubic and proportional to the moment of
inertia as encoded in eq. (3.91). For configurations with zero residual surface density, here all except
IRF(189) , the FD frequency and its first two derivatives are continuous across the stellar surface. For
NS with IRF EoS only ω and ω′ are on R by construction but ω′′ changes signs at R.

In Fig. 5.6 we show moments of inertia as well as central values for ω for configurations with
varying compactness and EoS. With increasing compactness the FD frequency increases. As a purely
GR effect this behavior is to be expected. For TVII and IRF stars the moment of inertia monotonically
increases with compactness. For Poly(0.05|2)the moment of inertia reaches a maximum around
Z ∼ 0.15 and then decreases for higher compactnesses. The moment of inertia for configurations with
hadronic EoS also decreases after a certain compactness but for DD2, SFHo and FSG the maximal
value for the moment of inertia is reached very close to the respective maximal compactness. The
moments of inertia are of the order of 1038 kg m2 for typical NS compactnesses.

For the moment of inertia it is quite common to display the dimensionless ratio I/(MR2) over Z
and we do so in Fig. 5.8. This ratio is very similar for hadronic EoS in general, see e.g. [96]. In the
typical NS regime Z ∼ 0.1− 0.2 the ratios I/(MR2) of TVII1(473) and of the hadronic EoS are very
similar. We will derive analytic series solutions for TVII and IRF EoS for the FD eq. in Chap. 6.

In Tab. 5.2 we present the important global parameters for some selected with f = 0.01Hz slowly
rotating configurations. We use the relative difference between the asymptotic value for J and its Ko-
mar source term value to give an intrinsic error estimate δJ . For analytical EoS our numerical results
are very accurate with relative errors of the order of ∼ 10−10. A comparison with magstar results
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EoS Z I [1038 kgm2] J [1037 kg m2 s−1](∆J) ωc/Ω |1− I(L)/I |
DD2 0.100 0.871 0.547 (2.8× 10−7) 0.261 3.0× 10−6

SFHo 0.100 0.672 0.422 (4.2× 10−6) 0.267 1.8× 10−5

FSG 0.100 0.848 0.533 (3.6× 10−6) 0.266 5.1× 10−5

Poly(0.05|2) 0.100 3.854 2.421 (1.4× 10−11) 0.274 2.1× 10−10

IRF(189) 0.100 0.549 0.345 (2.3× 10−14) 0.203 8.4× 10−11

TVII1(473) 0.100 0.405 0.254 (1.6× 10−10) 0.253 9.9× 10−11

DD2 0.150 1.607 1.010 (6.3× 10−8) 0.375 4.4× 10−5

SFHo 0.150 1.161 0.730 (1.7× 10−6) 0.384 5.7× 10−5

FSG 0.150 1.373 0.863 (3.7× 10−4) 0.390 2.1× 10−4

Poly(0.05|2) 0.150 4.379 2.751 (4.5× 10−11) 0.419 3.7× 10−10

IRF(189) 0.150 1.596 1.003 (2.0× 10−13) 0.308 7.3× 10−11

TVII1(473) 0.150 1.200 0.754 (8.0× 10−10) 0.381 7.5× 10−10

DD2 0.200 2.439 1.532 (5.9× 10−8) 0.494 4.0× 10−5

SFHo 0.200 1.664 1.045 (7.1× 10−7) 0.505 5.7× 10−5

FSG 0.200 1.707 1.072 (2.7× 10−6) 0.526 3.2× 10−5

Poly(0.05|2) 0.200 3.887 2.442 (4.3× 10−10) 0.578 3.7× 10−10

IRF(189) 0.200 3.476 2.184 (5.9× 10−12) 0.415 5.7× 10−11

TVII1(473) 0.200 2.674 1.680 (1.6× 10−10) 0.512 1.0× 10−10

DD2 0.300 3.240 2.036 (4.9× 10−8) 0.773 4.5× 10−5

SFHo 0.295 1.999 1.256 (7.5× 10−8) 0.771 2.0× 10−5

FSG 0.234 1.586 0.996 (5.9× 10−6) 0.642 1.2× 10−3

Poly(0.05|2) 0.214 3.525 2.215 (2.0× 10−10) 0.630 2.0× 10−10

IRF(189) 0.375 22.307 14.016 (1.1× 10−11) 0.821 4.8× 10−12

TVII1(473) 0.270 6.484 4.074 (1.8× 10−10) 0.697 1.5× 10−10

Table 5.2: Global parameters for various slowly rotating ( f = 0.01Hz) NS. We have chosen this very low
frequency in order to exclude higher-order corrections on I from the magstar results.

confirms this error estimate. For tabulated EoS our results as well as the one from the magstar code
can not exceed the precision limit (∼ 10−6) set by the errors in the background star.

In Tab. 5.3 we display magstar results for higher rotation frequencies. We have chosen the Z =
0.15 SFHo configuration as an example for a configuration with realistic NS values to discuss the
order of magnitudes for rotational deformations. At typical magnetar rotation frequencies of ∼ 1Hz
contributions to the stellar mass are of the O

�

10−7
�

and corrections to the moment of inertia due to
rotational deformation are of the O

�

10−5
�

. Compared to electro-magnetic contributions for typical
magnetars these are minor effects. An approach up to O

�

Ω1
�

is sufficient for slowly rotating f ® 10Hz
magnetars.
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f [Hz] M/M |0 Hz − 1 J/J |0.02Hz − 1
1 1.463× 10−7 −2.024× 10−6

10 1.463× 10−5 3.743× 10−5

100 1.461× 10−3 3.995× 10−3

Table 5.3: Rotational deformations of the initial Z = 0.15 SFHo configuration computed with the
magstar code. The slight decrease of J for f = 1Hz is a numerical error. The intrinsic error estimate
from GRV3 for this configuration is 4× 10−5 and relative changes can not be computed accurately
below this threshold.
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Figure 5.7: Reduced frame-dragging frequency ω̄ and its derivative over dimensionless radius for all Z = 0.15
configurations. Dashed lines mark the analytic exterior solutions.
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5.3 O
�

B1Ω1
�

: The electro-magnetic field

In Sec. 3.4 we derived and discussed the relativistic Grad-Shafranov eq. (3.104) for a dipolar mag-
netic field on a spherical symmetric O

�

B0
�

background star. In this section we will present numerical
solutions of the GS eq. (3.104) in the stellar interior and matching exterior solutions. Further we
will present results for the induced electric field. First we will discuss the structure of those fields in
general and then we will discuss the effects of EoS and compactness on the magnetic field.

For TVII and IRF background stars we derive classical limits and GR corrections in Chap. 6 analyti-
cally.

5.3.1 Structure of the electro-magnetic field

In this subsection we will discuss the structure of the electro-magnetic field for Z = 0.15 background
stars. We will begin this discussion with the vector potential component aφ, displayed in Fig. 5.9.
Since we do not consider surface currents aφ is continuously matched on the stellar surface. While
the values for aφ differ by quite a large amount between different EoS the resulting magnetic fields,
see Fig. 5.10, are very similar. The slightly increased interior radial field component and decreased
interior polar component for the IRF(189) are related to its high current density. Because of its con-
stant density magnetic IRF(189) stars have very high current densities in the stellar interior, as can
be seen in Fig. 5.11. For the hadronic EoS as well as TVII1(473) fields and currents are very similar.
Stars with Poly(0.05|2)EoS are significantly bigger than its Z = 0.15 counter parts for the other EoS.
The currents are much lower inside of Poly(0.05|2)stars.

Related to the magnetic quantities by the ideal MHD conditions we assume are the induced elec-
tric quantities. On the right of Fig. 5.11 we display the induced charge density, which is an analytical
function of ω̄, aφ and background star potentials, see eq. (3.137). The corresponding induced electric
potentials are displayed in Fig. 5.12. By construction both mono and quadrupolar component of At
are matched continuously across the stellar surface. The derivatives of at0 and at2 are not continuous
at R, which in case of the monopole potential account to the surface charge density. The induced
surface charge density is depicted in Fig. 5.13, it is angular dependent since interior and exterior
electric fields have different geometries. The induced surface charges are highest at the pole caps of
the magnetar and always negative. The gradient of the induced interior charge is also depicted in
Fig. 5.13. For the IRF(189) star charge densities are very high as expected from its high Jt . The tetrad
components of the corresponding induced electric field are displayed in Fig. 5.14. The discontinuity
of the radial electric field, related to the induced surface charge density are clearly visible.
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Figure 5.9: aφ (left) and its derivative (right) for six different Z = 0.15 background stars, obtained from
numerical integration of the GS eq.. Dashed lines mark the analytic exterior solutions.
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background star. Dashed lines mark the analytic exterior solutions.
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Figure 5.11: Current density (left) and induced charge density (right) for six different Z = 0.15 background star.
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Figure 5.13: Induced O
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�

charges: Gradient of the interior charge (left) and angular distribution of the
surface charge density (right) for six different Z = 0.15 background star.
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Figure 5.14: Radial (left) and polar tetrad components of the induced electric field (right) for six different
Z = 0.15 background star at θ = π/4. Dashed lines mark the analytic exterior solutions.
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To visualize the geometry of the electro-magnetic field and the related quantities we include vector
and density plots, Fig. 5.15-5.18, corresponding to the components of Fig. 5.9-5.14. The density plots
share the same color map to allow for a direct comparison of magnitude. In the stellar exterior the in-
duced electric field is purely quadrupolar. The induced interior field has a sin2θ angular dependence
in the radial component which differs from the P2(cosθ ) one in the exterior. The magnetic field is in
the entire space purely l = 1 by construction and it is generated by a diffuse current loop in the stellar
interior.

The fields for SFHo and TVII1(473) are extremely similar: we constructed TVII1(473) to model
the SFHo Z = 0.15 configuration and it again succeeds as a very good effective model for realistic
harmonic stars. By construction the IRF(189) Z = 0.15 NS shares mass and radius with its SFHo and
TVII1(473) Z = 0.15 counter parts but the constant high energy density results in distinct and high
currents and charges. The related fields are much stronger than the ones on SFHo or TVII1(473) con-
figurations. Current- and charge densities do not decrease to zero towards the stellar surface because
the density of 189 MeV fm−3 provides constant support.

The Poly(0.05|2)Z = 0.15 NS is much bigger than its counter parts with different EoS and the elec-
tric fields is in magnitude comparable to the IRF(189) field. We did not include vector plots for DD2
and FSG configurations because their fields are so similar to the SFHo and TVII1(473) configurations.

