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1 Introduction
The motivation to understand the smallest constituents of the world has a long lasting history; beginning
with the study of the “atomos” in ancient Greece to actual knowledge of the fundamental particles of
matter, called quarks, leptons and gauge bosons, people always wanted to scrutinize actual theories and
get to the basic understanding behind. In the last 70 years there was an incredible progress which cum-
mulated in a quantum field-theoretical formulation of the theory of strong interaction, called Quantum
Chromodynamics (QCD).
This theory has very interesting features and exhibits remarkable phenomena, like confinement and
asymptotic freedom, but also possesses a very rich structure in the phase diagram. The Lagrangian is
given (with implicitly summing over same indices and using natural units) by

LQCD = q̄
�

iγµ Dµ− m̂
�

q−
1

4
GaµνGa

µν , (1.1)

with q denoting a quark spinor with six flavors (u, d, s, c, b, t), the covariant derivative Dµ = ∂ µ−ig λ
a

2
Aaµ,

m̂ the mass matrix and the gluon fields Aa
µ for color a. The gluon field strength tensor is given by

Ga
µν = ∂µAa

ν − ∂νA
a
µ+ g f abcAb

µAc
ν , (1.2)

where g is denoting the coupling constant and f abc are the structure constants of QCD, which is locally
gauge symmetric under SU(3).
For high energy densities in strongly interacting matter there are two possible phase transitions: the de-
confinement transition as well as the restoration of chiral symmetry. At the deconfinement transition the
hadronic phase becomes a quark-gluon plasma. For high densities and low temperatures there is also a
region where matter should become color-superconducting, which can be regarded as the condensation
of quarks via an attractive interaction. The pairing of quarks in two flavors, namely the up and down
quarks is commonly called 2SC color superconductivity, whereas the pairing of up, down and strange
quarks occurs in the so called CFL phase. It is still a demanding task to explore the exact phase diagram
of QCD. Experimentaly there are only two directly reachable empirical points of the phase diagram at
zero temperature: the vacuum state at zero chemical potential and nuclear matter-saturation density.

The main focus of this thesis is to explore the phase diagram of strongly interacting matter with respect
to inhomogeneous phases in color superconductivity and study the simultaneous appearance of color-
superconducting and chirally broken phases. In the first part of the thesis we analyse the interplay of
homogeneous 2SC and chirally broken phases with inhomogeneous chirally broken phases. In the sec-
ond part we consider 2SC condensates with a one-dimensional modulation in the order parameter and
derive the corresponding phase diagram.
To circumvent the problem of the very complicated evaluation of this topic within QCD, a phenomeno-
logical Nambu–Jona-Lasinio model is used for a simplified approach. Therefore this document is or-
ganized as follows: First we introduce the concept of color superconductivity in chap. 2, present in
chap. 3 Nambu–Jona-Lasinio models, review their properties and calculate thermodynamical quantities
from these models. This will be used to obtain a phase diagram for chirally broken and 2SC con-
densates. The interplay of homogeneous 2SC and inhomogeneous chirally broken phases at different
parameter sets and regularizations is studied in the following chapter 4. Beside that inhomogeneous
color-superconducting condensates are considered, an extension to non-zero temperature is given and
the different phase diagrams are presented. Finally we summarize our findings in chapter 5, conclude
what can be learned from our results and give an outlook for remaining tasks to be done.
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2 Color Superconductivity
First suggested by Collins and Perry [CP75] and by Bailin and Love [BL82] color superconductivity has
not received much attention for strongly interacting quark matter for roughly twenty years. But Alford
et al. [ARW98] and Rapp et al. [RSSV98] found evidence for a gap in a fermionic spectrum of the order
of 100 MeV for a baryon chemical potential of around 500 MeV, which gave rise to an increased interest
in color superconductivity1.
According to the Cooper-theorem [Coo67] every system of fermions with an attractive interaction can
form pairs of fermions at no free energy cost in the vicinity of the highly degenerate surface of the Fermi
sphere, causing an instability in the normal state. For QCD the “Cooper-pairs” are made of quarks (as
separate color carrying objects) and this is the reason why the mechanism is called color superconductiv-
ity, to distinguish it from the ordinary superconductivity. In general this is similar to the BCS-theory for
common superconductors, where an attractive interaction between electrons is mediated by phonons,
but for color superconductivity more possible condensation patterns are expected, since quarks have
more degrees of freedom. The observation of bound hadrons (like “ordinary” matter) is a strong hint
for the existence of color-superconducting states, because this shows, that there must be at least one
attractive interaction channel in QCD. Diquarks are the primary constituents in a theory of color super-
conductivity and naively speaking consist of two paired quarks.
The pairing for homogeneous condensates occurs between fermions with opposite momenta ~k1 = −~k2
and, if both fermions reside at the surface of the Fermi sphere, the pairing does not cost any free-energy.
If the Fermi momenta of the fermions are unequal, then there is a possibility for an adaption process
of the Fermi spheres to become equal and form Cooper-pairs with total momentum ~ktot = 0. Clearly
this is only favored, if the energy needed for this process is compensated by the pairing energy, which
sets a limit for this pairing mechanism [Clo62, Cha62] and allows for the appearance of inhomogeneous
color-superconducting condensates.
One of the main consequences of color superconductivity is a gap in the single-particle spectrum, which
is analogous to ordinary superconductivity and the well-known BCS-result [BCS57]

TC ≈ 0.57∆(T = 0) (2.1)

(approximately) holds for a theory of quarks [PR99].
Color superconductivity can only be accessed in a controlled way - so far - by a weak-coupling ex-
pansion, because of asymptotic freedom of QCD. Nonetheless it was shown, that there is not only one
color-superconducting phase possible, but several different phases can occur in color superconductiv-
ity [ASRS08]. Also the possible appearance of spatially varying, inhomogeneous color-superconducting
condensates in the phase diagram of strongly interacting matter was studied by Alford et al. [ABR01]
and others.

1 Due to a relation between the gap and the temperature, where color superconductivity vanishes, observation of color
superconductivity seemed to be more promising by the observation of gaps of the order of 100 MeV at this time, see
eq. (2.1).
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3 Nambu–Jona-Lasinio models
As already mentioned, the study of QCD is a very hard and tedious task and has yet not been fully solved.
Lattice gauge theory simulations of QCD [KL04] have a conceptual problem for non-zero chemical po-
tential µ, where they suffer from the fermion sign problem. This limits such studies to small, non-zero
chemical potential [ABD+09] and renders them inapplicable for color superconductivity. Other methods
also have a limited applicability. For instance perturbation theory is only valid for sufficiently large en-
ergies, while Schwinger-Dyson equations [Fis06] are computationally very hard to manage. Therefore
beside the ongoing effort to solve full QCD, so called effective or phenomenological models were de-
veloped, describing the relevant degrees of freedoms and parameters of QCD while neglecting (for this
region of interest) less important degrees of freedom of the full theory.
To explore various aspects of the phase diagram, there are a plethora of approaches and methods to
model QCD. A sort of very popular models in the last years are the so called Nambu–Jona-Lasinio (NJL)
models (first proposed in [NJL61a, NJL61b]), which are schematic phenomenological models succesfully
used to describe nucleon-nucleon interactions by using fermionic local point-like interactions. Nambu
and Jona-Lasinio postulated in their model that a physical mass can be generated by the interaction of
massless fermions in analogy to the gap of the BCS-theory of superconductors [BCS57]. Their model
was used to describe strongly interacting systems, but soon after the appearance of QCD it was not attrac-
tive any more to study strongly interacting matter in such an effective model. Later it was nonetheless
recognized, that it still can be used to describe non-perturbative effects of QCD in the low-energy regime
and long wavelength limit while it is simplier to handle than solving full QCD. By construction the model
includes mechanisms to dynamically give bare quarks an effective fermion mass and it also turns out
that it respects the low-energy theorems for QCD.
As an advantage the NJL model can “be designed to share all global symmetries with QCD” [VW91],
which allows to study characteristics of that complicated theory in a much more simplified version and
clarify the relevant degrees of freedom. In this scheme the dynamical quark constituent mass can be
understood as the spontaneous symmetry breaking of chiral symmetry, which is one of the main reason
why the NJL model is often used.
One of the drawbacks of these model-types is that there are neither gluonic interactions nor confine-
ment. This leads for example to unphysical decays of mesons in the NJL model. However, confinement
is probably the least important property of QCD in the low-energy limit and can be neglected for our
purposes.
Due to quadratic fermionic interactions the NJL model has coupling constants with negative energy
dimension and is therefore not renormalizable, but there are several regularization schemes [Kle92]
available to render divergencies finite.

3.1 Two-flavor Lagrangian

In the following we consider a two-flavor NJL-Lagrangian, review symmetries and illuminate the prop-
erties of the NJL model for this case. Here the flavor degrees of freedom are only down und up quarks.
If we assume that we can include the gluon dynamics into an effective interaction so that the gluons are
effectively frozen out, a typical two-flavor NJL-type isospin-symmetric Lagrangian is given for point-like
quark-(anti)quark interactions in the scalar and pseudoscalar channel by

L =L0+Lq̄q +Lqq, (3.1)
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where

L0 = ψ̄
�

i /∂ −m
�

ψ, (3.2)

Lq̄q = G
�

�

ψ̄ψ
�2
+
�

ψ̄iγ5 ~τψ
�2
�

, (3.3)

Lqq = H
∑

A=2,5,7

�

ψ̄iγ5Cτ2λAψ̄
T
��

ψTC iγ5τ2λAψ
�

, (3.4)

and ψ is a quark-field 4NcN f -spinor with Nc denoting the number of colors, N f denotes the number of
flavors, m the undressed “bare” quark mass and G is the coupling constant in the color singlet channel.
The matrices γµ denote the conventional Dirac gamma matrices and τA the isospin Pauli matrices. The
charge-conjugation operator C is defined as C := iγ2γ0 and H is the coupling constant for the scalar
quark-quark interaction in the color anti-triplet channel.
The first part of eq. (3.3) describes scalar interactions and the second one pseudoscalar interactions in
the quark-antiquark channel. The associated quark condensates are the scalar condensate 〈ψ̄1ψ〉 and
pseudoscalar condensate 〈ψ̄iγ5~τψ〉.
The second part eq. (3.4) of the overall Lagrangian describes the interaction in the quark-quark channel
and allows for more pairing patterns. In general the appearing diquark condensates for color supercon-
ductivity can be written in the form 〈ψTOψ〉, where O has to be a totally antisymmetric operator. Of spe-
cial interest in this condensation patterns will be the scalar 2SC condensate defined by 〈ψTCγ5τ2λ2ψ〉,
which describes the formation of condensates of red and green up and down quarks. For this choice the
blue up and down quarks remain unpaired and do not participate in the 2SC quark-quark condensation.
This SU(2) Lagrangian eq. (3.1) shares the important symmetries of QCD. For example in the case of
isospin-symmetry (because of mu ≈ md) the SUV (2)-symmetry holds in isospin-space. The chiral sym-
metry SUR (2) ⊗ SUL (2) is defined via the invariance of the Lagrangian under transformations of the
form

ψR,L → exp
�

iθ a
R,L

τa

2

�

ψR,L (3.5)

and holds in the case of massless quarks m= 0 in this model. Formally the invariance of the Lagrangian
is caused by the algebraic relation

SUV (2)⊗ SUA (2)∼= SUR (2)⊗ SUL (2) (3.6)

where the invariance of the Lagrangian under SUA (2)-rotations is used and

SU
�

N f

�

V
: ψ→ exp (iθ v

a τa)ψ (3.7)

defines the vector SU(N f ) isospin transformation. The transformation

SU
�

N f

�

A
: ψ→ exp (iθA

aγ5τa)ψ (3.8)

is the so called axial vector transformation, γ5 denotes the fifth gamma matrix, θ v
a and θA

a are parameters
of the transformation and τa denotes the generator of flavor SU(N f ). The isomorphism eq. (3.6) means
that for the chiral limit the currents jµL,R associated with the chiral symmetry can be linearily added to
yield the vector current Vµ,a = jµ,a

R + jµ,a
L and axial-vector current Aµ,a = jµ,a

R − jµ,a
L which in turn also

determine symmetry transformations, given on the LHS of the isomorphism.