The electric and vector potential tetrad components related to the fields of Fig. 5.15-Fig. 5.18 are
displayed together in the panels of Fig. 5.19. Iso-surfaces of constant Aφ are surfaces of constant
magnetic field strength and surfaces of constant At are iso-surfaces of constant electric field strength.
Below the NS surface in the equatorial plane is a region where the magnetic and therefore the induced
electric fields vanish. Magnetic field lines circle around this point and electric field line originate from
it.

The overall geometry of the electro-magnetic field is encoded analytically by our multipole expan-
sion but the explicit radial dependence is governed by numerical solutions of the GS eq. 3.104 and
the induction eq. (3.135). The pure geometry of the electro-magnetic field does not change with
compactness this is why we only showed results for one compactness in this section. In the following
section we will discuss the effect of background star compactness on the electro-magnetic field.
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Figure 5.15: Magnetic (left) and electric field (right) for the Z = 0.15 SFHo background star with associated
currents.
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Figure 5.16: Magnetic (left) and electric field (right) for the Z = 0.15 TVII1(473) background star with
associated currents.
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Figure 5.17: Magnetic (left) and electric field (right) for the Z = 0.15 IRF(189) background star with
associated currents.
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Figure 5.18: Magnetic (left) and electric field (right) for the Z = 0.15 Poly(0.05|2) background star with
associated currents.
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Figure 5.19: Density and iso-surface plots for the tetrad components of Aφ and At for Z = 0.15 SFHo (top left),
TVII1(473) (top right), IRF(189) (bottom left) and Poly(0.05|2)(bottom right) NS.

5.3.2 Effects of the background star on the global parameters of the EM field

In Fig. 5.20 we show the dependence of the relative dipole moment µ/B0 and of the relative polar
surface magnetic field Bp/B0 on the background star. The relative surface field strength decreases
for hadronic EoS with the compactness. The reason for that is the increase in radius for hadronic
configurations with decreasing compactness.

The background stars of the analytical EoS TVII1(473) and IRF(189) approach get smaller with
decreasing compactness and the relative surface fields approach constant values of 8/35B0 and 2/5B0
respectively. For Poly(0.05|2)configurations Bp/B0 approaches ∼ 0.2 as Z goes to zero.

The relative dipole moment for the hadronic EoS are similar and lie around 1× 1018 Am2/T. Re-
lated to its strong fields the IRF(189) EoS has large relative dipole moments at higer compactnesses.
For small Z the dipole moments for TVII1(473) and IRF(189) EoS decrease as the configurations get
smaller.

Configurations with the stiff DD2 EoS have stronger fields and related dipole moments compared
to configurations with softer FSG EoS. Stars with SFHo EoS have intermediate relative field strenghts
and dipole moments. We have only plotted results for configurations with Z > 1× 10−2. We do not
discuss results on white dwarf or planet branch, see B.3, in the scope of this work.

In Fig. 5.21 we display results for the relative current function amplitude −c jφ/B0 and the relative
induced electric quadrupole moment QE/(B0Ω). For −c jφ/B0 we report an overall universal behavior
for all considered EoS: the relative current function amplitude decreases as compactness increases.
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Figure 5.20: Relative polar surface magnetic field Bp/B0 (left) and relative dipole moment µ/B0 (right) for
different background stars with varying compactness and EoS.
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Figure 5.21: Relative current function amplitude −c jφ/B0 (left) and relative electric quadrupole moment
QE/(B0Ω) (right) for different background stars with varying compactness and EoS.

The reason for that is simple with increasing compactness, density and pressures rise and since the
current density is∝ (P+ρ) c jφ has to decrease as pressures and densities increase to realize constant
central magnetic fields. The TVII1(473) relation is very similar to the hadronic relations for −caφ/B0.

The situation for QE is very similar to the discussed situation for µ. The quadrupole moment is
linear in µ and the Z dependent factor from eq. (3.149) does not change significantly with EoS and
Z .
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5.4 O
�

B2
�

: Magnetic deformations

In this section we will discuss magnetic deformations within our perturbative approach. The O
�

B2
�

deformations are governed by the solutions of the structure equations of Sec. 3.6. We will limit
the following discussion to global quantities, since they are more instructive than the gradients of
the metric potentials. We will present results for the increase in gravitational mass δM , the mass
quadrupole moment QM, the oblateness ε from eq. (3.268) and for the change of the polar radius.

We can draw several conclusions form the results displayed Fig. 5.22 and Fig. 5.23.
First of all we see that configurations with higher compactness are harder to deform: all figures

show decreasing deformations for increasing compactness. In the sense of the term compactness this
is easy to explain: compacter NS are bound stronger and therefore magnetic fields can only deform
them slightly.

Another very dominant trend in all global quantities is that stars with softer EoS get deformed
lesser than stars with stiffer EoS. In the sense of the term stiff this may sound counter intuitive but
there is an easy explanation. NS with stiff EoS have lower pressures and energy density at given
mass/compactness when compared to NS with softer EoS, see Fig. 5.4 and Fig. 5.5 . So for stiff EoS
the contributions from the magnetic field to the energy-momentum tensor are bigger when compared
to the energy density and pressure contributions.

The magnetic deformation computed within our perturbative magnetar model are in good agree-
ment with the results obtained from the magstar code for magnetic fields below 1× 1013 T.

5.4.1 Intrinsic upper limit for the central magnetic field of the O
�

B2Ω1
�

model

In Sec. 3.9.2 we discussed the upper limit for the magnetic field in terms of the surface deformation.
Fig. 5.24 shows the situation for a M/R = 0.2 Poly(0.05|2.0) background star: with a central mag-
netic field of 2.128× 1014 T the polar radius becomes zero. We plotted results for Bmax for different
compactnesses and EoS in Fig. 5.25. In general Bmax is of the order 1014 T which is in agreement with
the estimate of the classical scalar virial theorem of ∼ 1014 T [8, 9].

The magnetic fields corresponding to an error estimate of 1% are around 1× 1013 T and we found
a good agreement between our results and the one computed with the magstar code below this
threshold.
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Figure 5.22: Relative O
�

B2
�

deformations (δM)/B2
0 (left) and relative mass quadrupole momentQM/B

2
0

(right) for different background stars with varying compactness and EoS.
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Figure 5.23: Reltaive oblateness ε/B2
0 (left) and decrease in polar radius (right) for different background stars

with varying compactness and EoS.
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Figure 5.26: Relative O
�

B2
�

correction (δJ/J)/B2
0 to the angular momentum (left) and O

�

B2
�

corrections to
the central value of the frame-dragging frequency (right) for different background stars with
varying compactness and EoS.

5.5 O
�

B2Ω1
�

: The electro-magnetic corrections to the angular momentum

The higher-order O
�

B2Ω1
�

corrections to the star’s metric affect only the gtφ component and rep-
resent higher-order correction to the frame-dragging frequency. W3 has only a very small effect and
is not directly related to an observable. W1 on the other hand is an l = 1 correction to ω(r). In
Fig. 5.26 we display corrections to the angular momentum and to the frame dragging frequency. With
decreasing compactness the NS are easier to deform and O

�

B2Ω1
�

corrections become bigger except
for the case of IRF(189) . Because of the distinct structure of the electric field inside the constant
density IRF(189) star, see Sec. 5.3, the corrections to the frame-dragging frequency stay constant low.

In terms of EoS stiffness we find that corrections are slightly bigger for stiff EoS, like DD2, when
compared to the softer SFHo and FSG results. But in general the O

�

B2Ω1
�

corrections for the
hadronic EoS and the TVII1(473) as effective model for SFHo configurations are very similar.

Again central magnetic fields beyond 100GT are necessary for significant corrections. In Fig. 5.27
we show W1(r) and W3(r) for our canonical Z = 0.15 configuration. By construction both potentials
are continuous across the surface. W3 is always smaller negative and about one order of magnitude
below W1.

5.6 O
�

Q2
�

and O
�

B1Q1
�

: Configurations with global net charge

In this section we will discuss numerical results related to the theoretical discussions of Sec. 3.8.
We will begin with the purely electric contributions to the mass shift. On the left of Fig. 5.28 we

plotted the mass shift of eq. (3.226) for different background stars. The only non-analytical depen-
dence in the expression for δMQ is R[Z], the dependence of the stellar radius on the compactness for
the different EoS shapes the relation for the electric mass shift.

For Z → 0 the radii of IRF(189) and TVII1(473) configurations approach zero and the electric
mass shift increases rapidly in O

�

1/R
�

. More and more energy is stored in the electric field as the
stellar surface becomes smaller and smaller. This can be understood quite intuitively: generating such
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Figure 5.27: W1(r) and W3(r) for different Z = 0.15 configurations with a central magnetic field strength of
500GT and a rotation frequency of 1Hz. Dashed lines mark the analytic exterior solutions.

configurations takes more and more energy as the repulsive forces between equal charges increase
with decreasing distance between them.

Poly(0.05|2)EoS NS approach a constant radius of ∼ 25 km as Z goes to zero, see Fig. 5.1, which
results in a mass shift of δMQ ≈Q2/25km in that limit.

For hadronic EoS the electric mass shifts differ only slightly for configurations with intermediate
and high compactnesses.

As discussed already in the theory section Sec. 3.8 δMQ is very small even for large charges and
in cases where magnetic fields are present the magnetic contributions to the mass shift are several
orders of magnitude higher then the ones from δMQ.

The electro-magnetically induced contributions from δJBQ can be significant when compared to the
O
�

Ω1
�

from Sec. 5.2. For charges of 1× 1012 C and magnetic fields of around 500GT the induced
angular momentum is for typical NS of the order of 1× 1039 kgm2 s−1, which is of the same order of
magnitudes as the angular momentum for a 1Hz rotating star. The right panel of Fig. 5.8 shows the
dependence of δJQB on EoS and background star compactness.
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Figure 5.28: Electric mas shift (left) and electro magnetically induced angular momentum (right) for
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6 Analytic series solutions of the O
�

B1Ω1
�

equations

For general EoS the O
�

Ω1
�

frame-dragging eq. (3.85) and the O
�

B1
�

relativistic Grad-Shafranov
eq. (3.104) for dipolar fields have to be solved numerically in the stellar interior. The ODEs them-
selves include the O

�

B0Ω0
�

background star’s metric potentials and thermodynamic gradients which
for general EoS can only be obtained by numerical integration of the TOV eqs. In Sec. 3.2.4 and
Sec. 3.2.5 we introduced the interior Schwarzschild and Tolman VII solutions for which this is not the
case. For ISS and TVII equilibrium configurations all metric potentials and thermodynamic gradients
are known analytically. For ISS and TVII background stars the FD and GS eqs. are analytical ODEs but
because of the complicated algebraic structure of both analytical solutions the task of finding exact
analytical solutions for the interior FD and GS eqs. is difficult.

In this chapter we will derive and discuss analytic interior solutions for the GS and FD equation
in form of a series in the background star compactness Z . There are several reasons why such an
expansion is a priori not impossible.

An ISS equilibrium configuration is uniquely determined by specifying its compactness Z , its radius
R and in principle the mean baryon rest mass of the IRF fluid mB. The latter has only an effect on
the number density and related parameters which are of no interest in this chapter. After choosing
a family of TVII solutions by fixing µ, TVII equilibrium configurations are also determined by those
2+1 parameters. The radius or related the central density appears in the ISS and TVII solutions only
as a scale.

The metric potentials λ(s) and ν(s) in terms of the dimensionless radial coordinate s ≡ r/R are
completely independent of central density or radius for TVII and ISS configurations. The functional
form of both potentials depends only on the background star compactness Z . For the ISS λ[Z](s) is
given in eq. (3.67a) and ν[Z](s) is given in eq. (3.67a) and both are functions in s once a Z is chosen.
When considering TVII solutions with fixed µ the situation is exactly the same, see eq. (3.74a) and
eq. (3.76).

The thermodynamic quantities for configurations of the same Z , scale linear with the central density
or equivalently R−2, see eqs. (3.67c), (3.67d), (3.74b) and (3.78).

The only non-trivial parameter dependence of the ISS and fixed µ TVII solutions is their Z de-
pendence. We already discussed, that in GR Z can not grow arbitrarily. In case of the ISS the
Schwarzschild-Buchdahl limit ZSB = 4/9 represents the maximum compactness of any non singu-
lar configuration. For TVII configurations the maximum compactness is even lower as we displayed
in Fig. 3.3. For physical/causal configurations the limiting compactnesses are even lower and realistic
NS typically have values between 0.1 and 0.3. Z is dimensionless and for all non-singular configura-
tions smaller then 1. This makes convergent expansions of the metric potentials and thermodynamic
quantities around Z = 0 possible.

In the following we will expand and solve both the FD and GS eq. up to high-order in Z . We will
compare results obtained from those expansions with numerical and analytical Newtonian results to
validate them.

To the best of our knowledge, no one has considered such expansions in literature.

6.1 Compactness-series solutions of the Frame-dragging equation
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6.1.1 Interior Schwarzschild solution

We will discuss the expansion of the frame-dragging eq. (3.85) for ISS background configurations in
detail. The FD for an ISS star in the stellar interior reads

0= ω̄′′<(s) +

�

2sZ

−2s2Z − 3
p

1− 2Z
p

1− 2s2Z + 1
+

2sZ
2s2Z − 1

+
4
s

�

ω̄′<(s)

+

�

8Z

−2s2Z − 3
p

1− 2Z
p

1− 2s2Z + 1
+

8Z
2s2Z − 1

�

ω̄<(s)
(6.1)

≡ Dω̄i v i
ω̄, with v i

ω̄ =
�

ω̄′′<(s), ω̄
′
<(s), ω̄<(s)

�T
. (6.2)

The ODE Dω̄i v i
ω̄ = 0 depends on the background star only by the Z dependence of Dω̄i which makes it

possible to expand the ODE in this parameter. In the case of non singular IRF stars Z ∈ [0, 4/9) which
means an expansion around Z = 0 should converge against the exact solution. We use the following
approach to expand and solve the ODE (6.2). First we make an ansatz for ω̄<(s) in form of power
series in Z:

ω̄<(s)≡
n
∑

m=0

ω̄<,m(s)Z
m. (6.3)

We now construct ω̄<,m(s)Zm as the solution of the ODE (6.2) in O (Zm). For that we need to expand
Dω̄i up to O (Zm) which is possible up to arbitrarily high m since Dω̄i is C∞

�

Z ∈ [0,4/9)
�

. We use the
following notation for the O (Zm) expansion coefficients

(Dω̄i )m ≡
dmDω̄i
dZm

�

�

�

Z=0
, (6.4)

(v i
ω̄)m =

�

ω̄′′<,m(s), ω̄
′
<,m(s), ω̄<,m(s)

�T
. (6.5)

Using those the pure O (Zm) term of the ODE (6.2) reads

ω̄′′<,m(s)−
4
s
ω̄′<,m(s) = −

m
∑

j=1

(Dω̄i ) j(v
i
ω̄)m− j ≡P ω̄

m (s). (6.6)

Eq. (6.6) is an inhomogeneous second-order ODE for ω̄<,m(s). Its homogeneous system, the LHS of
eq. (6.6), is extremely simple because it comes from the O

�

Z0
�

expansion of Dω̄i . It is solved by the
two linearly independent functions

ϕ0(s) = C0, (6.7)

ϕ1(s) =
C1

s3
. (6.8)

From these two solutions we can construct the Green’s function

G01(s, t) = −
�

�

�

�

ϕ0(s) ϕ1(s)
ϕ0(t) ϕ1(t)

�

�

�

�

/

�

�

�

�

ϕ0(t) ϕ1(t)
ϕ′0(t) ϕ′1(t)

�

�

�

�

=
1
3

�

1
t3
−

1
s3

�

t4 (6.9)

and with it a particular solution ϕω̄P,m(s) of the O (Zm) FD system

ϕω̄P,m(s) =

∫ s

0

G01(s, t)P ω̄
m (t)d t. (6.10)
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In practice this integral is an integral over polynomials in t which makes it very simple to perform
even at high-orders.

What now remains is fixing the two constants C0 and C1 in O (Zm). The constraint of regularity at
the center requires C1 = 0. Using the expansion of exterior solution

ω̄>(s)/Ω= 1−
2

s3R3

n
∑

m=0

ImZm, (6.11)

we impose the junction conditions ω̄>,m(1)
!
= ω̄<,m(1) and ω̄′>,m(1)

!
= ω̄′<,m(1) in O (Zm) on the stellar

surface s = 1 and with them we can fix C0 and the O (Zm) correction Im to the moment of inertia.
Using the method described it is straight forward to compute the Z-expansion of ω̄<(s) and the

expansion of the moment of inertia order by order. For the interior Schwarzschild solution we obtain
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(6.14)

where we used ω/Ω= 1− ω̄/Ω.
The exterior solution is completely determined by the moment of inertia. In O

�

Z0
�

it vanishes since
it is directly related to the mass distribution. In order O

�

Z1
�

we recover a well known expression: the
classical moment of inertia of a slowly rotating sphere of constant density 2/5ZR3 = 2/5MR2. The
higher-order terms in Z are GR corrections to that classical expression, which are positive.

The interior solution is given in form of a power series in Z of simple polynomials in even powers
of s. In order Zm the corresponding polynomial is of order s2m. In zeroth-order the frame dragging
frequency vanishes, which can be considered the Newtonian limit. In Newtonian gravity there is no
dragging of inertial frames/ Lense-Thirring precession.

The fact that the moment of inertia of a slowly rotating IRF can be expressed as I = I[Z] is known
in literature [96]. This is in fact true for all stable NS with one parameter EoS. One can make the
following argument for it: For a given one parameter EoS the choice of a central pressure/log-enthalpy
determines the structure of the background star completely. Compactness is a unique dimensionless
parameter on a stable equilibrium sequence, which in turn means the mapping between compactness
and central pressure/log-enthalpy is bijective. All global parameters for a given EoS can therefore be
expressed as functions of Z . We use this fact throughout this work extensively as we often choose Z
to specify configurations for a given EoS. In O

�

Ω1
�

the moment of inertia is independent of Ω and
therefore only depends on the background star. Which implies I = I[Z]. Since Z is dimensionless but
I has dimensions L3 in GU units it has to be possible to split I[Z] into a dimensionless part f [Z] and
a part with dimensions L3. In terms of SI units a natural choice is I = M[Z]R[Z]2 f [Z], but in GU
units a proper power of every other dimensional background star parameter would work as well.
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Fitting f [Z] to numerical results for the moment of inertia is done frequently in literature. For IRF
stars J. M. Lattimer and M. Prakash (LP) presented the fit

ILP2000
IRF =

2MR2

5

�

1− 0.87Z − 0.3Z2
�−1

(6.15)

in [96].
In Fig. 6.1 we compare numerical results for the moment of inertia and the central frame-dragging

frequency to the analytical Z-series results. For the moment of inertia we have also included the LP-fit.
Our Z-series results converge uniformly to the numerical result for the moment of inertia when

going to higher-orders in Z for all configurations below the Schwarzschild-Buchdahl limit. When
using the O

�

Z20
�

expansion numerical and analytical results agree in double precision below Z ∼ 0.1.
This is the accuracy limit of our implementation. Above Z ∼ 0.2 our O

�

Z5
�

series expansion for I
from eq. (6.12) and the LP-fit have similar discrepancies to the numerical results. The LP-fit is inferior
to our O

�

Z5
�

series expansion below Z ∼ 0.2 and is not competitive to our higher-order expansions.
To be fair the LP fit contains only 2 correction terms in Z so a higher-order fit might perform better.

For the central value of the frame-dragging frequency our Z-series solutions converge uniformly
to the numerical result below the Pc = ρc limit of ZC = 3/8. For Z ® 0.15 we can clearly see the
numerical errors of our implementation. The high-order Z-series solutions are more accurate than
our numerical implementation for low compactnesses. This shows the potency of the analytic series
solutions as a means to benchmark numerics. The intrinsic error estimates for the O

�

Ω1
�

angular
momentum from comparing asymptotic and integral values ∆J are of the same order of magnitude
as the ones determined by comparison with the O

�

Z20
�

series. ∆J turns out to be a robust error
estimate in O

�

Ω1
�

.
For higher compactnesses the expansion does not converge against the numerical results. The rea-

son for that is simple: as Z approaches the Schwarzschild-Buchdahl limit, central pressures increase
rapidly and asymptotically approach infinity. To counter this pressure contribution and to keep masses
finite the gt t metric potential ν at the stellar center approaches zero. In this case the third coefficient
of the ODE (6.2), Dω̄3 , approaches infinity. The Taylor series expansion of Dω̄i around Z = 4/9 can not
reproduce this behavior and therefore the Z-Series for ωISS

< (s) does not converge against numerical
results for small radii. This has however surprisingly little effect on ωISS

< (s) at larger s ¦ 0.5 and on
the moment of inertia.