For a sufficiently large coupling the ground state is not invariant under this transformation, which leads
to spontaneous symmetry breaking in the vacuum and accounts to the appearance of chirally broken
phases in our model. The order parameter of this symmetry breaking turns out to be the chiral condensate
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of the form 〈ψ̄ψ〉. In general chiral symmetry breaking in the NJL model corresponds to a different
structure of the vacuum by the presence of quark-antiquark pairs, which mix left- and right-handed
quarks. Therefore the chiral condensate has a non-vanishing expectation value, if the chiral symmetry
is broken. This also leads to the appearance of Goldstone bosons; algebraicly the spontaneously broken
symmetry of the Lagrangian fulfills

SUR (2)⊗ SUL (2)→ SUL+R (2) , (3.9)

which is isomorphic equivalent to SUV (2).
The 2SC condensate is a flavor singlet and it is invariant under the isospin-transformation SUV (2) and the
SUA(2)-transformation. Therefore it does not break chiral symmetry. Due to the assumption of unpaired
blue quarks the presence of the 2SC condensates causes the SUc(3) color symmetry to break down to a
SUc(2)-symmetry.

3.2 Thermodynamic potential and gap equations

Once the thermodynamic potential for the NJL model is known, thermodynamical quantities can be ex-
tracted from it. Especially we are interested in the phase boundaries, which enable us to draw a phase
diagram for strongly interacting quark matter. Since this is essential for our analysis of possible homo-
geneous and inhomogeneous phases, in the following the derivation of the thermodynamic potential is
shown for the two-flavor NJL-Langrangian for a homogeneous 2SC and chiral condensate.
To calculate thermodynamical quantities we consider the grand potential (or refered to as “thermody-
namic potential”) per unit volume, which is given by

Ω =−
T

V
lnZ , (3.10)

where T is the temperature, Z the grand canonical partition function (from now on omitting “grand
canonical”) and V the unit volume.
The partition function Z encodes all statistical quantities and is given by

Z = tr exp

�

β

∫

d3 xH −µini

�

, (3.11)

with the µi ’s denoting the chemical potential for the species i, β = T−1, ni = ψ†ψ and H is the
Hamiltonian. Because we concentrate on one common chemical potential we will drop the index i for
further calculations. The trace has to be understood as a functional trace running over all states of
the system and the Hamiltonian is given by a Legendre transformation of the Lagrangian L as H =
iψ†ψ̇−L .
We constrain ourselves for further evaluations to a mean-field approximation of the thermodynamic
potential Ω, where we consider scalar chiral condensates and color-superconducting condensates. For
the case of homogeneous quark-antiquark condensates we assume that the only pairing between quark
and antiquark happens for

φ = 〈ψ̄ψ〉. (3.12)

For the diquark condensates we constrain our calculations to spin-0 condensates, where we focus on the
most important condensate, the 2SC condensate

s22 =
¬

ψTCγ5τ2λ2ψ
¶

, (3.13)
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allowing for the pairing of up and down quarks, as already discussed.
In the mean-field approximation the values of the fields are replaced with their expectation value and
fluctuations

�

ψ̄ψ
�

=
¬

ψ̄ψ
¶

+δ
�

ψ̄ψ
�

and quadratical terms of the fluctuation are neglected

�

ψ̄ψ
�2
≈
¬

ψ̄ψ
¶�

ψ̄ψ
�

+
�

ψ̄ψ
�¬

ψ̄ψ
¶

−
¬

ψ̄ψ
¶¬

ψ̄ψ
¶

,

which analogously also is done for the diquark condensates 〈ψTOψ〉.
Inserting the non-zero expectation values of diquark and chiral condensates in the Lagrangian gives

L = ψ̄
�

i /∂ −m
�

ψ+ G
�

2
¬

ψ̄ψ
¶�

ψ̄ψ
�

−
¬

ψ̄ψ
¶2
�

+

+H
�

¬

ψ̄TCγ5τ2λ2ψ
¶∗ �

ψ̄Cγ5τ2λ2ψ
�

−
¬

ψ̄TCγ5τ2λ2ψ
¶�

ψ̄γ5τ2λ2Cψ̄T
�

−
�

�s22

�

�

2
�

= ψ̄
�

i /∂ −m+ 2G
¬

ψ̄ψ
¶�

ψ− G
¬

ψ̄ψ
¶2
+H

�

s∗22

�

ψ̄Cγ5τ2λ2ψ
�

− s22

�

ψ̄γ5τ2λ2Cψ̄T
�

−
�

�s22

�

�

2
�

= ψ̄
�

i /∂ −M
�

ψ−
|M −m|2

4G
+

1

2

�

ψ̄∆γ5τ2λ2Cψ̄T−ψTC∆∗γ5τ2λ2ψ−
2 |∆|2

4H

�

. (3.14)

Here the diquark-condensate s22 is related to physical observables, by substituting

∆=−2Hs22 (3.15)

for the so called diquark gap ∆. The chiral condensate φ is replaced by the constituent quark mass M

M = m− 2Gφ. (3.16)

If the so called Nambu-Gor’kov formalism [Gor59, Nam60] is used the notation of the Lagrangian
eq. (3.14) becomes more compact. The idea is to introduce bispinors of the form

Ψ=
1
p

2

�

ψ
ψC

�

, (3.17)

by assuming that ψ and ψC = Cψ̄T are formally independent. This enables us to re-express the La-
grangian in a matrix-like form

L +ψ†µψ=L + ψ̄γ0µψ= Ψ̄S−1Ψ−V , (3.18)

where additionally a chemical potential µ was added and the resulting Lagrangian is bilinear in the
Nambu-Gor’kov fields. Here Ψ and Ψ̄ are bispinor fields in Nambu-Gor’kov formalism, S−1 denotes the
dressed inverse Nambu-Gor’kov propagator given by

S−1 =
�

i /∂ −M +µγ0 ∆γ5τ2λ2
−∆∗γ5τ2λ2 −i /∂ −M −µγ0

�

(3.19)

and V denotes the potential absorbing terms without any quark-field dependency. Explicitly it is given
by

V =
(M −m)2

4G
+
|∆|2

4H
. (3.20)
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Inserting this into the partition function Z the thermodynamic potential reads

Ω(T,µ) =−T
∑

n

∫

d3k

(2π)3
1

2
tr ln

�

1

T
S−1(iωn,~k)

�

+V , (3.21)

where ωn are fermionic Matsubara frequencies which arise because of the anti-periodicity in imaginary
time-direction and the factor of 1/2 is present because of the artificial doubling of degrees of freedom in
Nambu-Gor’kov formalism. Identifying the inverse propagator S−1 in momentum space with

S−1(k0,~k) = γ0
�

k0−H (~k)
�

(3.22)

and using the identity

tr ln= lndet, (3.23)

allows to evaluate the thermodynamic potential by determining the eigenenergies of the effective Hamil-
tonian H (~k). For homogeneous condensates this is straight forward and one finds that they appear in
pairs with opposite sign. Turning out the Matsubara sum gives in the infinite volume limit [Kap89]

Ω(T,µ)≡ Ω0+V =−
1

4

∫

d3k

(2π)3
∑

λ

�

ελ(~k) + 2T ln

�

1+ exp

�

−
ελ(~k)

T

���

+V , (3.24)

where ελ denotes the eigenvalues ofH . For the case of the two-flavor NJL model the eigenvalues of the
HamiltonianH are given by

ε±(~k) = ε± = ε±µ (3.25)

and

E±(~k) = E± =
Æ

ε2
±+ |∆|

2 (3.26)

for a given momentum~k, where we defined ε(~k) = ε= (~k2+M2)1/2 and the eigenenergies ε± and E± are
8- and 16-fold degenerate. Physically these eigenvalues correspond to the dispersion relation ε± for an
(anti-)particle in a chemical potential µ and the dispersion relation E± for a particle in a superconducting
state with energy gap ∆.
For inhomogeneous condensates in color superconductivity the diagonalization of the Hamiltonian is not
trivial any more, because it is not diagonal in momentum-space, but it can in principle be diagonalized,
because of the hermiticity of H . Since this is more complicated than in the case for homogeneous
phases, we will consider the formalism for inhomogeneous condensates later in detail.
At this stage it is also worth to point out that the thermodynamic potential is only determined up to a
constant, which will normally be omitted in our notation. For sake of clarity we write the parameters
M and ∆ and possible other condensates explicitly in the dependency of the thermodynamic potential
Ω(T,µ)≡ Ω(T,µ; M ,∆, . . .), even if they are not real variables and depend on T and µ.
In general the minimization of the thermodynamic potential

∂Ω(T,µ)
∂ q̃

!
= 0, (3.27)

for q̃ =
�

M∗,∆∗i , . . .
�

containing the order parameter for each condensate, leads to a set of gap equations.
These are coupled integro-differential equations, which need to be numerically solved.

8



For our thermodynamic potential eq. (3.24) these equations determine the gap ∆ and the constituent
quark mass M self-consistently:

∆= 8H

∫

d3k

(2π)3

 

∑

λ=±

∆

Eλ(~k)

�

1− 2n
�

Eλ(~k)
��

!

(3.28)

M = m+ 8G

∫

d3k

(2π)3
M

ε(~k)

 

∑

λ=±

  

ελ(~k)

Eλ
�

~k
�

�

1− 2n
�

Eλ(~k)
��

!

+ 1− n
�

ε+(~k)
�

− n
�

ε−(~k)
�

!

,

(3.29)

where n(E) := (exp (E/T ) + 1)−1 is the Fermi-Dirac distribution function.

The thermodynamic potential of the NJL model is in general divergent in the momentum integration
and also the gap-equations ∂Ω/∂ q are normally divergent. Because of point-like interactions in the NJL
model, renormalization techniques are not applicable within this framework. Thus there is a need for a
regularization scheme to render the momentum-integration finite. For inhomogeneous phases the effect
of the chosen regularization scheme is even more crucial, since a wrong choice would lead to unphysical
artefacts in the theory, like the limitation of the momentum-space to very few allowed values or the
vanishing of the coupling of different momenta.
This is our motivation to present in the following section different regularization methods for homoge-
neous, as well as for inhomogeneous phases.

Having found a suitable regularization procedure for both - homogeneous as well as inhomogeneous
- condensates, we allow the different inhomogeneous and homogeneous phases to compete with each
other.

3.3 Regularization

In general for NJL-like models the momentum integration is divergent. In eq. (3.24) the eigenenergies
eqs. (3.25) and (3.26) of the Hamiltonian H (~k) lead to a divergency in the momentum integration. To
remove such divergencies one must define a procedure to overcome this problem, which is called regu-
larization scheme and assign some values to the (vacuum) observables of the model. As a necessity the
regularization scheme should not produce unphysical behavior and respect the symmetries of the model.
In principle every scheme which is able to regularize the integration is suited to be applied to our model,
because for a non-renormalizable model there is no unique regularization scheme. As a requirement for
the regularization procedure we follow Klevansky [Kle92] and demand that this procedure should allow
for the appearance of Goldstone bosons resulting from certain symmetry operations in the model and do
not restrict important quantities.

For the regularization it is mostly assumed that there is no angular dependency of the momentum com-
ponents, which allows to simplify the integration by using spherical coordinates. For spatially varying
condensates this is in general not possible, because the assumption of homogenity of the momentum
components is not valid and one cannot assign the energy for one quasi-particle by a constant, conserved
three-momentum. In the case of inhomogeneous phases different momenta are in general coupled and
it turns out that a three-momentum cutoff would limit the observable physics too stringently.
In general we have to carefully choose our regularization scheme, since we are interested in generaliz-
ing our scheme from homogeneous to inhomogeneous phases and do not want to have regularization
artefacts in the region of interest. In the following different regularization methods are presented and
the applicability to inhomogeneous phases is reviewed.
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3.3.1 Three-momentum cutoff

The most naive regularization of the momentum integration is the so called three-momentum cut-
off [VW91, Kle92], where the basic idea is to describe only physics up to a certain momentum scale
|k|< Λ. Modes with higher momentum above this scale are not included in the calculations and are “cut
off”. Clearly this three-momentum cutoff violates Lorentz-invariance, because of the non-covariant cut-
off of the momentum-components ~k, but it is still widely used. A three-momentum cutoff regularization
scheme can additionally produce unphysical artefacts for inhomogeneous phases by limiting the allowed
momenta to ktot ≤ 2Λ and will not be used in our calculations.

3.3.2 Energetical Pauli-Villars regularization

A very attractive Lorentz- and gauge-symmetry preserving regularization scheme was originally pro-
posed by Pauli and Villars [PV49]. Their idea was to introduce heavy (unphysical) masses in the integral
to overcome the divergent terms by adding sufficiently many counterterms.
In the case of a system with two-flavor color superconductivity and chiral symmetry breaking the orig-
inal idea of Pauli-Villars is adopted for the so called energetical Pauli-Villars regularization scheme and
regulators are inserted in the unregularized thermodynamic potential eq. (3.24) to yield finite values for
the thermodynamic potential

Ω(T,µ; M ,∆) =−
1

4

∫

d3k

(2π)3
∑

λ

rPV
∑

j=0

c j

�

Eλ, j + 2T ln
�

1+ exp
�

−Eλ, j/T
���

+
|M −m|2

4G
+
|∆|2

4H
, (3.30)

where rPV denotes the maximal number of introduced regulators.
This corresponds to the substitution

Eλ→
∑

j

c j Eλ, j (3.31)

of the diverging parts in the thermodynamic potential, where the factors c j ∈ R will be defined later.
Because the unregularized temperature-dependent part of the thermodynamic potential does not show
a divergency it is also possible to let this latter part in eq. (3.30) with temperature dependency be un-
regularized (Eλ instead of Eλ, j) and just regularize the non-temperature dependent energy part. The
question which of the two options is “better”, will be adressed later in detail.
In the energetical Pauli-Villars regularization scheme the regularized energies are defined [Nic09b,
NB09] as

Eλ, j =
Æ

E2
λ
+ jΛ2, (3.32)

where Λ is the regulator-cutoff. In the case of 2SC and chirally broken phases three regulators in the ther-
modynamic potential eq. (3.30) are sufficient to render the integration finite (rPV = 3). The coefficients
c j have to fulfill

∑

i

ci = 0,

∑

i

ci(M
2+ iΛ2) =

∑

i

ci M
2
i = 0
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and
∑

i

ci M
4
i = 0.

Our particular choice for three regulators will be c0 =−c3 = 1, c1 =−c2 =−3.

If the thermodynamic potential is evaluated severe problems arise also in this regularization scheme. The
self-consistent solution of the chiral condensate has an unwanted µ-dependency even below a critical
value. Physically it is known, that for massive fermions the ground state of a quark system does not
depend on the value of the chemical potential until a critical value µ0 is reached. But since there is at
least one quantity - the functional determinant of the Dirac operator - which depends on the value of the
chemical potential, it is a puzzling question, why the system does not show any physical effect for varying
chemical potential µ ≤ µ0 even if it should, because the observables of the system depend formally on
the fermion determinant and as a consequence also the system depends on the chemical potential. This
is known as the Silver Blaze property [Coh03]. Also for our case there should happen nothing below
a critical value of the chemical potential, but as Fig. 3.1 suggests this regularization scheme produces
results which contradict with this assumption. This is an undesired effect in the NJL model and is an
artefact of the energetical Pauli-Villars like regularization. Algebraicly these artefacts are caused by the
following: For a system of quarks with homogeneous phases the eigenenergies of the Hamiltonian are
given in energetical Pauli-Villars regularization by

ε±, j =
Æ

ε2
±+ jΛ2 =

Æ

�

ε±µ
�2+ jΛ2 =

Ç

�

k2+M2± 2
p

k2+M2µ+µ2
�

+ jΛ2

and

E±, j =
Æ

E2
±+ jΛ2 =

r

�
Æ

ε2
±+ |∆|

2
�2

+ jΛ2 =

q

k2+M2± 2
p

k2+M2µ+µ2+ |∆|2+ jΛ2.

Inserting this in the thermodynamic potential eq. (3.30) it becomes finite, but through the nested square-
root in the outer square-root

q

k2+M2± 2
p

k2+M2µ+µ2+ jΛ2

the minimum of the thermodynamic potential with respect to the dynamical mass M becomes rising with
increasing µ, like shown in Fig. 3.1, where the increase of the mass M already starts at µ= 0.
Since this undesired behavior occurs even in a system with only a scalar quark-antiquark interaction this
regularization scheme will be discarded. Because of the attractivity of invariances in this procedure a
similiar scheme should be used however, but it should not show unphysical artefacts.

3.3.3 Pauli-Villars regularization

In analogy to the energetical Pauli-Villars regularization a Pauli-Villars (PV) regularized thermodynamic
potential is proposed in this thesis for homogeneous and inhomogeneous phases. This regularization
scheme does not show the unwanted rising of the mass M with increasing chemical potential µ. Here the
solution of the gap equation is fixed with respect to µ and the regularized energies of the thermodynamic
potential eq. (3.30) in the non-temperature dependent part are given by

E±, j :=

Ç

�
p

k2+M2+ jΛ2±µ
�2
+ |∆|2 (3.33)
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Figure 3.1.: Chemical potential dependency of the dynamical constituent mass M at T = 0 MeV. The
parameters were choosed to obtain M = 330 MeV in vacuum and the rising of the constituent
mass with increasing µ is an unwanted artefact below µ≤ µc .

and

ε±, j :=
�
p

k2+M2+ jΛ2±µ
�

, (3.34)

which corresponds to the regularization of the divergent part by substituting

M2→ M2
j = M2+ jΛ2 (3.35)

in the eigenenergies eqs. (3.25) and (3.26). This is also equal to replacing the energies by

ε2 = k2+M2→ ε2
j = ε

2+ jΛ2. (3.36)

In direct comparison the only difference between the energetical Pauli-Villars and Pauli-Villars regular-
ization is the exact definition of the regulators. For the first scheme the overall free energies are replaced
and for the latter only the mass is substituted, which is close to the original idea of Pauli and Villars.

Since there are no unexpected or unwanted artefacts in the regions of interest, the Pauli-Villars regular-
ization scheme is also applied to inhomogeneous phases, where no momentum modes or other important
quantities are (physically) restricted. Since for this reason this regularization scheme is best suited for
our purposes of comparing chirally broken and color-superconducting phases it will be used throughout
this thesis, if not otherwise stated. Even if a model does not includes chirally broken (in)homogeneous
phases or current masses we will still introduce mass regulators M j in our calculations and afterwards
set the mass M in the regulator to zero, which is necessary to establish a consistent treatment of our
regularization scheme.

3.3.4 On the regularization of temperature-dependent diverging parts in the thermodynamic
potential

If we want to check the validity of our regularization scheme also certain limits should be reproduceable,
like the Stefan Boltzmann law in the high temperature limit. As already briefly discussed the regulariza-
tion of the temperature dependent part in eq. (3.30) is in general not necessary to yield finite results. Also
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Table 3.1.: Overview over the different regularization schemes with their regulators and corresponding
regularized thermodynamic potentials. The regularization of the temperature dependent part
∫

d3k
∑

λ(2T log (1+ exp (−Eλ/T ))) is generally possible, but not necessary. As a this alters
also the expression of the thermodynamic potential within one regularization scheme, we
treat this as two separate cases of the same regularization mechanism. Here the prefactor c ∈
R was introduced for brevity, ε2 = k2+m2 and Eλ denotes the eigenvalues of the Hamiltonian.

1. All diverging parts regularized

Regularization scheme Regulators Thermodynamic potential Ω0

Energetical Pauli-Villars [3.3.2] E2
λ, j = E2

λ+ jΛ2 c
∫

d3k
∑

λ

∑

j c j

�

Eλ, j + 2T log
�

1+ e−Eλ, j/T
��

Pauli-Villars [3.3.3] ε2
j = ε

2+ jΛ2 c
∫

d3k
∑

λ

∑

j c j

�

Eλ, j + 2T log
�

1+ e
−Eλ j /T

��

2. Only non-temperature dependent diverging parts regularized

Regularization scheme Regulators Thermodynamic potential Ω0

Energetical Pauli-Villars [3.3.2] E2
λ, j = E2

λ+ jΛ2 c
∫

d3k
∑

λ

�

∑

j c j Eλ, j + 2T log
�

1+ e−Eλ/T
�

�

Pauli-Villars [3.3.3] ε2
j = ε

2+ jΛ2 c
∫

d3k
∑

λ

�

∑

j c j Eλ, j + 2T log
�

1+ e−Eλ/T
�

�

Note: For the energetical Pauli-Villars regularization the regulators are identical to the regularized over-
all energies, but for the Pauli-Villars regularization scheme the energies are obtained by substituting ε2 =
k2+M2 in the unregularized eigenenergies with the regulator ±ε j which yields Eλ→ Eλ, j = Eλ|ε2→ε2

j
.

the values of the condensates do not differ significantly from each other, if the temperature-dependent
part of the thermodynamic potential is regularized or not. The phase boundaries in the µ − T phase
diagram also look qualitatively the same and especially for the 2SC phase are not distinguishable from
the other possibility of a regularized or not regularized temperature part.
For high temperatures the thermodynamic potential eq. (3.30) with regularized temperature dependent
part T · (ln (1+ exp (−Eλ, j/T ))) does not converge to the value of the Stefan-Boltzmann limit. The
value of this limit is given by calculating the pressure of a massless fermion ν = 2NcN f (+antiparticles)
degenerate gas, which corresponds to just evaluating the temperature dependent part of eq. (3.24)

p = 12
4πT

(2π)3

∫ ∞

0

dk k2
∑

i=±

�

log
�

1+ exp
�

−
εi

T

���

=
21

90
π2T 4+µ2T 2+

µ4

2π2 ,

(3.37)
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where we used that for high temperatures M = ∆ = 0 holds and solved the occuring integral by partial
integration analytically. If we divide in the next step by the fourth power, this ratio converges to the
value

lim
T→∞

1

T 4Ω(T,µ= 0)≈−2.303, (3.38)

which is known as the Stefan-Boltzmann limit for high temperatures.
This limit is related to the regularization of the latter temperature-dependent part of the thermodynamic
potential and the reproduction or non-reproduction of this value enables to decide if there is a physical
difference between regularizing or not regularizing temperature dependent diverging terms. In Fig. 3.2
the thermodynamic potential Ω(T,µ) over T 4 is plotted against the temperature. Because of the relation
between the pressure and the chemical potential p =−Ω(T,µ) the ratio Ω(T,µ)/T 4 is directly related to
the above given limit, which we will evaluate for zero chemical potential. For regularizing all diverging
terms in the thermodynamic potential this limit is not reproduced. If only the non-temperature depen-
dent diverging parts of the thermodynamic potential Ω are regularized this limit is correctly fulfilled.
The correct reproduction of this limit is however less important for our analysis, because we mainly focus
on low temperatures and therefore also the second part can be regularized. An overview of the different
regularization methods and the possibilities for the regulators therein is presented in Tab. 3.1.
For the thesis the thermodynamic potential is given by

Ω(T,µ; M ,∆) =−
1

4

∫

d3k

(2π)3
∑

λ





rPV
∑

j=0

c j Eλ, j + 2T ln
�

1+ exp
�

−Eλ/T
��



+
|M −m|2

4G
+
|∆|2

4H
, (3.39)

where the temperature-dependent part remains unregularized. In general one can use both possibilities
for our case of low temperatures.
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Figure 3.2.: The ratio of the grand potential Ω = −p and temperature to the fourth power T 4 against
temperature T at µ = 0 MeV. Only the regularization of non-temperature dependent di-
verging terms (solid) in the thermodynamic potential approaches the Stefan-Boltzmann limit
(dashed), in contrast of regularizing all diverging terms (dotted).