Slowly rotating, constant density configurations have been studied by numerous authors. One of
the first papers using the classical HT formalism was the one of S. Chandrasekhar and J. C. Miller
[104] in which they applied the HT formalism to constant density configurations. More recently, in
2017, C. Posada [105] also studied constant density stars in the HT formalism. But none of those
authors have tried to construct a analytic solution for the O

�

Ω1
�

FD equation. Quite surprisingly it
seems that no one has tried such an expansion in Z of the ODE (6.2). LP claimed in their compendium
"Neutron Star Structure and Equation of State" [96]:

"Unfortunately, an analytic representation of ω or the moment of inertia for any of the three
exact solutions is not available." – J. M. Lattimer and M. Prakash, 2000 [96],

where they refer to the interior Schwarzschild solution, the TVII solution and the Buchdahl solution
[106]. For the ISS we were able to find an analytical solution of the frame-dragging in the literature
[107]: P. G. Whitman used complicated coordinate transformations to solve the FD eq. for the ISS
using Heun functions. Our expansion results in much simpler expressions involving only powers of s
and Z .

In this subsection we presented such an analytic representation for the ISS in form of a series in Z .
In the following subsection we will present an analogous series solution for TVII configurations.
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Figure 6.1: Comparison between numerical results and analytic Z -series solutions. In the plot for the moment
of inertia (left) we included the LP-fit from eq. (6.15). On the right we display results for the central
value of the frame dragging-frequency. As an intrinsic numerical error estimate we plotted∆J in
black.

6.1.2 Tolman VII solution

Completely analogous to the expansion of the ISS solution a Z-series solution of the FD eq. is also
possible for TVII background configurations. The ODE (6.6) holds also for TVII background config-
urations. For a fixed µ the expansion works completely similar. The fact that the algebraic structure
of the TVII solution is much more complex makes series expanding (Dω̄i ) more involved but it is still
possible to do even to high orders in Z . We will give expressions for TVII configurations with µ = 1,
3/4, 1/2 and 1/4 but the expansion is possible for arbitrary µ ∈ [1, 0). We derive the following
expressions for the moment of inertia

ITVII1 =
2ZR3

7

�

1+
112Z

99
+

72872Z2

45045
+

22349744Z3

8729721

�

+O
�

Z5
�

, (6.16)

ITVII3/4
=

26ZR3

77

�

1+
4798Z
4719

+
4475242Z2

3374085
+

32413627628Z3

16783373607

�

+O
�

Z5
�

, (6.17)

ITVII1/2
=

18ZR3

49

�

1+
5882Z
6237

+
2580394Z2

2207205
+

3394223900Z3

2072972979

�

+O
�

Z5
�

, (6.18)

ITVII1/4
=

46ZR3

119

�

1+
34570Z
38709

+
321357286Z2

299414115
+

1452334671500Z3

986449743279

�

+O
�

Z5
�

. (6.19)
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Again we recover in non-vanishing LO(Z1) the corresponding classical moments of inertia. For a
spherically symmetric body with radius R and density distribution ρ(r) the Newtonian expression for
the moment of inertia is

Icl. =

∫ 2π

0

∫ π

0

∫ R

0

ρ(r)(r2 sinθ )2r2 sinθdrdθdφ =
8
3
πR3

∫ 1

0

ρ(s)s4ds, (6.20)

which in case of a TVII configuration can be integrated, by using eq. (3.74b), to

ITVII
cl. [µ] =

2ZR3

7
5µ− 7
3µ− 5

. (6.21)

The GR corrections are again positive and increase the moment of inertia.
The interior solutions for the FD eq. for TVII configurations are

ω
TVII1
< (s) =

�

15s4

14
− 3s2 +

5
2

�

Z +

�

−
2055s8

1232
+

955s6

126
−

645s4

56
+ 6s2 +

85
336

�

Z2 +O
�

Z3
�

, (6.22)

ω
TVII3/4
< (s) =

�

45s4

77
−

24s2

11
+

25
11

�

Z +

�

−
18495s8

37268
+

7640s6

2541
−

5085s4

847
+

477s2

121
+

115
484

�

Z2 +O
�

Z3
�

, (6.23)

ω
TVII1/2)
< (s) =

�

15s4

49
−

12s2

7
+

15
7

�

Z +

�

−
2055s8

15092
+

3820s6

3087
−

1215s4

343
+

141s2

49
+

1055
4116

�

Z2 +O
�

Z3
�

, (6.24)

ω
TVII1/4
< (s) =

�

15s4

119
−

24s2

17
+

35
17

�

Z +

�

−
2055s8

89012
+

7640s6

18207
−

4485s4

2023
+

645s2

289
+

6775
24276

�

Z2 +O
�

Z3
�

.

(6.25)

In order Zm the polynomial coefficient is of order s4m.

In their paper [96] LP only discussed TVII configurations with vanishing residual surface density:
in our nomenclature TVII1 configurations. For TVII1 LP give the following fit:

ILP2000
TVII1

=
2MR2

7

�

1− 1.1Z − 0.6Z2
�−1

. (6.26)

In Fig. 6.2 we compare the TVII1 series against numerical results and the corresponding LP fit. The
overall situation is similar to the one encountered with the IRF EoS. For the angular momentum the
Z-series converge uniformly against the numerical solution and below compactnesses of ∼ 0.15 the
O
�

Z20
�

-series extends the accuracy of our numerical results. The numerical errors expected from the
comparison between integral and asymptotic form of the angular momentum match the one found
with aid of the analytic series. The LP fit works rather well at high compactnesses but ultimately
can not keep up with higher-order analytic expansions. For the central frame-dragging frequency
the Z-series converge uniformly against the numerical solution for causal configurations. When ap-
proaching the SB limit of TVII1, see eq. (3.83a), the expansion of the ODE coefficients again fails to
describe the extremal nature of the TVII1 configuration approaching infinite central pressures.

The results for different µ are very similar to the ones for µ = 1. In Fig. 6.7 we have included
results for different values of µ. In case of the TVII solution it is not so surprising that such analytic
series solutions are not known in literature, since interest in the solution in general increased only
recently.
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Figure 6.2: Comparison between numerical results and analytic Z -series solutions for TVII1 stars. In the plot for
the moment of inertia (left) we included the LP-fit from eq. (6.26). On the right we display results
for the central value of the frame dragging-frequency. As an intrinsic numerical error estimate we
plotted∆J in black.

6.2 Compactness-series solutions of the relativistic Grad-Shafranov equation

The O
�

B1
�

relativistic Grad-Shafranov eq. (3.104) for dipolar fields is algebraically very similar to
the FD eq. Both are second-order ODEs for l = 1 quantities. In this section we will use the same
techniques used in the previous Sec. 6.1, to construct analytic solutions in form of a series in Z for
the relativistic Grad-Shafranov equation.

6.2.1 Interior Schwarzschild solution

The GS equation for an IRF star is a complicated but analytic inhomogeneous second-order ODE:

0= a<′′φ (s) +
2sZ

�

4s2Z + 3
p

1− 2Z
p

1− 2s2Z − 2
�

(2s2Z − 1)
�

2s2Z + 3
p

1− 2Z
p

1− 2s2Z − 1
�a<′φ (s)

−
2

s2 − 2s4Z
a<φ(s)− c jφR2 6s2Z

p
1− 2Z

(2s2Z − 1)
�

3
p

1− 2Z −
p

1− 2s2Z
�

(6.27)

≡ Daφ
i v i

aφ − Paφ, with v i
aφ =

�

a<φ(s), a<φ(s), a<φ(s)
�T

. (6.28)

The inhomogeneous part Paφ scales with c jφR2 while the homogeneous system is naturally scale
independent. The solution of eq. (6.28) will therefore be of the form a<

φ
(s) = c jφR2ã<

φ
(s), where

the background star dependence of ã<
φ
(s) is solely based on Z . Using the same technique discussed

previously for the expansion of eq. (6.2) we derive the pure O (Zm) term of the ODE (6.28):
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a<′′φ,m(s)−
2
s2

a<φ,m(s) = Paφ,m −
m
∑

j=1

(Daφ
i ) j(v

i
aφ)m− j ≡P aφ

m (s). (6.29)

The homogeneous system is solved by the two linearly independent functions

ϕ2(s) = C2s2, (6.30)

ϕ3(s) =
C3

s
. (6.31)

From these two solutions we can construct the Green’s function

G23(s, t) = −
�

�

�

�

ϕ2(s) ϕ3(s)
ϕ2(t) ϕ3(t)

�

�

�

�

/

�

�

�

�

ϕ2(t) ϕ3(t)
ϕ′2(t) ϕ′3(t)

�

�

�

�

=
1
3

�

s2

t
−

t2

s

�

(6.32)

and with it a particular solution ϕaφ
P,m(s) of the O (Zm) system

ϕQ,m(s) =

∫ s

0

G23(s, t)P aφ
m (t)d t. (6.33)

The constraint of regularity at the center requires C3 = 0. Using the O (Zm) expansion of exterior

solution (3.114) we can impose the junction conditions a<
φ,m(1)

!
= a>

φ,m(1) and a<′
φ,m(1)

!
= a>′

φ,m(1) in
O (Zm) on the stellar surface s = 1 and with them we can fix C2 and the O (Zm) correction µm to the
stars dipole moment.

For the interior Schwarzschild solution the expression for the dipole moment µ and the interior
solution for aφ read

µISS = −
c jφZR3

5

�

1−
6Z
7
−

41Z2

105
−

262Z3

825
−

56517Z4

175175

�

+O
�

Z6
�

, (6.34)

a<,ISS
φ
(s)

c jφR2
=

�

s2

2
−

3s4

10

�

Z +

�

−
69s6

280
+

3s4

20
+

9s2

40

�

Z2 +

�

−
281s8

840
+

3s6

8
−

63s4

200
+

587s2

1400

�

Z3

+

�

−
2939s10

6160
+

3s8

7
+

117s6

700
−

2637s4

3500
+

7079s2

8400

�

Z4

+

�

−
1459s12

2002
+

199s10

308
−

169s8

4200
+

23847s6

49000
−

12461s4

7000
+

405373s2

231000

�

Z5 +O
�

Z6
�

.

(6.35)

Again the non-vanishing LO terms are O
�

Z1
�

. The magnetic field is directly coupled to the matter
distribution. It is generated by the current function which in lowest-order in Z is proportional to the
density gradient, which is an O

�

Z1
�

expression. Reintroducing the density one can rewrite the LO
terms as

a<,ISS
φ,cl. (s) =

2
15

c jφρcπr2(5R2 − 3r2), (6.36a)

a>,ISS
φ,cl. (s) = −

µ

sR
= 4c jφρcπR5 1

15r
, (6.36b)

µISS
cl. = −

4
15

c jφρcπR5. (6.36c)
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The central magnetic field and polar magnetic field on the stellar surface are related to c jφ by

BISS
0,cl. = −Zc jφ = −

4
3

c jφρcπR2, (6.37a)

BISS
p,cl. = −

2Z
5

c jφ = −
8

15
c jφρcπR2. (6.37b)

The solution (6.36) was found in this form 1953 by V. C. A. Ferraro [108] as the classical solution
for the dipole field of an incompressible fluid sphere. To the best of our knowledge we are the first to
give GR corrections to this solution in form of an analytic series in the compactness. While searching
for the Ferraro’s solution as classical limit in our approach we discovered the possibility for a Z-series
solution of the linearized, relativistic Grad-Shafranov equation. After constructing such a solution we
successfully applied the technique to the frame-dragging equation. The order in which we discovered
those solutions and in which we present them in this thesis are reversed.