3.3.5 Parameters

For the thermodynamical quantities in PV-regularization there are three unknown parameters in our
NJL-model: The coupling constants G and H and the cutoff Λ. Experimentally there are only two known
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Table 3.2.: Parameter set for our calculations in Pauli-Villars regularization.

Λ[MeV] GΛ2 H/G M [MeV]
728.368 6.6 1/2 330

physical quantities, which can also be calculated in our model: The pion decay constant and the quark
condensate density. Thus it is clear that our determination of the parameters suffers from an under-
determination and only two parameters can be obtained independently, which are G and Λ. It also
turns out that the value of the chiral condensate in the Pauli-Villars regularization scheme is smaller than
“realistic” values suggest and this issue is bypassed by demanding a fixed value of the constituent quark
mass in vacuum instead of the condensate density. Then we have to select how many regulators rPV are
used and insert the fixed mass M in the formula of the pion decay constant fπ = 88 MeV in the chiral
limit

f 2
π =−

Nc M2

4π2

rPV
∑

j=0

c j log
M2+ jΛ2

M2 (3.40)

[Kle92] to obtain a value for the cutoff Λ. For given Λ and M this enables to determine the coupling
constant G from the gap equation eq. (3.29) for µ→ 0 in Pauli-Villars regularization

M =
GN f Nc M

2π2

rPV
∑

j=0

(M2+ jΛ2) log

�

M2+ jΛ2

M2

�

(3.41)

[Kle92] for Nc = 3, N f = 2.
Our set of “realistic” parameters (Λ, G, H) is presented in Tab. 3.2 for three regulators and constituent
quark mass M = 330 MeV. The value of the diquark coupling constant H cannot be obtained from
vacuum properties and the application of a Fierz transformation to the one-gluon exchange term gives
H/G = 3/4. Since there is no real determination scheme for the coupling constant H also other values
are valid, which changes the critical chemical potential, which is the value where the chiral condensate
vanishes and the magnitude of the diquark condensate, as shown in Fig. 3.3 for some ratios of H/G. For
the reproduction of “realistic”1 diquark gaps we choose the ratio H/G to be 1/2, instead of 3/4.

1 Values around ∆u 100 MeV.
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Figure 3.3.: (a) Diquark gap ∆ at the critical chemical potential µc , where the chirally broken phase van-
ishes, for different values of the coupling constant H. (b) Critical chemical potential µc(H/G)
for different couplings in the quark-quark channel.
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4 Interplay of homogeneous and
inhomogeneous phases

In the following chapter we study the interplay of homogeneous and inhomogeneous phases for quarks
with two flavors. First, we calculate the phase boundaries of a homogeneous chirally broken and a 2SC
phase at same chemical potentials µu = µd and then analyse the effects of additionally including an
inhomogeneous chirally broken phase.
Beside that we also consider up and down quarks with different chemical potential µu 6= µd which allows
for the appearance of inhomogeneous color-superconducting phases. To understand their appearance,
another part of this chapter focuses on inhomogeneous 2SC phases and the effects of these condensates
on the phase diagram.

For the whole analysis we will stay in the chiral limit m= 0. In general we minimize the thermodynamic
potential Ω(T,µ; q̃) numerically with respect to the condensates q̃ to obtain a self-consistent solution for
the order parameters.

4.1 Homogeneous 2SC phase and homogeneous chirally broken phase

To begin our analysis we study the phase diagram of a system with chirally broken and 2SC phases
described by the thermodynamic potential eq. (3.30) in Pauli-Villars regularization. At this stage we
require the order parameters for the condensates to be constant in space, which is accomplished by
neglecting any spatial dependency of the condensates eqn. (3.12) and (3.13).
For sufficiently low µ < µc(T ) the chiral condensate has a non-zero expectation value, which can be
seen in Fig. 4.1, where the self-consistent solution of the mass in vacuum has the value predefinied in
the parameter fitting. This value remains finite and non-zero if the chemical potential is increased to
non-zero values, but is still below the critical treshold µc. Above this value the chiral condensate has
a vanishing expectation value indicating the restoration of chiral symmetry. It is a first-order phase
transition from the chirally broken to the 2SC or restored phase below a tricritical point. Above this
point the transition is second-order, because we are in the limit of massless up and down quarks. For
large enough chemical potential and sufficiently low temperatures the condensation of two quarks is
favored. Since the energetical preference of the 2SC phase happens at smaller chemical potential than
for a system with only chiral symmetry breaking phases, the position of the phase boundary between the
chirally broken and 2SC or restored phase is shifted to smaller values. For T = 0 MeV we find that the
phase-transition of chiral restoration occurs at µc ≈ 313 MeV. Of course the exact position of the phase
transition depends on the ratio of H/G, where G is still fixed by the choice of our parameter set.
The phase diagram is presented in Fig. 4.2. Below T ≈ 70 MeV and above µ ≈ 310 MeV we find that the
2SC phase is dominating over the restored and chirally broken phase. It is enclosed by a second-order
phase transition line to the restored phase and undergoes a first-order phase transition to the chirally
broken phase. The known BCS-relation eq. (2.1) approximately holds for the 2SC phase, as it can be
seen in Tab. 4.1.

4.2 Homogeneous 2SC phase and inhomogeneous chirally broken phase

Extending our results from the previous section we want to study the interplay of homogeneous 2SC
phases and inhomogeneous chirally broken phases. Thus the thermodynamic potential is evaluated for
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Table 4.1.: Critical temperatures Tc of the 2SC phase and the diquark gap at zero temperature∆(T = 0)
for different values of the chemical potential.

µ [MeV] ∆(T = 0) [MeV] Tc [MeV] Tc/∆(T = 0)
313 95.99 55 0.57
356 114.06 64 0.56
400 128.00 71 0.55
450 137.94 75 0.54
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Figure 4.1.: Thermodynamic potential versus the dynamical constituent mass M for different chemical
potentials.
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Figure 4.2.: The phase diagram for a system with a chirally broken phase (I), a 2SC phase (II) and the
restored phase (III). First-order phase transitions are indicated by solid, second-order phase
transitions by dashed lines and the tricritical point by the dot. Here the coupling constant H
is fixed to H/G = 0.5.

18



0

20

40

60

80

100

250 300 350 400 450 500

T
[M

eV
]

µ [MeV]

IV

III

I

Figure 4.3.: The phase diagram of inhomogeneous chirally broken phases (IV), homogeneous chirally bro-
ken phases (I) and the restored phase (III). All boundaries of the inhomogeneous phases are
second-order and the Lifschitz point is indicated by a dot [Carignano, 2011; private commu-
nication].

every point of the phase diagram for each phase. For the 2SC phase we still neglect any spatial depen-
dency of the diquark condensates and use the previously obtained results. In contrast to our former
calculations the chiral condensates are allowed to be spatially dependent. In this formalism it was found
that an inhomogeneous phase appears in the region surrounding the chiral restoration phase transition
for homogeneous condensates and completly covers the first-order phase transition, shown in Fig. 4.2.
The inhomogeneous phase is enclosed by a second-order phase transition ending at a Lifshitz point,
which in the simplest version of the model coincides with the critical point obtained for the homoge-
neous phases [Nic09a, Nic09b]. For the comparison of the different phases we assume that the phases
do not mix with each other, i.e. φ(~x) = 〈ψ̄ψ〉(~x) = 0 if s22 6= 0 and vice versa. The thermodynamic
potential is regularized following the scheme proposed in sec. 3.3.3 to allow a consistent comparison
between the (in)homogeneous chirally broken phase and the homogeneous 2SC phase. The comparison
of the free energies allows us to determine which phase is dominant over other phases.

Using our standard parameter set we find (Fig. 4.4) that the homogeneous 2SC phase is favored over
the inhomogeneous phase in a large region of the µ− T -phase diagram, although an inhomogeneous
window persist in a region of the size ∆T = 16 MeV and ∆µ= 36 MeV.
In our phase diagram two special points appear, where three phases (homogeneneous 2SC, inhomoge-
neous and homogeneous chirally broken and restored phase, respectively) become degenerate.
The exact shape of the phase diagram is sensitive to the quark-quark coupling strength H. To illustrate
this dependency we show several phase diagrams with different values of the quark-quark coupling con-
stant H, while keeping G and Λ fixed.
In general these phase diagrams differ only at moderate temperatures and chemical potentials, where
the difference of the thermodynamic potential of the different phases is small.
In Fig. 4.5 (a) the coupling strength in the quark-quark channel is increased, leading to a more favored
2SC phase and higher diquark gap. Inhomogeneous chirally broken phases survive only in a small region
close to the Lifshitz point with a width of ∆µ= 18 MeV.
For lower quark-quark coupling on the other hand the inhomogeneous chirally broken phase extends to
a region where the 2SC phase previously dominated for our standard choice H/G = 0.5. The resulting
phase diagram Fig. 4.5 (b) shows that the intersection points of the different phases depart from their
former position in µ and T direction and the first-order phase transition line between the inhomoge-
neous chirally broken phase to the homogeneous 2SC phase is extended.
If the coupling constant is decreased to even smaller values, like for H/G = 0.3, then the 2SC phase
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Figure 4.4.: The phase diagram for a homogeneous chirally broken phase (I), homogeneous 2SC phase
(II), restored phase (III) and an inhomogeneous chirally broken phase (IV) in the chiral limit
for H/G = 0.5. First-order phase-transitions are indicated by solid, second-order phase-
transitions by dashed lines and the Lifschitz point by a dot.

does not intersect with the phase boundary of the homogeneous chirally broken phase any more. This is
depicted in Fig. 4.5 (c), where the 2SC phase begins at µ= 345 MeV. For the region around µ= 350 MeV
the 2SC phase competes with the inhomogeneous chirally broken phase and its boundary is shifted to
higher chemical potential. This phase is enclosed by a first-order phase transition to the inhomogeneous
chirally broken phase and extends up to a temperature T = 25.5 MeV.
For even weaker coupling H/G = 0.2 (Fig. 4.5 (d)) the phase diagram looks qualitatively the same but
in contrast to the previous result the 2SC phase is always delimited by a first-order phase transition
to the inhomogeneous chirally broken phase, which is favored at larger temperatures over the color-
superconducting phase.

4.3 Inhomogeneous 2SC phases

Previously only homogeneous color-superconducting phases were taken into account for our analysis of
strongly interacting quark matter. It is believed that color-superconducting phases with spatially depen-
dent order parameter exist in the interior of neutron stars (for example, see [Red02]) and can play an
important role for the exact structure of the phase diagram of quark matter.
For color superconductivity it was first suggested by Alford et al. [ABR01], that matter becomes inho-
mogeneous and condensed quarks form Cooper-pairs which are allowed to carry non-zero momentum
~ktot 6= 0.

Since the following derivation of the thermodynamic potential for inhomogeneous condensates is rather
lengthy, we briefly outline our procedure: as a first step we derive the thermodynamic potential from
the partition function and determine the effective Hamiltonian. Since it is still very difficult to determine
the eigenenergies of the system from it we furthermore apply simplifications to reduce the size of the
Hamiltonian.

Generalizing the formalism for homogeneous condensates in the framework above we mainly follow
Nickel and Buballa [NB09] to allow for inhomogeneous condensates in color superconductivity. Addi-
tionally we keep a current mass m in the Lagrangian, which is needed for a consistent description of our
regularization scheme. We introduce a flavor-dependent chemical potential µu,d for the up and down
quarks

µu,d = µ̄±δµ, (4.1)
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Figure 4.5.: The phase diagrams for a homogeneous 2SC phase (II), a homogeneous chiral phase (I), an
inhomogeneous chirally broken phase (IV) and the restored phase (III) for different couplings
H.
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in our calculations for the two-flavor NJL Lagrangian. The quark-antiquark interaction Lq̄q is neglected,
because for now we are only interested in inhomogeneous 2SC phases. Explicitly this chemical potential
difference of the two quark flavors is inserted in the Lagrangian eq. (3.2) via

L0 = ψ̄
�

i /∂ + (µ̄+δµτ3)γ0−m
�

ψ, (4.2)

where τ3 acts in flavor space.
We start with the linearization of the LagrangianLqq, as presented before in eq. (3.14) for homogeneous
2SC and chirally broken phases. Instead of assuming a constant order parameter we still keep the spa-
tial dependence in the condensate s22 = s22(~x), which will be of major importance for inhomogeneous
phases.
For an NJL model with three flavors more possible pairing patterns for inhomogeneous phases can oc-
cur, because there are more degrees of freedom for condensation than for the 2SC phase alone. Since
we focussed on two-flavor color-superconductivity this topic is not investigated further, but the general
formalism is presented for example in the work of Nickel and Buballa [NB09] or others.
For an inhomogeneous color-superconducting phase the expectation value 〈ψTCγ5τ2λ2ψ〉(~x) =
−2H∆(~x) for the 2SC condensate is still spatially varying and introducing bispinors in the Nambu-
Gor’kov formalism leads to the Lagrangian

L = Ψ̄
�

i /∂ + /̂µ−m ∆(~x)τ2λ2γ5
−∆∗(~x)τ2λ2γ5 i /∂ − /̂µ−m

�

Ψ−
1

4H
|∆(~x)|2 (4.3)

≡ Ψ̄S−1Ψ−V ,

with /̂µ := (µ̄+ δµτ3)γ0 and Ψ, Ψ̄ denote Nambu-Gor’kov bispinors. Plugging the Lagrangian eq. (4.3)
into eq. (3.21) and trying to evaluate the thermodynamic potential turns out to be very difficult due to
an arbitrary spatial dependence of the Nambu-Gor’kov propagator S−1.

We assume a static periodic structure for the energy gap ∆(~x), which on the one hand is necessary to
simplify the trace and perform the Matsubara sum and on the other hand allows to expand the entry ∆
of the inverse propagator in a Fourier series with coefficients ∆qk

∆(x) =
∑

qk

∆qk
(x)exp

�

−iqk x
�

. (4.4)

The momenta qk = (0,~qk)T form a reciprocal lattice, because of the Pontryagin duality between space
and momentum, which, roughly speaking, tells how position space and momentum space are connected,
and restricts the coefficients of the series according to

~qk · ~ai = 2πNki
, Nki

∈ Z (4.5)

where ~ai are the vectors spanning the unit cell of the crystal. These vectors give a measure of the
periodicity

∆(~x + ~ai) = ∆(~x) (4.6)

of the diquark condensate.
Assuming periodic boundary conditions for the bispinors within the volume V and requiring that the
unit cell is spanned by multiples N ∈ N of the vectors ~ai, allows to expand them in momentum space
according to

Ψ(x) =
1
p

V

∑

pn

Ψpn
exp
�

−ipn x
�

(4.7)

Ψ̄(x) =
1
p

V

∑

pn

Ψ̄pn
exp
�

ipn x
�

, (4.8)
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where the momentum pn = (iωn,~pn)T has to satisfy the condition

~pn · ~ai = 2π
Nni

N
, Nni ∈ Z, (4.9)

and ωn denotes fermionic Matsubara frequencies. Thus the reciprocal lattice is N times more coarse
than the mesh formed by the three-momenta.
The thermodynamic potential Ω is determined in the same way as for homogeneous phases. The only
peculiarity here is the spatial depedence. For a better understanding this is sketched here: In terms of
functional integration the partition function can be written as

Z =
∫

DΨDΨ̄exp SE , (4.10)

where SE denotes the Euclidean action

SE =

∫ β

0

dτ

∫

d3 xL (x0 =−iτ, ~x) (4.11)

in imaginary time formalism. Inserting the Lagrangian eq. (4.3) in the action (see App. A.2 for details)

SE =

∫ β

0

dτ

∫

d3 x

 

1

V

∑

pm

Ψ̄pm
exp
�

ipm x
�

×

�

i /∂ + /̂µ−m
∑

qk
∆qk
τ2λ2 exp

�

−iqk x
�

γ5

−
∑

qk
(∆qk

τ2λ2)∗ exp
�

iqk x
�

γ5 i /∂ − /̂µ−m

�

×

∑

pn

Ψpn
exp
�

−ipn x
�

−
1

4H

∑

qk

�

�

�∆qk

�

�

�

2
!

(4.12)

can be used in the partition function to get an explicit expression for it, where eqs. (4.7), (4.8) and (4.4)
are applied.
The thermodynamic potential is obtained by

Ω(T,µ) =−
1

Vβ
lnZ (T,µ) (4.13)

=−
1

2

1

Vβ
tr ln

�

β S−1
�

+
∑

qk

|∆qk
|2

4H
, (4.14)

and is similar to the former result, but here the condensates are allowed to vary spatially. The Fourier-
transformed inverse propagator has a non-trivial momentum dependency. The (pm, pn)-component of
the inverse propagator S−1 is given by

S−1
pm,pn

=

 
�

/pn+ /̂µ−m
�

δpm,pn

∑

qk
∆̂qk
γ5δqk ,pm−pn

−
∑

qk
∆̂∗qk
γ5δqk ,pn−pm

�

/pn− /̂µ−m
�

δpm,pn

!

, (4.15)

where we defined ∆̂qk
=∆qk

τ2λ2.
Physically speaking this describes that different momenta are coupled through the gap(s) in the off-
diagonals, which results from the fact that diquarks are allowed to carry non-zero momentum and S−1

is in general not diagonal in momentum space.
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Since we assumed a spatial periodicity of the condensates, the evaluation of the trace in the thermody-
namic potential eq. (4.14) is simpler than for the general case.
By assuming static condensates the inverse propagator is diagonal in the energies, which translates in a
diagonal structure for the Matsubara frequencies ωn (see App. A.2). This allows to rewrite the inverse
propagator as in eq. (3.22) and the effective Hamiltonian is given by

H~pm,~pn
=

 
�

γ0/~pn−
�

µ̄+δµτ3
�

+mγ0
�

δ~pm,~pn
−
∑

~qk
∆̂qk
γ0γ5δ~qk ,~pm−~pn

∑

~qk
∆̂∗qk
γ0γ5δ~qk ,~pn−~pm

�

γ0/~pn+
�

µ̄+δµτ3
�

+mγ0
�

δ~pm,~pn

!

(4.16)

for the (pm, pn) component, where /~p := ~γ~p was introduced for notational brevity. Turning out the
Matsubara sum yields the thermodynamic potential

Ω(T,µ) =−
1

4V

∑

λ

�

Eλ+ 2T ln
�

1+ exp
�−Eλ

T

���

+V , (4.17)

which is formally the same as eq. (3.24) before taking the infinite volume limit. The energies Eλ are
given by the eigenvalues of the Hamiltonian H , which acts in Nambu-Gor’kov, Dirac, color, flavor and
three-momentum space.

In principle this expression could be used to determine the thermodynamic potential, but the diagonal-
ization is still complicated and numerically cost-expensive. This is our motivation to further simplify the
structure of the Hamiltonian.

Through the Bloch theorem [Blo29] the symmetry of the effective Hamiltonian is connected to the sym-
metries of the static periodic condensates and thus the overall Hamiltonian eq. (4.16) can be decomposed
into a simpler block diagonal form.
Physically the simplification correlates to the fact that only quarks in one block with the same vector of
the Brillouin zone (B.Z.) can couple with each other and additionally the differences of their momenta
have to be equal to qn, which is an element of the reciprocal lattice (R.L.).
One blockH (~kn) looks formally the same like the Hamiltonian given in eq. (4.16), but the momenta can
be written in the form

pl = kl + ql , (4.18)

for l = m, n, kl ∈ B.Z., ql ∈ R.L. and the Hamiltonian only needs to be diagonalized block-wise.

Inserting the decomposition of the total Hamiltonian in blocks in eq. (4.17)

Ω(T,µ) =−
1

4V

∑

λ

�

Eλ+ 2T ln
�

1+ exp
�

−
Eλ
T

���

+V (4.19)

=−
1

4V

∑

~kn∈B.Z.

∑

λk

 

Eλk
(~kn) + 2T ln

 

1+ exp

 

−
Eλk
(~kn)

T

!!!

+V (4.20)

yields in the infinite volume limit the thermodynamic potential

Ω(T,µ) =−
1

4

∫

B.Z.

d3k

(2π)3
∑

λk

 

Eλk
(~k) + 2T ln

 

1+ exp

 

−
Eλk
(~k)

T

!!!

+V , (4.21)

where Eλk
denote the eigenvalues of H (~kn) (instead of H as before), V is the potential given in

eq. (4.14) and the integration runs over the Brillouin zone.
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4.3.1 Simplifications and approximations for inhomogeneous 2SC phases

The evaluation of the thermodynamic potential has effectively been reduced to the diagonalization of a
block Hamiltonian, but is still very demanding, because on the one side the matrix representation of the
Hamiltonian eq. (4.16) is still infinite in its size and also the diagonalization is very demanding. Hence
we introduce additionally approximations and simplifications to reduce the complexity of the effective
Hamiltonian. As a first step we remove the non-trivial structure resulting from the Dirac space in the
off-diagonals for a block associated with vector ~kn:

(H ′(~kn))~pm,~pn
=
�

U†H (~kn)U
�

~pm,~pn
, (4.22)

where

U =
�

14×4 0
0 γ0γ5

�

, (4.23)

which yields

�

H ′(~kn)
�

~pm,~pn
=

��

γ0/~pn−
�

µ̄+δµτ3
�

+mγ0
�

δpm,pn
∆̂pm−pn

∆̂pn−pm
−
�

γ0/~pn+
�

µ̄+δµτ3
�

+mγ0
�

δpm,pn

�

.

(4.24)

In general it is not possible to remove the whole Dirac structure for inhomogeneous phases simulta-
neously; it is only possible to trade off the vanishing of the non-trivial Dirac structure on the diagonal
against the appearance in the off-diagonal or vice versa. Here we want to remove the structure on the
diagonals, which in turn leads to a non-trivial Dirac structure in the off-diagonals. Only for the special
case of homogeneous condensates no momentum modes are coupled via the gap and thus the whole
structure can be absorbed in projectors on orthogonal subspaces and this allows to remove all of the
Dirac structure from the effective Hamiltonian.
We however assume for the ongoing analysis of inhomogeneous 2SC phases that we can project out the
Hamiltonian on orthogonal subspaces and for that define energy projectors

Λ±~p =
1

2

�

1± γ0 /~p+m

ε~p

�

, (4.25)

with

ε~p =
p

~p2+m2.

Applying these projectors to the Hamiltonian eq. (4.24) the Dirac part on the diagonals becomes trivial

γ0
�

/~p− µ̂γ0+m
�

=
�

�

−µ̂+ ε~p
�

Λ+~p +
�

−µ̂− ε~p
�

Λ−~p
�

, (4.26)

and the off-diagonals gain a non-trivial Dirac structure, which will not be taken into account for our
approximation. This neglected part vanishes in the high density approximation, where the difference
between the momenta pi, i = m, n is much smaller than the (averaged) chemical potential and only
collinear scattering around the Fermi sphere takes place.
The remaining Hamiltonian is decomposed in a positive and negative energy part. Thus we are able to
write

�

εn− µ̂
�

�

1 0
0 0

�

+
�

−εn− µ̂
�

�

0 0
0 1

�

≡H +
D ⊕H

−
D , (4.27)
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whereH ±
D denotes the Hamiltonians with trivial Dirac structure associated to the orthogonal subspaces.