Fig. 6.3 shows the surface and central polar magnetic field obtained from our series normalized to
the O

�

Z1
�

values of Ferraro’s solution as well as numerical results. Again we find a good agreement
within the compactness bounds discussed in the previous section of this chapter. Fig. 6.4 shows
corresponding results for the magnetic dipole moment and the electric quadrupole moment. For the
latter we combined the results from Sec. 6.1.1 with the results of this section. In LO we recover the
classical result for QE, which using eqs. (3.150) and (6.36c) reads

QISS
E,cl. =

1
3
µΩR2 = −

4
45
πρcR

7c jφΩ. (6.38)

Using the higher-order terms of our analytic series solution we can again check the numerical accuracy
of our magnetar model. For compact NS relative numerical errors are of the order 10−12, while for
larger configurations with smaller compactness errors increase towards ∼ 10−6. We can compare this
extrinsic error estimates to an intrinsic error estimate: for the O

�

Ω1B1
�

quantities we use the relative
difference between interior and surface charge ∆Q from eq. (4.2). We plotted the error estimate ∆Q
in the lower panels of Fig. 6.3 and Fig. 6.4. For most quantities and compactnesses ∆Q turns out to
be a rather conservative error estimate, when comparing it to the O

�

Z20
�

extrinsic error estimate.
Especially at higher compactnesses ∆Q overestimates numerical errors in other quantities by a few
orders of magnitude. At low compactnesses ∆Q underestimates the errors in the electric quadrupole
moment QE significantly by four orders of magnitude.

6.2.2 Tolman VII solution

The expansion of the GS eq. with TVII background stars is technically completely analogous to the
ISS case. In this subsection we use µ̃ for the TVII parameter and µ for the magnetic dipole moment.
We found the following GR corrections to the magnetic dipole moment

µTVII1 = −
c jφZR3

7

�

1−
8Z
9
−

6791Z2

15015
−

940138Z3

2567565

�

+O
�

Z5
�

, (6.39)

µTVII3/4
= −

13c jφZR3

77

�

1−
362Z
429

−
1365553Z2

3374085
−

143395298Z3

448753305

�

+O
�

Z5
�

, (6.40)

µTVII1/2
=

9c jφZR3

49

�

1−
478Z
567

−
2620763Z2

6621615
−

2512279582Z3

7926073155

�

+O
�

Z5
�

, (6.41)

µTVII1/4
=

23c jφZR3

119

�

1−
130Z
153

−
39175933Z2

99804705
−

92088336358Z3

290132277435

�

+O
�

Z5
�

, (6.42)
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Figure 6.3: Comparison between numerical results and analytic Z -series solutions for IRF stars. Central magnetic
field (left) and polar surface magnetic field (right) are normalized to the classical results. As an
intrinsic numerical error estimate we plotted∆Q in black.
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Figure 6.4: Comparison between numerical results and analytic Z -series solutions for IRF stars. On the left we
show results for the magnetic dipole moment and on the right results for the electric quadrupole
moment normalized to the classical results. To obtain the electric quadrupole moment we combined
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expansion of this section. As an intrinsic
numerical error estimate we plotted∆Q in black.
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and for the interior solution we found

aTVII1
φ,< (s)

c jφR2
=

1
56

s2
�

15s4 − 42s2 + 35
�

Z −
s2
�

675s8 − 2882s6 + 3780s4 − 1134s2 − 615
�

Z2

2016
+O

�

Z3
�

, (6.43)

a
TVII3/4
φ,< (s)

c jφR2
=

1
308

s2
�

45s4 − 168s2 + 175
�

Z −
s2
�

2025s8 − 11528s6 + 19935s4 − 7434s2 − 5250
�

Z2

20328
+O

�

Z3
�

,

(6.44)

a
TVII1/2
φ,< (s)

c jφR2
=

3
196

s2
�

5s4 − 28s2 + 35
�

Z −
s2
�

675s8 − 5764s6 + 14445s4 − 6426s2 − 5910
�

Z2

24696
+O

�

Z3
�

, (6.45)

a
TVII1/4
φ,< (s)

c jφR2
=

1
476

s2
�

15s4 − 168s2 + 245
�

Z ,−
s2
�

675s8 − 11528s6 + 54405s4 − 28350s2 − 33510
�

Z2

145656
+O

�

Z3
�

.

(6.46)

In non-vanishing LO(Z1) we again recover a classical solution. In the Newtonian limit c →∞ the
metric gets flat and pressure contributions become negligible. The homogeneous part of eq. (3.100)
simplifies to a′′

φ,cl − 2aφ,cl/s
2 while the inhomogeneous part is now only governed by the density

distribution. The classical GS eq. for a pure dipole field reads

a′′φ,cl.(s)−
2aφ,cl.(s)

s2
= −s2ρ(s). (6.47)

For the TVII EoS constructing a solution to this ODE is a simple task with the method described in this
section. A generalized version of Ferraro’s solution for TVII density gradients reads

a<,µ̃
φ,cl.(s) =

1
105

πρcR
4s2
�

70− 42s2 + (15s4 − 35)µ̃
�

c jφ, (6.48a)

a>,µ̃
φ,cl.(s) = −

µcl.

Rs
= −

4πρcR
4(7− 5µ̃)c jφ

105s
, (6.48b)

µ
µ̃

cl. = −
4

105
πρcR

5(7− 5µ̃)c jφ (6.48c)

and related parameters are

B0,cl. = −
5(2− µ̃)
10− 6µ̃

Zc jφ = −
2
3
(2− µ̃)c jφρcπR2, (6.49a)

Bp,cl. = −
2(7− 5µ̃)
7(3µ̃− 5)

Zc jφ = −
8

105
(7− 5µ̃)c jφρcπR2, (6.49b)

QE,cl. =
1
3
µcl.ΩR2 = −

4
315
(7− 5µ̃)πρcR

7c jφΩ. (6.49c)

As expected the generalized version of Ferraro’s solution for TVII density gradients reduces to the
classical one in the µ̃→ 0-limit.

In Fig. 6.5 and Fig. 6.6 we show numerical results for TVII1. In terms of accuracy and viability of
∆Q as an error estimate we come to the same conclusion as in the discussion for the IRF Z-series
solution for the GS equation. In the right panel of Fig. 6.7 we display results for different values of µ.
Again we find no surprising results.

105



1.0

1.2

1.4

1.6

1.8

2.0

B
0
/B

0,
cl
.

numerical
O[Z 5]

O[Z 10]

O[Z 20]

1.0

1.2

1.4

1.6

1.8

2.0

B
p
/B

p
,c

l.

TVII1

10-3 10-2 10-1

Z

100

10-4

10-8

10-12

10-16

|1
−
B

0
| O

[Z
n
]/
B

0
|

∆Q

10-3 10-2 10-1

Z

100

10-4

10-8

10-12

10-16
|1
−
B
P
| O

[Z
n
]/
B
P
|

Figure 6.5: Comparison between numerical results and analytic Z -series solutions for TVII1 stars. Central
magnetic field (left) and polar surface magnetic field (right) are normalized to the classical results.
As an intrinsic numerical error estimate we plotted∆Q in black.
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7 Conclusion and outlook

After introducing the theoretical framework of the Einstein-Maxwell eqs., we gave a short introduc-
tion into the BGSM/BBGN formalism. Within the BGSM/BBGN formalism it is possible to solve the
Einstein-Maxwell eqs. for magnetically deformed NS numerically exact.

In Chap. 3 we discussed in detail how to expand the Einstein-Maxwell equations in the magnetic
field strength B and the rotation frequency around the metric of a spherical symmetric background
star up to first-order in the angular velocity and second-order in the magnetic field. We discussed
an ansatz which could be used to treat deformations originating from more complicated poloidal
fields when considering higher multipole components in the metric perturbations. An extension to
include toroidal fields by introducing additional metric perturbation would be possible for future
research. During our discussion of the structure eqs. for the spherical symmetric background star
we introduced the TOV eqs. in the log-enthalpy h. The TOV eqs. in h can be integrated very easily
and the Bernoulli theorem in O

�

B1Ω1
�

describes a direct relation between h and the metric potential
ν. We introduced two analytical interior solutions, the interior Schwarzschild and the Tolman VII
solution, and derived the complete structure in O

�

B0Ω0
�

as well as the complete EoS for both.
Our treatment of electro-magnetic fields in the curved spacetime of an O

�

B0Ω0
�

could be extended
to treat fields with higher multipole moments and for the exterior solutions and interior structure eqs.
we already presented some expressions necessary for such an extension.

In our derivation of the HT structure eqs. in O
�

B2Ω1
�

we again used the log-enthalpy h as central
thermodynamic quantity and identified it as a very convenient variable in the theory of perturbatively
deformed NS. We kept a close connection during our derivation between the perturbative and exact
model of the BGSM formalism. We solved the structure eqs. in the stellar exterior analytically and for
the first step of numerical integration we derived r → 0 expansions of all structure eqs. and metric
potentials.

With the methods of Chap. 3 we discussed effects of non-vanishing net charge perturbatively. We
presented expressions for the mass-shift and electro-magnetically induced frame-dragging effect.

We concluded Chap. 3 with a discussion of all important global parameters of the O
�

B2Ω1
�

model.
After a brief chapter about the implementation of the BGSM/BBGN formalism within the software

library LORENE and about the numerical implementation of our structure eqs., we presented our nu-
merical results.

In O
�

B0
�

we can report only very minor differences between results obtained with LORENE and
solutions of the TOV eqs. We have tested our implementation of the TOV eqs. against the ISS and
TVII solution with the conclusion that our implementation works with a very good accuracy. From the
results for the background stars we could already see the potential of the TVII as an effective model
of NS with realistic EoS.

For the classical O
�

Ω1
�

HT frame-dragging frequency and the moment of inertia we presented
perturbative results which are in very good agreement with the exact results from LORENE when
considering low frequencies f ® 10 Hz.

We discussed the effects of O
�

B0
�

background stars onto the electro-magnetic field described in
O
�

B1Ω1
�

. The electro-magnetic field configuration depends strongly on the EoS, since the current
function is directly related to pressure and energy density.

With increasing compactness in the background star the magnetic deformations get weaker, since
stars with increased compactness are much harder to deform. For stiff EoS the deformations are
stronger compared to background stars with the same compactness but softer EoS. The main reason
for this hierarchy is, that NS with stiff EoS have lower densities and pressures compared to NS with
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softer EoS for stars with the same compactness. The magnetic contribution to the energy-momentum
tensor is much more significant, when the pressure and energy density contributions from the fluid
are smaller.

We have only recently discovered proficient parameter sets for the numerical iteration scheme of
the magstar code, when considering configurations with electro-magnetic fields. We were not able to
compute a lot of high accuracy results with our new parameter sets and we have not included specific
results but nearly teased the conclusion we drew from our preliminary results. We plan to include
and compute a sufficient amount of precise magstar results in the near future to round up this work.

In general we report a good agreement between the perturbative approach up to O
�

B2Ω1
�

and
the numerically exact results obtained with LORENE up to central magnetic fields of ∼ 1013 T. This
includes a good agreement for all measured SGR/AXP surface fields. We observe small deformations
for central magnetic fields of ® 1013 T.

In Chap. 6 we derived novel compactness series solutions of the frame-dragging and relativistic
Grad-Shafranov for TVII and IRF background stars. We used this expansion to benchmark the numer-
ical accuracy of our O

�

B1Ω1
�

results and found a very good agreement between both. Especially
the analytical solutions for TVII configurations are interesting since the TVII solution can be used to
model realistic stars.

Applying this expansion approach to higher order rotational, magnetic or even tidal deformations
could be very interesting. Studying the known universality relations [109] between moment of iner-
tia/rotational quadrupole moment and tidal deformability with our analytic expansion approach for
ISS and TVII could provide new insights into this phenomenon.

With our perturbative magnetar model, we present a numerically inexpensive option to study
electro-magnetic fields and even deformations caused by such fields. This model is well suited to
cover fast parameter spaces in terms of EoS and input parameters without the need for a lot of
computing power. We have access to all global parameters and with the complete solution for the
metric and the source terms we could implement and compute additional NS properties like tidal
deformabilities.

The analytical exterior solutions of our O
�

B2Ω1
�

metric could be well suited to study geodetic
motion of neutral or even charged particles.

Extending this model to include more complicated electro-magnetic fields would certainly be inter-
esting but one should probably follow a different approach for implementation. Computing numerical
exterior solutions would eliminate the need to compute them analytically which is a very time con-
suming task and might not be possible for higher-order corrections. With W3 we already encountered
a very complicated exterior solution and for terms with higher multipolarity the complexity will in-
crease further. Using advanced numerical methods like a complex-plane strategy could eliminate the
need to expand the structure equations around the coordinate singularity at r = 0.

While our perturbative approach is numerically inexpensive and rather easy to implement it is not
very flexible. Including additional source terms, magnet field dependent EoS or non-zero temperature
would be very difficult because the expansion assumes a one-parameter EoS.
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A Field equations of the Hartle-Thorne metric

In this appendix we present the raw field equations, which we used in this work to derive vari-
ous structure equations. The O

�

B0Ω0
�

, O
�

B0Ω1
�

, O
�

B2Ω0
�

and O
�

B2Ω1
�

field equations are field
equations of GR

Eαβ ≡ Gαβ − 8πTαβ = Gαβ − 8π
�

T (F)
αβ
+ T (EM)

αβ

�

= 0 (A.1)

expanded to the corresponding order in the magnetic field B and angular velocity Ω. The ansatz for
the metric and the energy-momentum tensor is described in Chap. 3.

We are mainly working with the field equations involving the mixed tensors Eαβ = gαµEµβ since
they reduce to shorter expressions than their purely co- or contravariant counterparts.

The O
�

B1Ω1
�

Maxwell equations were derived and discussed in Sec. 3.4. We only present them in
this appendix to have a complete succession of all field equations from O

�

B0Ω0
�

up to O
�

B2Ω1
�

.

Computing field equations or in general higher objects (e.g. Γ αβγ or Rαβ) for a given metric in GR
is straight forward but if done by hand a tedious and error-prone process. Computer algebra systems
are very well suited to compute the needed higher objects fast and fail-safe. We wrote a short (∼ 200
lines) MATHEMATICA [110] package to compute all needed higher objects for a given metric.

A.1 O
�

B0Ω0
�

: Background equations

In O
�

B0
�

we used the following three field equations
�

E t
t

�

: 1+ eλ
�

8πr2ρ − 1
�

− rλ′ = 0, (A.2)
�

E r
r

�

: −1+ eλ
�

1+ 8πr2P
�

− rν′ = 0, (A.3)
�

E θθ
�

: 2rν′′ + r(ν′)2 + 2ν′ −λ′
�

2+ rν′
�

− 32eλπrP = 0, (A.4)
�

∇µE rµ
�

: 2P ′ + (P +ρ)ν′ = 0. (A.5)

Eq. (A.2) relates the energy density ρ to the gr r metric potential λ. The second field eq. (A.3)
relates the pressure to the two metric potentials. The third field eq. (A.4) involves a second derivative
and the square of the first derivative of the gt t metric potential ν but it contains only the pressure
as source term. The pressure source term can be eliminated when adding (4/rE r

r) to (E θθ ) which
results in a structure equation for metric potentials only. This is the reason why it is often used to
construct analytic interior solutions. The Euler eq. (A.5) on the other hand is very use full for deriving
the TOV equations.

A.2 O
�

B0Ω1
�

: Frame-dragging equation

There is only one nontrivial O
�

Ω1
�

field equation which is related to the scalar product of the two
Killing vectors ξ and χ

�

Eφt

�

:ω′′ −
4
r

�

πr2eλ(P +ρ)− 1
�

ω′ + 16πeλ(P +ρ)(Ω−ω) = 0. (A.6)

Using ω̄= Ω−ω and the O
�

B0
�

eqs. (A.6) can be recast into the more common form

ω̄′′ +
1
2r

�

r(ν′ +λ′)− 8
�

ω̄′ +
2
r
(ν′ +λ′)ω̄= 0. (A.7)
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A.3 O
�

B1Ω1
�

: Maxwell equations

The field equations Eαβ only contain even powers of B and Ω in terms of a series expansion, since the
energy-momentum tensor is even in B and Ω. In O

�

B1
�

we have l decoupled Maxwell eqs.
�

−∇µFφ
µ + 4πJφ = 0

�

: e−λa′′φl +
1
2

e−λa′φl

�

ν′ −λ′
�

− l(l + 1)
aφl

r2
+ 4π jφl = 0. (A.8)

In O
�

B1Ω1
�

we again recover l Maxwell eqs. which are coupled to the magnetic field and the frame-
dragging frequency

�

−∇µFt
µ + 4πJt = 0

�

:e−λa′′t l −
1
2r

e−λa′t l

�

rν′ + rλ′ − 4
�

− l(l + 1)
at l

r2
+ 4π jt l

+
1
r

e−λ
�

ω(rν′ − 2)− rω′
�

�

∑

n

a′φn sinθ
dPn(cosθ )

dθ

�

l

−
2
r2
ω

�

∑

n

n(n+ 1) cosθPn(cosθ )

�

l

.

(A.9)

In the scope of the present work we have only discussed configurations with l = 1 dipolar magnetic
fields and the resulting induced l = 0 and l = 2 electric fields in detail.

A.4 O
�

B2Ω0
�

: Perturbation equations

In our ansatz for the line element we separated the angular dependency from metric- and enthalpy-
perturbations using (m= 0)-harmonics. Solutions for metric potentials and source term perturbations
are by construction independent of the polar angle θ . To decouple equations for monopole (l = 0)
and quadrupole (l = 2) perturbations without the need for additional algebraic manipulations we use
the angles

P2(θ2,1)≡ 1⇔ sin2 θ2,1 = 0, (A.10)

P2(θ2,0)≡ 0⇔ sin2 θ2,1 =
2
3

, (A.11)

and the corresponding projections

(X )l=0 ≡ X |θ=θ2,0
, (A.12)

(X )l=2 ≡ X |θ=θ2,1
− X |θ=θ0

. (A.13)

Using those projections is not necessary to derive decoupled equations for mono- and quadrupole per-
turbations but it is the most convenient way to do so since using different angles to obtain equivalent
equations involves more algebra.

There are five nontrivial, linear independent field equations of O
�

B2
�

: E t
t , E r

r , E θθ , Eφφ and E r
θ .

The O
�

B0
�

contributions have been eliminated from the following equations by using eqs. (A.2)-(A.5).
Using the projections (A.12) and (A.13) one can derive the following four independent, for (l = 0)

and (l = 2) decoupled, equations from E t
t and E r

r :

�

E t
t

�

l=0
: −2r2m′0 + 8πr4 dρ

dh
h0 +

2
3

�

2a2
φ + e−λr2(a′φ)

2
�

= 0, (A.14)

�

E t
t

�

l=2
: −2e−λr4

�

n′′2 − v ′′2
�

+ e−λ
�

rλ′ − 6
�

r3
�

n′2 − v ′2
�

− 2r2m′2 + 4r2
�

h2 − v2

�

− 6eλrm2 + 8πr4 dρ
dh

h2 +
2
3

�

4a2
φ − e−λr2(a′φ)

2
�

= 0,
(A.15)
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�

E r
r

�

l=0
: 2e−λr3n′0 − 2

�

1+ rν′
�

rm0 − 8πr4(P +ρ)h0 +
2
3

�

2a2
φ − e−λr2(a′φ)

2
�

= 0, (A.16)

�

E r
r

�

l=2
: −e−λν′r4n′2 + e−λ

�

2+ rν′
�

r3v ′2 − 2r2
�

n2 + 2v2

�

− 2
�

1+ rν′
�

rm2

− 8πr4(P +ρ)h2 +
2
3

�

4a2
φ + e−λr2(a′φ)

2
�

= 0.
(A.17)

The field equation E r
θ only contains (l = 2) metric perturbations and one source term −8aφa′

φ
:

�

E r
θ

�

: 6r2v ′2 + 3r(rν′ − 2)n2 − 3eλ(rν′ + 2)m2 − 8aφa′φ = 0. (A.18)

The remaining two field equations, E θθ and Eφφ, are rather lengthy and on their own not very
convenient to use but their difference leads to a very short and useful equation for the n2 and m2
metric potentials:

�

Eφφ −E θθ
�

: n2 −
eλ

r
m2 +

2
3

e−λ(a′φ)
2 = 0. (A.19)

The relativistic Euler equations, which encodes energy-momentum conservation, take the form of
three nontrivial equations:

�

∇µE rµ
�

l=0
:n′0 + h′0 −

2 jφ

3
�

P +ρ
�

r2
a′φ = 0, (A.20)

�

∇µE rµ
�

l=2
:n′2 + h′2 +

2 jφ

3
�

P +ρ
�

r2
a′φ = 0, (A.21)

�

∇µE θµ
�

:n2 + h2 +
2 jφ

3
�

P +ρ
�

r2
a′φ = 0. (A.22)

Of the nine O
�

B2
�

eqs. (A.14)-(A.22), all except for eq. (A.15) were used in this work. We presented
eq. (A.15) in this appendix for completeness only.