Here we focused on the diagonals and also considered only the projection of one block. For the second
block with non-trivial Dirac structure the projection is analogously performed and only the signs of µ̂ are
interchanged. Then we are left with a structure given by

�

H ′′(~k)
�

pm,pn
=













�

ε~pm
− µ̂
�

δ~pm,~pn
∆̂pm−pn

∆̂∗pn−pm
−
�

ε~pn
− µ̂
�

δ~pm,~pn

−
�

ε~pm
+ µ̂
�

δ~pm,~pn
∆̂pm−pn

∆̂∗pn−pm

�

ε~pm
+ µ̂
�

δ~pm,~pn













⊗12×2,

(4.28)

where H ′′ is twice degenerate in its components, as indicated and the ∆̂qk
’s still have a color-flavor

structure. Particles and antiparticles do not mix and the Hamiltonian can be written as direct sum of the
corresponding parts

H ′′ =H ′′
particles⊕H

′′
antiparticles, (4.29)

where the vector ~k in H ′′(~k) will be suppressed for brevity in the following. The assumption that
only red and green quarks pair allows to simplify the color-flavor structure of ∆̂q, by decomposing the
remaining structure of τ2 and λ2 into blocks.
For the simplified Hamiltonian eq. (4.28) the introduced difference between the up and down quark
chemical potentials acts only in flavor space and therefore the Hamiltonian can be separated in a direct
sum over the δµ’s

H ′′ =H ′′
δµ=0−δµτ

3. (4.30)

Inserting this Hamiltonian eq. (4.28) in the thermodynamic potential eq. (4.21) yields

Ω(T,µ) =−
1

4

∫

B.Z.

d3k

(2π)3
∑

λk

 

Eλk
(~k) + 2T ln

 

1+ exp

 

−
Eλk
(~k)

T

!!!

+V

=−
1

2

∫

B.Z.

d3k

(2π)3
∑

λk



E′′λk
(~k) + 2T ln



1+ exp



−
E′′λk
(~k)

T











+V , (4.31)

where E′′λ are the eigenvalues of the reduced Hamiltonian eq. (4.28).
The effective Hamiltonian eq. (4.28) can be written as a direct sum

H ′′ =
⊕

i =±∆
j =±δµ
k =±µ̄

H ′′
i, j,k, (4.32)

where we used eq. (4.30) and the fact that the dispersion relations of particles and antiparticles can be
written independently from each other. The Hamiltonian is composed of different blocks characterized
by the signs of the gaps, the average chemical potentials and the chemical potential mismatches. One
direct summand is given by

�

H ′′
i=∆, j=δµ,k=µ̄

�

~pm,~pn
=

��

εpm
− µ̄−δµ

�

δ~pm,~pn
∆pm−pn

∆∗pn−pm
−
�

εpm
− µ̄+δµ

�

δ~pm,~pn

�

, (4.33)

where the gap-function ∆pn−pm
has to be specified for a certain phase and has a trivial color-flavor

structure.
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4.3.2 Regularization and parameters

Also for inhomogeneous color-superconducting phases the grand potential is divergent in the momentum
integration and we follow the regularization scheme introduced in chap. 3.3.3 to render the diverging
terms finite.
In the thermodynamic potential eq. (4.21) this can be done by applying the substitution eq. (3.35) to
the energies ±ε in the unregularized eigenvalues of the effective Hamiltonian. However this is more
complicated than for the homogeneous case, since for inhomogeneous phases the eigenvalues are in
general numerically calculated and the energy ε cannot be directly replaced according to ε2 → (±ε j)2.
This substitution has to be done before calculating the eigenvalues. Here the sign of the ±ε j is of
importance, since we have to regularize quark-quark resp. antiquark-antiquark pairs around their Fermi
spheres.

The regularized thermodynamic potential is given as

Ω(T,µ) =−
∫

B.Z.

d3k

(2π)3
∑

λ





∑

j

c j Eλ, j(~k) + 2T ln

�

1+ exp

�

−
Eλ(~k)

T

��



+V (4.34)

and Eλ are the eigenvalues ofH ′′
i jk defined in eq. (4.33). This will be the starting point for our numerical

evaluation.

The model parameters are given in Tab. 3.2. For the ongoing discussion it is convenient to express
quantities in terms of ∆BCS, where ∆BCS is the diquark gap at δµ = 0. This value parametrizes the
coupling strength H at fixed µ̄. As before also for inhomogeneous condensates the coupling strength is
not fixed a priori and can be varied. Here only our standard choice H/G = 0.5 is considered.

4.3.3 BCS phase

Turning to the well-known result by Bardeen et al. [BCS57], we analyse the occurence of homogeneous
Cooper-pairs in our theory. For that we assume a constant, homogeneous gap-function and allow a
mismatch in the chemical potentials in our two-flavor model. The effective Hamiltonian for the homo-
geneous BCS-solution is given by

�

Heff
�

~pm,~pn
=

� �

ε~pm
±
�

µ̄+δµτ3
��

δ~pm,~pn
∆pm−pn

∆∗pn−pm
−
�

ε~pm
±
�

µ̄+δµτ3
��

δ~pm,~pn

�

, (4.35)

where

∆qk
= ∆δqk ,0 (4.36)

is the Fourier-transformed BCS gap-function and appears in the off-diagonals of the Hamiltonian. One
direct summand of eq. (4.32) reads for this case

�

H ′′
∆,µ̄,δµ

�

~pm,~pn
=

�
�

ε~pm
− µ̄−δµ

�

δ~pm,~pn
∆δpm,pn

∆∗δpm,pn
−(ε~pm

− µ̄+δµ)δ~pm,~pn

�

(4.37)

and the Hamiltonian eq. (4.35) has a block-diagonal shape, which allows to calculate the eigenvalues
of eq. (4.35) by only diagonalizing the direct summands. All introduced simplifications from above
are exact for this special case of homogeneous condensates and could also be obtained by evaluating
eq. (4.24) directly.
Every block of the decomposed Hamiltonian has eigenvalues of the form

Eλ =
Æ

�

p± µ̄
�2+ |∆|2±δµ=

p

∆2+ p2± 2pµ̄+ µ̄2±δµ,
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for momentum p.
If antiparticles are neglected the Hamiltonian can be further simplified to

H ′′ =H ′′
∆,δµ⊕H

′′
−∆,δµ⊕H

′′
∆,−δµ⊕H

′′
−∆,−δµ, (4.38)

which halves the dimension of the problem.
This approximation would have only minor effects on the magnitude of the gap, because antiparticles do
not contribute significantly for high µ.
The energetical Pauli-Villars regularization scheme leads to a δµ-dependency of the diquark gap, even
for a fixed chemical potential µ̄. In contrast our chosen regularization scheme does not show these
artefacts in the region of interest.
The gap is constant with respect to an increasing chemical potential mismatch at zero temperature
below a critical value because of the cancelation of the two terms +δµ and −δµ in the sum over the
(regularized) eigenenergies, like in the unregularized case for zero temperature

Ωunreg.
�

T = 0, µ̄,δµ
�

=−4

∫

d3p

(2π)3

Æ

�

p− µ̄
�2+ |∆|2+

|∆|2

4H
, (4.39)

where the δµ-dependency also drops out.
At an upper limit δµc the occurence of BCS pairing is not favored any more over the restored phase.
The minimum of the thermodynamic potential with respect to ∆ remains constant if δµ is changed,
whereas the thermodynamic potential for the unpaired quarks (∆ = 0) alters with δµ. This leads to
a relative difference in the free energies of paired and unpaired quarks, which causes that at δµc the
unpaired phase is energetically favored for the paired solution. This mechanism is analogous to the one
for chirally broken phases with mass M and µ in Fig. 4.1, instead of ∆ and δµ.
In the weak coupling limit this critical chemical potential difference is δµc = 1/

p
2∆BCS and was found

by Chandrasekhar [Cha62] and Clogston [Clo62].
The Fulde-Ferrell (FF) phase or other inhomogeneous color-superconducting phases can tolerate higher
chemical potential differences δµ and are then favored over the BCS phase.
For non-zero temperature there is a dependence on δµ for the thermodynamic potential through the
eigenvalues of the effective Hamiltonian eq. (4.35) in the temperature dependent part.
In Fig. 4.6 the δµ− T phase diagram for the BCS phase is shown: Along the δµ axis the transition from
the BCS to the restored phase is first-order. For small temperatures T < 0.28∆BCS the order remains
unchanged. Above this point the BCS phase is connected to the restored phase by a second-order phase
transition.
If there is no mismatch between the chemical potential of up and down quarks the BCS relation for
the critical temperature is fulfilled, but otherwise the ratio Tc/∆BCS goes steadily down with increasing
mismatch and becomes zero at δµc.

For different chemical potentials µ̄ the δµ − T phase diagram looks qualitatively the same, but since
∆BCS is µ̄-dependent only the ratios δµ/∆BCS are approximately equal.

In Fig. 4.7 the resulting phase diagrams for differing chemical potentials µu 6= µd for a BCS phase and a
homogeneous chiral phase are shown in the µ− T -plane. The chiral phase was just added for a better
comparison to the previous phase diagrams and also exhibits stressed quark-antiquark pairing due to the
chemical potential mismatch.

For small chemical potential mismatch the phase diagram looks like the one for δµ = 0, but for larger
chemical potential difference the BCS and chiral phase are present in smaller regions of the phase dia-
gram. The BCS phase has lower critical temperatures than for the δµ = 0 case, but is still connected to
the chiral phase for δµ= 20 MeV and δµ= 40 MeV, as shown in Figs. 4.7 (a) and (b). For small temper-
atures the phase transition line between the chiral and BCS phase starts at lower chemical potential than
for δµ = 0, then increases to larger µ̄ and for intermediate to large temperatures goes back to smaller
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Figure 4.6.: The phase diagram for the BCS solution in the δµ − T -plane at µ̄ = 400 MeV. The phase
transition from the BCS to restored phase is of second-order (dashed) from δµ = 0 until
δµ≈ 0.61∆BCS (blue dot) and then becomes first-order (solid).

values of the chemical potential. The shifting to smaller chemical potentials for low temperatures is only
visible for δµ = 20 MeV in the figure, although this effect happens on smaller scales for δµ = 40 MeV
(Fig. 4.7 (b)).
For larger mismatches the BCS and chiral phase have no common boundary and the BCS to restored
phase transition is first-order. Above a critical chemical potential µ̄, where the ratio of δµ/∆BCS drops
below 0.61 the BCS phase is connected to the restored phase by a second-order phase transition, as
shown for δµ = 76 MeV in Fig. 4.7 (c). If the mismatch is further enlarged (δµ = 80 MeV for Fig. 4.7
(d)) the phase is favored in smaller regions and the second-order phase transition begins at larger chem-
ical potential µ̄.
In general for sufficiently large δµ ≥ 0.71∆BCS the BCS phase is energetically disfavored over the re-
stored phase everywhere.

4.3.4 Fulde-Ferrell phase

In a homogeneous phase the gain in condensation energy and the energy cost for the modification of the
Fermi spheres compete with each other. At some point the pairing can be disfavored over the condensa-
tion in inhomogeneous phases, where the Cooper-pairs are allowed to carry non-zero momentum. One
of the simplest attempts to create inhomogeneous superconducting condensates was proposed by Fulde
and Ferrell [FF64], where a gap function with a single plane-wave spatial modulation

∆(x) = ∆exp
�

2i~q~x
�

, (4.40)

was assumed, where ~q denotes the wave-vector. In our framework the diquark condensate is allowed to
have this spatial plane-wave modulation and in contrast to the previously considered gap-function it has
complex values.
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(a) δµ= 20 MeV
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(b) δµ= 40 MeV
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(c) δµ= 76 MeV

0

20

40

60

80

100

250 300 350 400 450 500

T
[M

eV
]

µ [MeV]

chirally
broken

restored

BCS

(d) δµ= 80 MeV

Figure 4.7.: Phase diagrams of a BCS and homogeneous chiral phase in the µ− T -plane for two flavors
with differing chemical potential at fixed δµ’s. Here the averaged chemical potential of up
and down quarks is denoted by µ≡ µ̄.
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Figure 4.8.: Prefered value of the wave number |~q| (dashed) and the corresponding amplitude of the
Fulde-Ferrell gap∆ (solid) at T = 0 and µ̄= 400 MeV.