A.5 O
�

B2Ω1
�

: Higher-order frame-dragging corrections

There is only one nontrivial O
�

B2Ω1
�

field equation which describes O
�

B2
�

corrections to the frame-
dragging frequency in form of W1 and W3. Using projections similar to (A.12) and (A.13) it is possible
to derive two decoupled equations

�

Eφt

�

l=1
:e−

λ
2−

ν
2 r4W ′′

1 −
1
2

e−
λ
2−

ν
2 r3W ′

1

�

−8+ rλ′ + rν′
�

− 2e−
λ
2−

ν
2 r3W1

�

λ′ + ν′
�

+ S0 + S1 − S2 = 0,
(A.23)

�

Eφt

�

l=3
:e−

λ
2−

ν
2 r4W ′′

3 −
1
2

e−
λ
2−

ν
2 r3W ′

3

�

−8+ rλ′ + rν′
�

− 2e−
λ
2−

ν
2 r3W3

�

5eλ + rλ′ + rν′
�

+ S2 + S3 = 0,
(A.24)
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with

S0 ≡e−
λ
2−

ν
2 r3

�

eλm′0 + rn′0
�

ω̄′ + e
λ−ν

2 r2m0

�

4ω̄
�

λ′ + ν′
�

+
�

−1+ rλ′
�

ω̄′
�

+ 16e
λ−ν

2 πr4h0(
dρ
dh
+ P +ρ)ω̄,

(A.25)

S2 ≡
1
5

e−
λ
2−

ν
2 r3

�

eλm′2 + 5rn′2 − 4rv ′2
�

ω̄′ +
1
5

e
λ−ν

2 r2m2

�

4ω̄
�

λ′ + ν′
�

+
�

−1+ rλ′
�

ω̄′
�

+
16
5

e
λ−ν

2 πr4h2(
dρ
dh
+ P +ρ)ω̄,

(A.26)

S1 ≡−
24
5

e
λ−ν

2 at,2aφ −
16
5

e
λ−ν

2 a2
φω+

4
5

e−
λ
2−

ν
2 r2

�

5a′t,0 − a′t,2
�

a′φ −
16
5

e−
λ
2−

ν
2 r2ω

�

a′φ
�2

, (A.27)

S3 ≡−
16
5

e
λ−ν

2 at,2aφ −
32
15

e
λ−ν

2 a2
φω+

4
5

e−
λ
2−

ν
2 r2a′t,2a′φ +

8
15

e−
λ
2−

ν
2 r2ω

�

a′φ
�2

. (A.28)
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B Equations of state

B.1 Incompressible relativistic fluid (IRF)

Arguably the simplest but thermodynamically consistent EoS is the one of an incompressible fluid.
In the following we will derive the EoS in terms of the fluid log-enthalpy h of a cold incompressible
relativistic fluid (IRF) of constant energy density

ρ(h)
!
= const.≡ ρc. (B.1)

Integrating the fundamental relation dP/dh= ρ+ P with the boundary condition P(h= 0) = 0 leads
to:

P(h) = ρc(e
h − 1). (B.2)

Using eq. (B.2) we can derive an expression for the baryon number density

nB =
dP
dµ
=

dP
µdh

=
ρc

mB
, (B.3)

where we used the fundamental relation between the fluid log-enthalpy h and the baryon chemical
potential µ = µ0eh = mBeh. We use a fixed baryon rest mass ofmB = 931.192 MeV and characterize
different IRF EoS by the only remaining parameter their constant density. Throughout this work we
will frequently use the notation IRF(ρc

�

MeV fm−3
�

).

The TOV eqs. can be integrated analytically when using an IRF EoS because of the very simple
analytical form of this EoS. This particular solution of the TOV eqs. is called interior Schwarzschild
solution [57] and we derived and discussed it in Sec. 3.2.4.

B.2 EoS of the Tolman VII interior solution (TVII)

We introduced and discussed Tolman VII interior solutions in Sec. 3.2.5. In this appendix we will focus
on the corresponding EoS. In Sec. 3.2.5 we derived expressions for all thermodynamic quantities as
functions of the dimensionless radial variable s = r/R. To derive an EoS relating those quantities in
TVII configurations we begin with inverting the expression for the log-enthalpy from eq. (3.80):

φ(h) = arcsec

�

eh

cosφ1

�

. (B.4)

We now have a relation for the auxiliary function φ in terms of h. It is possible to analytically invert
eq. (3.77a) to get a complicated expression for s(φ(h)):

s(h) =

È

18(3µ− 5)
p

10− 6µµ3/2e2cφ+W (1)−2φ(h) −
p
(10−6µ)µe

−2cφ−W (1)+2φ(h)(6µ(3µ−5)+25Z)
Z + 60(3µ− 5)µ

6µ
p

6µ− 10
, (B.5)
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with the constants W (1) from eq. (3.77b) and cφ = arctan
�

p

5− 3µ/
q

µ
�

6/Z − 12
�

�

. Using the

chain rule and the derivative ds/dh with the expressions for P(s), ρ(s) and nB(s) from Sec. 3.2.5 we
can provide a complete EoS for TVII configuration in h in form of

P(h) = P(s(h)), (B.6a)

dP(h)
dh

=
dP(s)

ds
ds(h)

dh
, (B.6b)

ρ(h) = ρ(s(h)), (B.6c)

dρ(h)
dh

=
dρ(s)

ds
ds(h)

dh
, (B.6d)

nB(h) = nB(s(h)), (B.6e)

dnB(h)
dh

=
dnB(s)

ds
ds(h)

dh
. (B.6f)

This EoS scales in the central pressure the same way the IRF EoS does. Apart form this, EoS of
TVII configurations are special in the sense that there are no equilibrium configurations that lie on
the same EoS. Every TVII configuration has its unique EoS determined by the choice of ρc, hc and
mB. Throughout this work we will frequently use the notation TVIIµ(ρc

�

MeV fm−3
�

). The left panel
of Fig. B.1 illustrates that fact. The EoS of three TVII1(473) configurations with identical central
pressure and mean baryon rest mass are distinct. They are not related by a scale and do not follow a
common curve.

When considering sequences with constant compactness/central log-enthalpy but differing central
density the EoS are related linearly in ρc. For the TVII EoS there is no obvious unique way of speci-
fying the EoS. Choosing sequences of constant central density is a natural choice for the IRF EoS and
doing the same for TVII EoS allows to describe sequences with differing compactness. In the scope of
this work we choose this view because we want to discuss NS with differing Z . Considering different
choices of a fixed quantity to distinct between TVII EoS is possible and depending on the application
better suited [55, 72].

In the right panel of Fig. B.1 we compare TVII1(473) to the other EoS used in this work for a
Z = 0.15 NS. By construction of TVII1(473) the EoS is very similar to the SFHo’s EoS but TVII EoS
are in general well suited to model the high density regime of hadronic EoS.

The EoS and the algebraic structure of the TVII solution presented in this work is different from
the one used by A. M. Raghoonundun in [55, 72]. We derived the complete EoS in h and not only
P(ρ). For computations in the scope of this work P(ρ) is not sufficient we need the full EoS: all ther-
modynamic quantities and their derivatives. Implementing this EoS numerically is straight forward
using eqs. (B.5) and (B.6) but one has to be aware of one property of our form of the TVII solution.
The auxiliary function W (s) from eq. (3.77b) is a mapping W : [0, 1]→ C but the imaginary parts of
W (1) and W (s) are always equal. All thermodynamic quantities and metric potentials for that matter
depend on the difference W (1)−W (s) only and they are always real. When implementing the EoS it
is however necessary to use complex data types and functions when working with W .

B.3 Relativistic polytropes (Poly)

In the previous section we introduced the IRF EoS. Another yet more flexible class of simple analytical
EoS are relativistic polytropes (Poly). The pressure of a relativistic polytrope is related to the baryon
number density

P(nB) = κρ0

�

nB

nB,0

�γ

≡ KnγB, (B.7)
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Figure B.1: EoS in form of pressure over energy density inside different equilibrium configurations. On the left
we have three configurations with TVII1(473) EoS with varying compactnesses and on the right we
have six Z = 0.15 configurations with different EoS.

with a polytropic/adiabatic index γ, a dimensionless pressure coefficient κ and two arbitrary number-
and energy densities nB,0 and ρ0. This definition is similar to the one presented in [18] and is
consistent with the definition [97, 111] of a relativistic adiabatic index γ

γ≡
ρ + P

P
dP
dρ

. (B.8)

Using eq. (B.7) and the Gibbs-Duhem-Relation at zero temperature one can derive a relation between
energy density and baryon density

ρ(nB) = mBnB +
KnγB
γ− 1

. (B.9)

With eqs. (B.7) and (B.9) one can derive an expression for the log-enthalpy h

h(nB) = log

�

P(nB) +ρ(nB)
mBnB

�

= log



1+
γ

γ− 1

Knγ−1
B

mB



 (B.10)

which can be inverted to yield

nB(h) =

�

mB

K
γ− 1
γ

�

eh − 1
�

�
1
γ−1

. (B.11)

Eq. (B.11) together with eqs. (B.7) and (B.9) resemble the complete relativistic polytropic EoS in the
log-enthalpy h.

The speed of sound as a function of nB is given by

cs(nB)
2 ≡

dP
dρ
=

dP
dnB

dnB

dρ
=

K(γ− 1)γnγB
mB(γ− 1)nB + KγnγB

(B.12)
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Figure B.2: Gravitational (solid lines) and baryonic mass (dotted lines) over stellar radius (left) and over central
log-enthalpy h for three different Poly EoS. Dashed and dash-dotted configurations are unstable.
Crosses mark stable equilibrium configurations with maximum mass.

and its nB→∞ limit is

lim
nB→∞

cs(nB)
2 = γ− 1. (B.13)

Physical and causal relativistic polytropes have γ ∈ (1,2]. For γ < 1 the pressure contributions to ρ
are negative and sound speeds can become imaginary. In the case γ = 1 the given expressions are
singular. A solution for an γ = 1 polytrope is possible but the resulting EoS is not physical. For γ > 2
the EoS become acausal (cs > 1) at high baryon densities while the γ = 2 polytropes asymptotically
approach the causal limit cs = 1.

For our numerical computations we adopt values used in LORENE: mB = 931.192MeV, nB,0 = 0.1 fm−3

and ρ0 = mBnB,0 = 93.119 MeV fm−3. Once those parameters are fixed different Poly EoS are charac-
terized completely by their dimensionless pressure coefficient κ and their polytropic/adiabatic index
γ. Throughout this work we will frequently use the notation Poly(κ|γ) .

Fig. B.2 shows the M−R and M−h curves for three different Poly EoS and there are several features
worth mentioning.

• With increasing polytropic index the overall compactness of the configurations increases.

• For γ = 4/3 there are no stable configurations since ∂M/∂ h < 0∀h and the gravitational
binding energies are negative (MB −M < 0).

• The γ= 5/3 polytrope has a stable branch and for h→ 0: M → 0 and R→∞.

• Poly(0.050|2) has a stable branch and an interesting low h asymptotic: for h→ 0: M → 0 but
R→ 25.2 km.

• All three polytropes show a spiral structure for high h: the individual M − R-curves converge
towards an EoS-dependent point (RO, MO).

J. M. Heinzle et al. presented an in-depth discussion of stellar structure for relativistic polytropes in
their paper [97]. They introduced four theorems describing the mass-radius properties of Poly EoS,
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which we just phenomenologically presented here.

We will conclude this section about Poly EoS with specifying their scaling properties. The thermo-
dynamic quantities of two relativistic polytropes I and I with mI = mII and γI = γII ≡ γ are related
by

S2
I

�

nI
B(h), PI(h),ρI(h)

�T
= S2

II

�

nII
B(h), PII(h),ρII(h)

�T
, (B.14)

with

S2
I = K

1
γ−1

I and S2
II = K

1
γ−1

II . (B.15)

Due to that scaling, solutions of the TOV eqs. with EoS I and II are related for configurations with the
same central log-enthalpy h(r = 0)

rI(h)/SI = rII(h)/SII, (B.16)

zI(h) = zII(h). (B.17)

The associated global parameters are related

RII =
SII

SI
RI, (B.18)

MII =
SII

SI
MI, (B.19)

ZII = ZI, (B.20)

M II
B =

SII

SI
M I

B. (B.21)

As a result of eqs. (B.16) and (B.18) s = r/R is scale invariant and in combination with eqs. (B.17)
and (B.20) the metric potentials in terms of s are identical for I and II

νI(s) = νII(s) ∀s ∈ [0,∞), (B.22)

λI(s) = λII(s) ∀s ∈ [0,∞). (B.23)

For the HT quantities similar scaling relations arise as a natural consequence of the scaling effects of
the background star.

Introducing polytropic units would be advantageous when dealing extensivly with this kind of EoS.
But since we are using only Poly(0.05|2) in the main part of this work we did not compute nor
present results in polytropic units.

B.4 Tabulated/interpolated realistic EoS: DD2, SFHo and FSG

In this section we present the interpolation method we used for tabulated EoS as well as the three
tabulated EoS we used in this work.

In order to provide a thermodynamically consistent EoS from a tabulated EoS we use the method
proposed by T. Nozawa et al. [112] and M. D. Swesty [113]. For an Eos provided as a table of

�

nB, P,ρ
�

data points we first compute h for the data points. After that we generate two splines: a hermite spline
through

�

log10 P, log10 h
�

and a linear spline through
�

d log10 P/d log10 nB, log10 h
�

. Between the first
two data points we do not use the log10-interpolations since they are singular for P = 0 and h = 0.
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EoS nB,s

�

fm−3
�

K [MeV] J [MeV] L [MeV]
DD2 0.1491 242.7 31.67 55.03
SFHo 0.1583 245.4 31.57 47.10
FSG 0.1482 229.5 32.56 60.43

Table B.1: Nuclear matter properties of the general purpose EoS DD2, SFHo and FSG [98, 100, 102]

Between the first two points we use splines through (P, h) and a linear spline through
�

dP/dnB, h
�

.
We adapt the interpolation order of the hermite spline accordingly to the density of data points. For
the tabulated EoS obtained from COMPOSE we use a cubic spline at high densities, a quadratic one at
lower densities and at very low densities we use a linear spline.

Using the Gibbs-Duham relation we can construct all thermodynamic quantities at interest from
the two splines (dP/dnB)(h) and P(h) when additionally using the derivative (dP/dh)(h) provided
by the hermite spline. This method guaranties a thermodynamic consistent EoS, meaning an EoS
satisfying the Gibbs-Duham relation, even between the given data points. This interpolation method
in the log-enthalpy is advantageous to us since we need P, ρ, nB and their derivatives as functions of
h.

For more details on the explicit implementation of this method we refer to the reference manual of
the LORENE library [92]. Our implementation is very similar to the one of the Eos_tabul class. We
modified this class to have an identical implementation of our interpolation scheme in LORENE and
in our code.

An extreme variety of tabulated EoS for cold NS matter is publicly available. Those EoS vary from
the matter content they try to describe to the methods that where used to obtain them. For an
excellent overview we recommend the recent review paper of M. Oertel et. al. [114] from 2016.

In the scope of this work we have decided to use three so called general purpose EoS. General
purpose EoS cover the full thermodynamical parameter range needed for involved astrophysical sim-
ulations. They give pressure, energy- and baryon-density and even information on composition as a
function of temperature, charge fraction and baryon-density. For a detailed discussion of this kind of
EoS we refer the reader to [114–116]. The three EoS we use can be obtained from COMPOSE [117].
For describing cold NS matter we computed the cold β-equilibrium EoS of those general purpose EoS
using compose.f90 code [117, 118].

The three EoS we use are based on the extended nuclear statistical equilibrium (NSE) model of
Hempel and Schaffner-Bielich (HS) [119]. The HS model describes a mixture of nucleons, electrons
and nuclei in NSE. Unbound nucleons and their interactions are described with a relativistic mean
field (RMF) method using different parameterizations. Around seven thousand nuclei are considered
and described by a classical Maxwell-Boltzmann gas. Apart from light nuclei like d, t, h and α, heavy
nuclei ranging from slightly above the proton- to slightly below the neutron drip line are included.
Experimental data for those nuclei is used if it exists and missing data is obtained from nuclear
structure calculations. Several medium effects like Coulomb energies by the surrounding electron
gas, excited states and excluded-volume effects are included in the HS model.

The three EoS we use are all based on the HS model but use different RMF-parameterizations. They
include protons, neutrons, electrons and nuclei (npeN).

• The DD2 EoS [98](5) uses the RMF parameter set of S. Typel et al. [99]. It is a stiff EoS with a
high maximum mass at rather large radii.

(5) Since we originally obtained the EoS data files the COMPOSE web page was relaunched and the urls to the indi-
vidual EoS changed. As of 2017.06.21 all three EoS can be found on this page http://compose.obspm.fr/table/
family-subg/4/7/.
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• The SFHo EoS [100] is based on RMF parameters of A. W. Steiner, M. Hempel and T. Fischer
[101]. The SFHo parametrization was specially optimized to be consistent with latest NS mass
and radius constraints.

• The FSG Eos [102] uses RMF parameters of B. G. Todd-Rutel and J. Piekarewicz [103]. It is a
soft EoS which does not reach NS masses above ∼ 1.7M�.

All three EoS fulfill latest constraints from nuclear physics experiments. The experimental value for
the nuclear saturation density is nB,s ∼ 0.16 fm−3. Nuclear incompressibility from the experiment
expected to be K = 240± 20 MeV. Experimental data is compatible with nuclear symmetry energies
J between 28 and 34 MeV and a symmetry slope parameter L between 20 and 120 MeV. References
and definitions for those parameters can be found in e.g. [115]. The corresponding values for the
three EoS can be found in Tab. B.1.

Fig. B.4 displays the relation between various thermodynamic properties for different EoS.
DD2 generates a high pressure at a given energy-density and is therefore considered as stiff, while

FSG generates a lower pressure and is considered soft. SFHo has a medium stiffness between DD2
and FSG.

The sound speeds of DD2 and FSG are causal for all tabulated values. SFHo becomes acausal at
very high pressures but for those pressures the NS configurations are already unstable.

For low densities all the tabulated EoS become extremely similar since the different parametriza-
tions of the nuclear interaction have very limited impact on the low density regime of the EoS.

Fig. B.3 shows the complete mass-radius and mass-central baryon-density curves for all three tabu-
lated EoS and for the analytic ones introduced previously.

At low baryon-densities nB(0)® 10−8 fm−3 equilibrium configurations of the tabulated EoS are on a
self-bound planet branch. With a rather high maximum planet mass of 0.38 M�. The low temperature,
low pressure asymptotic of those general purpose EoS is microscopically not fully realistic. The EoS
can not describe the exotic phases and crystalline structures [1, 114] of a realistic NS crust and they
do not approach nB,Fe for P → 0. For a detailed description of the crust one would need to use an
extra EoS for the crust like BPS [120]. For all discussions within this work such a detailed model of
the NS crust is not necessary and we use the plain general purpose EoS only.

For central densities below 1.3× 10−6 fm−3 stable configurations are on a white dwarf (WD) branch
stabilized by the degeneracy pressure of the electron gas. The maximum mass on this WD branch is
0.96 M� with a corresponding radius of 1554km. Those values are rather low for realistic WD but
since DD2, SFHo and FSG do not describe WD matter that is to be expected.

The stable NS branch begins for nB(0) ¦ 0.8× 10−2 fm−3 beyond the neutron drip line. Stable
configurations on the NS branch are stabilized by the degeneracy pressure of the nucleons and the
strong repulsive component of the nuclear interaction at short ranges. Properties of configurations on
this branch are discussed in Sec. 5.1.
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Figure B.3: Mass-radius (left) and mass-central baryon-density (right) curves for the tabulated general purpose
EoS DD2, SFHo and FSG. For comparison we included the analytic EoS Poly(0.05|2) , IRF(189) and
TVII1(473) . Crosses denote the NS with maximum mass, triangles denote the onset of the stable NS
branch, squares mark the WD with maximum mass and the points denote the onset of the
self-bound planet branch.
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Figure B.4: Pressure over log-enthalpy (top-left), baryon-density over log-enthalpy (top-right), pressure over
energy-density (bottom-left) and pressure over speed of sound (bottom-right) for the tabulated,
general purpose EoS DD2, SFHo and FSG. For comparison we included the analytic EoS
Poly(0.05|2) and IRF(189) . The markers denote the central values corresponding to the special
equilibrium configurations marked in Fig. B.3.
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