The Brillouin zone of the resulting crystal structure is infinite in the directions perpendicular to ~q and
finite with length 2|~q| in ~q-direction. In the effective Hamiltonian

�

H ′′
∆,µ̄,δµ

�

~pm,~pn
=

�
�

ε~pm
− µ̄−δµ

�

δ~pm,~pn
∆δpm−pn,2q

∆∗δpn−pm,2q −(ε~pm
− µ̄+δµ)δ~pm,~pn

�

(4.41)

different momenta are coupled, where the Fourier-transformed Fulde-Ferrell gap

∆qk
=∆δ~qk ,2~q (4.42)

determines which momenta interact.
Normally the determination of an analytical expression for the eigenvalues is not possible within this
general structure of the Hamiltonian, since there is no obvious finite block-diagonal form.
However it is still possible to identify in the Hamiltonian eq. (4.41) finite “shifted” blocks, where two
momenta are coupled, which read

�

(ε+− µ̂) ∆
∆∗ −(ε−− µ̂)

�

, (4.43)

where ε± =
p

|~k±~q|2+m2. The eigenvalues for the particles are given by

�

�

�E±(~k)
�

�

�=

�

�

�

�

�

�

ε+− ε−
2

±

È

�

ε++ ε−
2

− µ̄
�2

+ |∆|2−δµ

�

�

�

�

�

�

, (4.44)

and analogously for the antiparticles. These eigenvalues simplify to the eigenvalues of the BCS case for
q = 0. The block structure allows to rewrite the integration over the Brillouin zone to an integration
over the whole space as

∫

R2
d~kx y

∫ 2q

0

dkz

∑

λk

Eλk
=

∫

R2
d~kx y

∫ 2q

0

dkz

∑

i

∑

λk,i

Eλk ,i =

∫

R2
d~kx y

∫ ∞

−∞
dkz

∑

λk,i

Eλk ,i =

∫

R3
d~k

∑

λk,i=±

Eλk ,i,

(4.45)

where Eλk ,i are the eigenvalues of the i-th block, which is given by eq. (4.43). In the thermodynamic po-
tential only the eigenvalues per block have to be determined for its evaluation and with this identification
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Figure 4.9.: Phase diagram for the BCS and Fulde-Ferrell phase. Here the line type indicates the order of
the phase transition: first order (solid) and second-order(dashed) at µ̄= 400 MeV.

it is possible to circumvent the numerical evaluation of the eigenvalues of the Hamiltonian eq. (4.41),
which is more time-consuming.

In general the thermodynamic potential for the Fulde-Ferrell (FF) phase depends on two values: the
energy gap ∆ and the wave vector q, which are shown in Fig. 4.8. The phase space of the Fulde-Ferrell
phase is limited and thus the diquark condensate has a smaller value than for the BCS case, as confirmed
by our numerical calculations. The wave number |~q| is weakly rising throughout the window, where the
Fulde-Ferrell phase is favored and is of the order of 0.9∆BCS, whereas the diquark gap is smaller than
for the BCS phase and goes down to zero for a critical chemical potential mismatch δµ2. The highest
magnitude of the gap is about ≈ 0.35∆BCS.

In the δµ-T phase diagram Fig. 4.9 the Fulde-Ferrell phase only appears for δµ ≥ δµ1 = 0.709∆BCS
and δµ ≤ δµ2 = 0.76∆BCS at T = 0. For non-zero temperatures this δµ window decreases until the FF
condensate is disfavored over the BCS or restored phase. The phase transition line between the restored
and FF phase is of second-order, while the phase transition to the BCS phase is first-order.
The exact values for the critical chemical potential mismatch is known only for the weak-coupling limit
to be δµ1 = 1/

p
2∆BCS and δµ2 = 0.7602∆BCS. The deviations between our result and the known

values for weak-coupling should approach zero for ∆BCS→ 0, but this was not checked.

In the µ− T plane the Fulde-Ferrell phase is only present for large chemical potential differences δµ.
For δµ = 20 MeV and δµ = 40 MeV we find that only the BCS phase and the chiral phase appear in
the phase diagram. For δµ = 80 MeV there exists a region close to the µ̄-axis where the Fulde-Ferrell
phase is favored. Around the tricritical point the phase transition lines of the BCS and FF phase are
nearly identical and for values µ̄ ≥ 375 MeV in Fig. 4.10 we cannot numerically distinguish between the
FF and BCS phase, because their relative difference in the thermodynamic potential is too small. The
thermodynamic potential of the Fulde-Ferrell phase is shown in Fig. 4.12 below for T = 0, where also
the free energy of the Fulde-Ferrell phase is close to the one of the restored phase.
For δµ= 76 MeV the FF phase is favored in a region around the BCS phase-transition and has a maximal
width of ∆µ= 18 MeV.
In principle there should also be a δµ, where the Fulde-Ferrell phase reaches to the phase boundary of
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Figure 4.10.: The phase diagram of a BCS, chiral, Fulde-Ferrell and restored phase for different δµ’s.

the chirally broken phase, but this has not been checked in detail. Our existing results indicate that this
value should be around δµ≈ 65 MeV.

4.3.5 General inhomogeneous phases in one dimension

In Ref. [NB09] it was shown that at zero temperature in the energetical Pauli-Villars regularization
scheme gap functions with a general periodic structure in one dimension are favored over homoge-
neous phases for a δµ-window in two-flavor color superconductivity. For regions close to the critical
value δµc of the BCS phase the authors observed the formation of a soliton lattice, which extends the
onset of the window for inhomogeneous phases to lower δµ values, while the upper end remains close
to the one of the Fulde-Ferrell phase. In our regularization scheme we also want to study the appearance
of general inhomogeneous 2SC phases with an order parameter that varies in one dimension.
Our previous results for color-superconducting phases were limited by the number of allowed harmonics.
Here we consider a general periodic gap function

∆(~x) =
∑

k

∆~q,k exp (i~qk~x) =
∑

k

∆~q,k exp (2ik~q~x). (4.46)

The Brillouin zone is infinite in the directions perpendicular to ~q and finite in the direction of ~q, where
this vector points without loss of generality in z-direction. Furthermore only real gap functions are
considered, which means that ∆~q,k =∆∗~q,−k holds. One period corresponds to z = π/q.
Inserting eq. (4.46) in the effective Hamiltonian eq. (4.33) yields

�

H ′′
∆,δµ,µ̄

�

~pm,~pn
=

�

(ε~pm
− µ̄−δµ)δ~pm,~pn

∑

k∆2~kqδpm−pn,2kq
∑

k∆
∗
2~kq
δpn−pm,2kq −(ε~pm

− µ̄+δµ)δ~pm,~pn

�

, (4.47)

where ∆~q,k ≡ ∆2k~q, which is again an infinite matrix in momentum space and the sum over k in the
off-diagonals couples multiple momenta.
For this Hamiltonian one does not find a transformation to a block-diagonal form with finite block-size
and the eigenenergies have to be determined numerically.
Here our regularization scheme is applied, but has to be adapted for the numerical approach: First we
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diagonalize the Hamiltonian, where Pauli-Villars regulators were already inserted. Then we sum over
the eigenvalues to obtain a finite integral. The regularized thermodynamic potential is given by

Ω(T,µ) =−2

∫

B.Z.

d3k

(2π)3
∑

j

c j

 

∑

λ

Eλ, j(~k) +
∑

λ

2T ln

 

1+ exp

 

−
Eλ, j(~k)

T

!!!

+
1

4H

∑

qk

�

�

�∆qk

�

�

�

2

(4.48)

and Eλ, j denotes the eigenvalues of the “regularized Hamiltonians”. Here we regularize all parts, not only
the non-temperature dependent terms, although to be consistent with the former results only this part
should be regularized. However for the homogeneous case it was checked, that the difference between
the two schemes is so small, that a quantitative change in the δµ− T phase diagram is not visible. Only
when going to very high temperatures the regularized resp. non-regularized temperature-dependent
part of the thermodynamic potential differ in a direct comparison significantly .
Since the Hamiltonian is still infinite in its size the maximal allowed momenta must be restricted addi-
tionally. This is done by requiring

�

�

�

~k± nmax(~k)~q
�

�

�≤ ΛM, (4.49)

where the cutoff ΛM makes the numerical evaluation tractable and nmax(~k) is the number of maximal
allowed momenta in the Hamiltonian. In contrast to the Fulde-Ferrell phase, where only two momenta
can interact via the gap, this is for a generic one-dimensional modulation more crucial, since all momenta
can be coupled. The value of this upper boundary has to be chosen, so that the (physical) results do not
alter.
The matrix size is given by

mtot = 2 ·
�

2nmax+ 1
�

(4.50)

and the regularized Hamiltonian has to be numerically evaluated rPV times, which slows down the
calculations.
The condensate ∆ and the wave vector q are obtained by minimizing the thermodynamic potential with
respect to the Fourier components at fixed q and then when the solution is found, with respect to the
energetically prefered value of q. For small δµ at the lower end of the δµ-window the wave vector
approaches zero and the numerical analysis gets involved, since the period goes to infinity.
Since the numerical evaluation of generic inhomogeneous color-superconducting phases at several values
of µ̄ would further increase the time needed for our calculations, we consider first a fixed average
chemical potential µ̄= 400 MeV.

The gap function ∆(z) looks for large q at fixed δµ like a sinusoidal modulation and for smaller q the
formation of soliton lattice was found by Nickel and Buballa [NB09], where the gap remains nearly
constant for a half-period and then changes it sign in a small interval of z.
In Fig. 4.11 the wave number q and the magnitude ∆ at the energetically prefered value of q are plotted
against δµ. For small chemical potential mismatches the magnitude of the diquark gap remains constant
up to δµ1, which we found to be below δµ1 ≤ 0.7∆BCS but were not able to determine the exact value.
At this lower bound the magnitude begins to decrease and at the same time the wave number q has
non-zero values and increases to about 0.8∆BCS for higher chemical potential differences. At δµ2 the
generic inhomogeneous color-superconducting phase is disfavored over the restored phase and in our
numerical calculations this happens between 0.76∆BCS and 0.78∆BCS. In a direct comparison with the
results presented by Nickel and Buballa at T = 0 the energetically prefered values of q are higher than
our calculations indicate. This could be not significant, since another regularization scheme was used,
but it should be investigated in detail. The upper end of the window is lower than their result and the
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Figure 4.11.: Prefered value of the wave number |~q| and the corresponding magnitude of the gap for
different δµ’s in the general one-dimensional modulated phase at T = 0 and µ̄= 400 MeV.

lower critical value δµ1 could in contrast be consistent with their value of δµref
2 = 0.695∆BCS, but a

better precision and more data will be needed to distinguish that.

The magnitude of the gap at the energetically prefered value of q agrees well with their results. Our
amplitude of the gap-function remains constant below δµ1, whereas it is rising in the energetical Pauli-
Villars regularization. For larger δµ the gap decreases until it vanishes after a first-order phase-transition.

For non-zero temperatures the generic inhomogeneous phase seems to be favored over the Fulde-Ferrell
phase, which is supported by our findings in Fig. 4.12 for T = 0. The order of the phase transition of
the generic inhomogeneous phase to the BCS phase is second-order or very weakly first-order, which
is very hard to find out numerically. The first-order phase transition to the restored phase is clearly
visible, as shown in Fig. 4.12. That allows us to linearly interpolate the thermodynamic potential, where
the thermodynamic potential of the restored phase was subtracted, between the last data point where
the generic inhomogeneous phase is still favored and the first point, where we find that it is disfavored
over the restored phase. This yields a more precise value of δµ2 and for zero temperature this gives
δµ2 = 0.768∆BCS. Analogously this is also done for non-zero temperatures, as can be seen in Fig. 4.13.
There the generic inhomogeneous phase hides the FF phase completly in the δµ−T -plane and undergoes
a first-order phase transition to the restored phase, whereas the transition to the BCS phase is of second
order.
For another average chemical potential µ̄ = 430 MeV we calculate the wave vector and magnitude of
the gap at two δµ values. The wave number q at δµ = 0.74∆BCS is of the order q = 1.2∆BCS and for
δµ= 0.76∆BCS it is q = 1.5∆BCS. The value almost doubles at the latter value of the chemical potential
mismatch in comparison to the solution at µ̄ = 400 MeV and for the lower mismatch the solution for
the wave number is almost twice as large as for µ̄ = 400 MeV. These high values ar not understood at
present and the origin of this effect remains unclear. Thus this problem must be investigated carefully.
The result should be cross-checked again and compared to other predictions and known results to rule
out possible uncertainties in the numerical calculations or our assumptions.
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5 Conclusion and outlook
In this thesis we analysed the occurence of inhomogeneous phases within a two-flavor Nambu–Jona-
Lasinio model, studied the competition of inhomogeneous chirally broken phases with homogeneous 2SC
phases for a realistic parameter set and implemented inhomogeneous phases in color-superconductivity.

For the regularization of the diverging parts in the thermodynamic potential we propose to use a
Pauli-Villars regularization, which does not lead to unwanted artefacts for chirally broken and color-
superconducting phases. The Stefan-Boltzmann limit for high temperatures is reached in this scheme, if
the temperature dependent diverging parts remain unregularized.
This regularization scheme was used to consistenly study the competition of homogeneous 2SC and in-
homogeneous chirally broken phases. For this we assumed that the different phases do not mix and the
two quark flavors have the same chemical potential µu = µd .
The phase diagram for our standard choice of realistic parameters shows a region where an inhomoge-
neous window for medium to high temperatures and intermediate densities persists. The exact shape of
the phase diagram is sensitive to the quark-quark coupling strength: For weaker coupling in the quark-
quark channel the area, where inhomogeneous chirally broken condensates are favored, gets larger and
extends to regions where formerly 2SC phases were favored. For stronger coupling the 2SC phase is
favored over the inhomogeneous chiral one in most areas of the phase diagram and only a small window
around the Lifshitz point remains, where inhomogeneous chiral phases are energetically prefered.

As a second part inhomogeneous color-superconducting phases were studied, which can emerge if there
is a mismatch between the up and down quark’s chemical potential. The existing formalism was applied
to the BCS and Fulde-Ferrell phase and we extended this to finite temperatures and different average
chemical potentials µ̄. Here it was assumed that the high density approximation holds for our case, i.e.
quarks scatter only around the Fermi sphere.
The phase diagram in the δµ− T and for fixed δµ also in the µ− T plane was derived in this framework
and we find that the Fulde-Ferrell phase is favored over the BCS phase for a small window in δµ and
up to intermediate temperatures. The transition between the BCS and Fulde-Ferrell phase for varying
chemical potential mismatch is of first order and the Fulde-Ferrell phase is enclosed by a second-order
phase transition line to the restored phase. For the µ− T plane the Fulde-Ferrell phase is only favored
for small areas at high chemical potential mismatch.
For a color-superconducting phase with generic one-dimensional modulation of the order parameter the
proposed regularization scheme was modified for the numerical analysis, where the regulators were di-
rectly inserted in the Hamiltonian before diagonalizing. The δµ window extends in comparison to the
Fulde-Ferrell phase and the generic phase is favored for a larger region. The width of the window, where
the generic inhomogeneous color-superconducting phase is favored decreases with increasing tempera-
ture. Only few data-points were available for this analysis at T 6= 0 and the numerical slow-down due to
the regularization scheme also did not allow us to derive a µ− T diagram, which could be a next step.

If the average chemical potential µ̄ is altered for the general inhomogeneous color-superconducting
phases unexpected results were obtained in our calculations. This must be checked and an extended
systematic study for our parameter dependencies should be carried out.
Additonally it is possible to study the effects of different coupling strengths in the quark-quark interac-
tion channel for the Fulde-Ferrell and generic inhomogeneous color-superconducting phase.

For the generic inhomogeneous color-superconducting phase it would be good to find a better suited reg-
ularization scheme, which does not slow down the numerical evaluation. On the other hand the study of
inhomogeneous phases could also be implemented in a renormalizable model, where the regularization
artefacts do not appear.
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The simultaneous occurence of inhomogeneous chirally broken and color-superconducting phases is of
interest. As a requirement the chemical potential difference between the two quark flavors also has to
be introduced for (in)homogeneous chirally broken phases in our regularization scheme. This allows
to compare the results for inhomogeneous chirally broken phases with the inhomogeneous 2SC phases,
under the assumptions that these phases do not mix, as already done for equal chemical quark potentials
µu = µd .

For future works the inclusion of chirally broken phases with a plane-wave modulation and the Fulde-
Ferrell phase of color superconductivity serves as a starting point. Generic modulations will be far more
complicated. For each of the inhomogeneous condensates with a plane-wave modulation of the order
parameter there are known analytical solutions, which could possibly be extended for their simultaneous
appearance in our model within the Pauli-Villars regularization scheme.
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A Simplification of the effective Hamiltonian
for inhomogeneous 2SC condensates

In chap. 4 inhomogeneous 2SC phases were considered in the NJL-model and PV-regularization. In this
appendix we present selected details of the calculations for the introduced simplifications and assump-
tions, which were made during the evaluation of the Hamiltonian. First we show how to simplify the
Hamiltonian by identifying a block-structure and as a second part we proof, that the Hamiltonian is still
diagonal in the Matsubara frequencies and has the structure given in eq. (4.16).

A.1 On the Bloch theorem and Brillouin zone

The following discussion of the Bloch theorem is taken from Ref. [AM07] and will be briefly summarized
for our application to inhomogeneous color-superconducting phases:
The Schrödinger equation takes a special form if the translation operator and the Hamiltonian commute:
If the eigenfunctions are expanded with coefficients ψk(x) for vector k ∈ B.Z. the overall Schrödinger
equation in momentum space can be separated in independent Schrödinger equations if the momenta
fulfill

pm− pn =±q, (A.1)

where q is an element of the reciprocal lattice, which is present because of the assumed periodic bound-
ary conditions.
This shows that eq. (4.16) also can be decomposed like

H =
∑

~k∈B.Z.

H (~k) (A.2)

where only the Hamiltonian H (~k) has to be considered independently from the others instead of the
fullH .

Mathematically we sketch here how to derive this also in our model: One block is associated with a
momentum ~k of the Brillouin zone (B.Z.) and the sum over all states can be separated into a sum over
the different blocks times the sum over the eigenvalues of each block

∑

λ

→
∑

i

∑

λi

, (A.3)

where λi are the eigenvalues of block i.
In detail this permits to rewrite the overall HamiltonianH into a direct sum of Hamiltonians associated
to one block

H =
∑

~kn∈B.Z.

P~kn
H =

∑

~kn∈B.Z.

H
�

~kn

�

, (A.4)

where the momenta pm,n have a common vector k and
�

P~kn

�

~pm,~pn
=

∑

~qm,~qn∈R.L.

δ~pm−~kn,~qm
δ~pn,~qn+ ~kn

(A.5)

is a projector to the block associated with ~kn. By inspecting now the resulting structure, one recognizes
that only a countable number of blocks (instead of overcountable many) in the overall Hamiltonian have
non-vanishing entries. Then the problem reduces to determine the eigenvalues only per block instead of
the eigenvalues Eλ in eq. (4.17) over the whole structure.

39



A.2 Derivation of the effective Hamiltonian

We start with the evaluation of the euclidean action

SE =

∫

dτ

∫

d3 xL (x0 =−iτ, ~x) (A.6)

=

∫

dτ

∫

d3 xΨ̄(x)S−1(x)Ψ(x) +V , (A.7)

neglect the potential term for now and plug in the Fourier-expanded bispinors and gap

1

V

∫

dτ

∫

d3 x
∑

ωn,ωm

∑

pm,pn

Ψ̄pm
exp
�

ipm x
�

S−1Ψ̄pn
exp
�

−ipn x
�

(A.8)

=
1

V

∫

dτ

∫

d3 x
∑

ωn,ωm

∑

pm,pn

Ψ̄pm
exp
�

i
�

ωnτ− ~pm~x
��

×

×
�

i /∂ + /µ−m
∑

qk
∆̂qk

exp
�

−iqk x
�

γ5

−
∑

qk
∆̂∗qk

exp
�

iqk x
�

γ5 i /∂ − /µ−m

�

Ψ̄pn
exp
�

−i
�

ωnτ− ~pn~x
��

(A.9)

=
1

V

∫

dτ

∫

d3 x
∑

ωn,ωm

∑

pm,pn

exp
�

i(ωm−ωn)τ
�

Ψ̄pm
exp
�
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∆̂qk
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−iqk x
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(A.10)

=
1

T V

∫

d3 x
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ωn,ωm

∑
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Ψ̄pm

exp
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−i~pm~x
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(A.11)

=
1

T V
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d3 x
∑
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pm,pn

δωm,ωn
Ψ̄pm

exp
�

i~pm~x
�
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/pm+ /µ−m
∑

qk
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exp
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�
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qk
∆̂∗qk
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iqk x
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�

(A.12)
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and

=
1

T V

∫

d3 x
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Ψ̄pm

exp
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=
1

T V
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, (A.16)

where we used p0
m = p0

n.
Now shifting the exponentials in the matrix and using the integral representation of the delta distribution
again gives

=
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T V
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=
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T V
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which finally allows to decompose

SE =
1

T

∑

pm,pn

Ψ̄pm
S−1

pm,pn
Ψpn
−V (A.18)

where we defined the components of S−1 like in eq. (4.15). This shows that the inverse propagator is
indeed diagonal in the Matsubara frequencies and

S−1
pm,pn

= γ0
�

iωpn
−H~pm,~pn

�

δωpm ,ωpn
(A.19)

enables to get the effective Hamiltonian eq. (4.16).
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Conventions and notation
For this thesis we use natural units where kB = c = ~ := 1 and the unit of the energy, the electron volt
[E] = eV was chosen as a reference and all other units are expressed in terms of this unit.
The number i is defined by i2 =−1 for i ∈ C.
The Feynmann slash is given by

/A := γµAµ (A.20)

and the dagger-operator as

A† := Āγ0, (A.21)

where γµ are Dirac gamma-matrices. Also we sum implictly over same indices, where greek indices run
from 0 to 3 and latin indices from 1 to 3.
The Pauli matrices are given by

σ1 =
�

0 1
1 0

�

, σ2 =
�

0 −i
i 0

�

, σ3 =
�

1 0
0 −1

�

, (A.22)

and the Gell-Mann matrices by

τ1 =







0 1 0
1 0 0
0 0 0






, τ2 =







0 −i 0
i 0 0
0 0 0






, τ3 =







1 0 0
0 −1 0
0 0 0






, τ4 =







0 0 1
0 0 0
1 0 0






,

τ5 =







0 0 −i
0 0 0
i 0 0






, τ6 =







0 0 0
0 0 1
0 1 0






, τ7 =







0 0 0
0 0 −i
0 i 0






, τ8 =

1
p

3







1 0 0
0 1 0
0 0 −2







(A.23)

obeying tr
�

τiτ j
�

= 2δi j. In the standard representation the Dirac-gamma matrices are given by

γi =
�

0 σi

−σi 0

�

, i ∈ {1, 2,3} ,

γ0 =
�

12×2 0
0 −12×2

�

and

γ5 = iγ0γ1γ2γ3,

all obeying
�

γµ,γν
	

= 2gµν , where gµν denotes the metric tensor g = diag(1,−1,−1,−1) and {·, ·} the
anticommutator. Other representations of the Dirac gamma-matrices can be transformed to become the
standard representation and are not explicitly given here.
The special unitary group with n dimensions is given as the group of unitary n× n matrices with deter-
minant 1 and is denoted by SU (n), which is a matrix Lie group with dimension n2− 1.
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